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Deep learning has been widely used in various fields and showed promise in recent
years. Therefore, deep learning is the future trend to realize seismic data’s intelligent
and automatic interpretation. However, traditional deep learning only uses labeled
data to train the model, and thus, does not utilize a large amount of unlabeled data.
Self-supervised learning, widely used in Natural Language Processing (NLP) and
computer vision, is an effective method of learning information from unlabeled data.
Thus, a pretext task is designed with reference to Masked Autoencoders (MAE) to
realize self-supervised pre-training of unlabeled seismic data. After pre-training, we
fine-tune the model to the downstream task. Experiments show that the model can
effectively extract information from unlabeled data through the pretext task, and the
pre-trained model has better performance in downstream tasks.
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Introduction

With the development of deep learning, the model’s capability and capacity have exploded.
Aided by the rapid gains in hardware, models today can easily overfit millions of data and begin
to demand more—often publicly inaccessible—labeled data. However, labeling data could be
extremely costly. So, researchers have recently focused on how to use unlabeled data. In Natural
Language Processing (NLP), researchers successfully archive the use of unlabeled data through
self-supervised pre-training. The solutions based on autoregressive language modeling in GPT
(Generative Pre-Training) (Radford et al., 2018a; Radford et al., 2018b; Brown et al., 2020) and
masked autoencoding in BERT (Bidirectional Encoder Representations from Transformer)
(Devlin et al., 2019) are conceptually simple: they remove a portion of the data and learn to
predict the removed parts (He et al., 2021). In computer vision, researchers achieve self-
supervised training through contrast learning (Bachman et al., 2019; Hjelm et al., 2019; He et al.,
2020). After being Inspired by NLP, researchers utilized masked autoencoder with the idea of
target reconstruction (He et al., 2021).

There are already some works based on self-supervised learning in seismic processing and
interpretation. Such as seismic denoising, some researchers achieve random noise suppression
based on Noise2Void (Krull et al., 2019), a kind of self-supervised method (Birnie et al., 2021;
Birnie and Alkhalifah, 2022), some researchers achieve denoising through self-supervised
seismic reconstruction (Meng et al., 2022), and some researchers achieve it by adding additive
signal-dependent noise to the original seismic data and learn to predict the original data (Wu
et al., 2022). What’s more, self-supervised learning can also be used to reconstruct seismic data
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with consecutively missing traces (Huang et al., 2022), reconstruct the
low-frequency components of seismic data (Wang et al., 2020), predict
facies and other properties (Zhangdong and Alkhalifah, 2020), and
perform other seismic processing tasks, like velocity estimation, first
arrival picking, and NMO (normal moveout) (Harsuko and
Alkhalifah, 2022). These works use this method for the same
reason: to solve the problem of lacking labeled data, and good
results have been achieved.

However, in seismic lithology prediction, self-supervised pre-training is
not widely used. Seismic lithology prediction is mainly based on supervised
learning at present. Current researches are basically about the improvement
of model architecture, model input, and model output. For example, using
time-frequency maps of seismic data to train a convolutional neural
network to predict sandstone (Zhang et al., 2018; Zhang et al., 2020),
using dozens of seismic attributes to train a convolutional recurrent
network to predict lithology (Li et al., 2021), and using seismic data, 90°

phase-shift data, reservoir discontinuous boundary attribute to train a
Multilayer Perceptron (MLP) to indirectly predict lithology by predicting
cross-well natural gamma (Xin et al., 2020).

Our research is based on masked autoencoding, which is a form of
more general denoising autoencoding (He et al., 2021). According to
the idea of target reconstruction, the core of masked autoencoding, we
design a masked autoencoder for seismic data with reference to BERT
andMAE. Our model randomly masks a part of the seismic signal and
reconstructs the masked part. It is based on bidirectional Long Short-
TermMemory (Bi-LSTM) because the seismic signal is sequential and
Bi-LSTM is good at extracting information from the sequential signal.
In addition, it has an asymmetric encoder-decoder design, our decoder
is lightweight compared to our encoder. We also try different masking
ratios to find the best setting.

We experimented with synthetic seismic signals. After pre-training,
we fine-tuned our model to the downstream task—sandstone context
predicting. The results show that the pre-trained model performs better.
In the downstream task, the accuracy of the pre-trained model is at best
5% higher than that of the random initialization model.

There is a lot of unlabeled seismic data in oil and gas exploration,
we hope that the application of unlabeled seismic data can make deep
learning better applied in seismic interpretation.

Approach

Datasets

Training and validating a Recurrent Neural Network (RNN)
model often require a lot of signals and corresponding labels.
Manually labeling or interpreting seismic data could be extremely
time-consuming and highly subjective. In addition, inaccurate manual
interpretation, including mislabeled and unlabeled faults, may mislead
the learning process (Pham et al., 2019;Wu et al., 2019;Wu et al., 2020;
Alkhalifah et al., 2021; Zhang et al., 2022). To avoid these problems, we
create synthetic seismic signals and corresponding labels based on the
convolution model for training and validating our RNN model.

Synthetic seismic signals

According to the convolution model, we know that seismic data
are formed of a seismic wavelet and reflectivity:

S t( ) � ∑
∞

i�−∞
w i( )r t − i( ) � w t( )*r t( ) (1)

where w(t) is the wavelet, r(t) is the reflectivity and S(t) is the
synthetic seismic signal, and t means time.

A ricker wavelet is a good representation of seismic wavelets, so we
chose it to generate our signals:

R t( ) � 1 − 2 πft( )2[ ]e− πft( )2 (2)

where R(t) is the ricker wavelet and f is the frequency of the ricker
wavelet.

The reflectivity is decided by the lithology of the stratum. We can
first calculate the impedance sequence Z by density ρ and velocity v of
the stratum. Thus, we can calculate reflectivity from Z:

ri � Zi+1 − Zi

Zi+1 + Zi
(3)

Zi � ρivi (4)
whereZi is the impedance, ri is the reflectivity, ρi and vi are the density
and velocity of the i-th layer of the stratum.

So, our workflow of creating synthetic seismic signals, see Figure 1,
is as follows: we first establish a stratum of randomly distributed
sandstone and mudstone, and then we calculate the impedance
sequence Z using ρ and v of the sandstone and mudstone. At last,
we obtain the synthetic seismic signal using Eq. 1, and the label is the
corresponding stratum.

The sampling interval of the Ricker wavelet and impedance
sequence is 1 ms, so the sampling interval of the synthetic seismic
signal is 1 ms too.

Self-supervised pre-training of seismic signals

Our self-supervised pre-training is based on a masked autoencoder,
which performs well in NLP and computer vision. Amasked autoencoder
masks random parts from the input signal and reconstructs the missing
part. It has an encoder thatmaps the input signal to a latent representation
and a decoder that reconstructs the original signal from the latent
representation. The workflow is shown in Figure 2.

Target reconstruction

As mentioned, a masked autoencoder masks random parts from
the input signal and reconstructs them. It is important to choose how
to mask random parts. In this paper, we design a method for the
seismic signal with reference to Masked Language Model (MLM) in
BERT (Devlin et al., 2019). It is as follows.

We randomly choose a part of the signal, and we replace the
chosen part with (1) zeros 80% of the time, (2) a random part of this
signal 10% of the time, and (3) keep unchanged 10% of the time.

In target reconstruction task design we follow the MLM in BERT
(Devlin et al., 2019) closely. According to the ablation over different
masking strategies in BERT, the best strategy of masking rates of zero
masking, random masking, and no masking are 80%, 10%, and 10%,
respectively. The purpose of nomasking is to reduce themismatch between
pre-training and fine-tuning as the signal will not be masked during the
fine-tuning stage. Themixed strategy of randommasking and zeromasking
will help the model learn better.
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FIGURE 1
The workflow of creating synthetic seismic signals according to the convolution model for training and validation.

FIGURE 2
Overview of the network architecture and self-supervised pre-training.
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Masking ratio

Another point of the masked autoencoder is the masking ratio. It is
different between different signals, when the signals are highly
semantic and information-dense, the masking ratio need could be
small (e.g., 10%), but on the contrary, when the signals are low in
semantic, it needs to be high (e.g., 75%). For low semantic signals, a
missing part can be recovered from neighboring parts without high-
level understanding of signals. A high masking ratio can create a
challenging self-supervisory task that requires holistic understanding
beyond low-level signal statistics. We tried different masking ratios to
find out the best option: about 20%.

Masked autoencoder

Masked autoencoders have an encoder and a decoder.
Encoder: An encoder maps the input signal to a latent

representation. We know that a seismic signal is a sequence signal,
and the RNN model is a kind of sequential model, that is good at
extracting information from a sequence signal. So, our encoder is
based on Bi-LSTM, a kind of bidirectional RNN. We use a
bidirectional RNN because the wavelet has a width, which makes
one point of the seismic signal is affected by the above and below
points.

Decoder: A decoder reconstructs the original signal from the latent
representation. It plays a different role in reconstructing different
signals. When the decoder’s output is of a lower semantic level such as
pixels, the decoder needs to be designed carefully. This is in contrast to
language, where the decoder predicts missing words that contain rich
semantic information. So, our decoder is based on Bi-LSTM andMLP.
In addition, the decoder is only used during pre-training to perform
the signal reconstruction task. Therefore, it is more lightweight than
the encoder to make sure effectiveness of the encoder and reduce
computation.

Experiments

Our experiment is based on synthetic seismic data. Specifically,
we pre-train our model on synthetic seismic data and we fine-tune
our model on synthetic seismic data and corresponding labels. The
specific method of creating synthetic seismic data is described
above. In our experiments, the size of the dataset is shown in
Table 1.

Self-supervised pre-training

The overview of pre-training is shown in Figure 2. The N means
the number of layers of the encoder’s Bi-LSTM, and the M means the
number of layers of the decoder’s Bi-LSTM. The details of the pre-
training model are shown in Table 2.

We pre-train our model using an Adam optimizer (Kingma and
Ba, 2017) with β1 � .9, β2 � .999, and a batch size of 1,600. We use a
step learning rate decay, see Figure 3. We pre-trained for 200 epochs at
4 masking ratios: .1, .2, .3, and .4. To get a qualitative sense of our
reconstruction task, see Figure 4. Our loss function computes the
Mean Squared Error (MSE) between the reconstructed and original
seismic signals. We compute the loss only on masked parts, similar to
BERT (Devlin et al., 2019) and MEA (He et al., 2021), so the model
output on unmasked parts is qualitatively worse. So, we overlay the
output with the unmasked parts to improve visual quality.

Fine-tuning

We can fine-tune our pre-trainedmodel to downstream tasks, and,
a new decoder for the downstream task is necessary. In this paper, the
downstream task is a classification task.

Downstream task: We choose a simple task as our downstream
task, so we can pay more attention to the effect of self-supervised pre-
training. In the downstream task, our model predicts the sandstone
content from the input seismic signal. This is a simple task but also
meaningful, we can get an overall understanding of a stratum from the
prediction results which can be used as a reference for further work.

The output of our downstream task is the percentage of the
Sandstone content, which is suitable for regression. However, we
still choose classification because a regression task is harder than a
classification task. As mentioned above, we need a simple task to

TABLE 1 Size of training and validating datasets.

Pre-train Fine-tune

Train 100,000 20,000

Valid 25,000 5,000

FIGURE 3
Schedule of the learning rate in pre-training.

TABLE 2 Details of the pre-training model.

Encoder Bi-LSTM layers N Decoder Bi-LSTM layers M Hidden size D MLP size

4 1 256 512
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validate our method. In addition, we can calculate the accuracy which
can intuitively show the performance of the model.

Our model predicts the sandstone content from the input seismic
signal and its decoder is a simple MLP, see Figure 5. The details of the
fine-tuning model are shown in Table 3.

We fine-tune our model using again an Adam optimizer (Kingma
and Ba, 2017) with β1 � .9, β2 � .999, a batch size of 2,048 and apply a
weight decay of .001. We use a step learning rate decay, see Figure 6.

In fine-tuning we try several pre-training models with different
masking ratios to find out the best choice of masking ratio. We train
our model 300 epochs and record the losses during training, the losses
of the last 50 epochs are shown in Figures 7, 8. We find that there is an
abrupt behavior for the training and validation losses between epochs
270 and 280. We think this is caused by the an excessively high
learning rate for that stage of the training. So, when the learning rate
decreases, the problem disappears.

After training, we evaluate the accuracy of the models on the test
synthetic dataset, see Figure 9.

Discussion

In this paper, we do successfully implement a self-supervised pre-
training of seismic signals through a reconstruction task. We have
tried different masking ratios and found that, in our experiment, the
best choice of masking ratio is about 20%. Seismic signals are not
highly semantic, a higher masking ratio should be suitable
theoretically, but the truth is the exact opposite. We think it may
be caused by masked input signals. We input our masked signals to the
model, including the masked and unmasked parts. So, the RNN
extracts information from potential noise (unmasked) and masked
parts. With the rising masking ratio, the model is seriously disturbed
by noise. We think a model which can input the unmasked part may
solve this problem such as Transformer.

In the downstream tasks, the pre-trained model is better than the
random initialization model. This proves the effectiveness of our self-
supervised pre-training method for seismic signals. So, more tasks can
be optimized by self-supervised pre-training in seismic deep learning.

FIGURE 4
Reconstructions of the test synthetic seismic signals.

FIGURE 5
Overview of the fine-tuning network.

TABLE 3 Details of the fine-tuning model.

Encoder Bi-LSTM layers N Hidden size D MLP size

4 256 1,024
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Conclusion

With the development of deep learning, unlabeled data will be
used more. On the one hand, the appetite for large-scale models is
hard to address with the labeled data, because labeled data are very
limited. On the other hand, extracting information from unlabeled
data is an important target in artificial intelligence.

For now, self-supervised pre-training performswell in taking advantage
of unlabeled data in NLP and computer vision. In our work, we designed a
masked autoencoder for seismic self-supervised pre-training. When we
fine-tune our model for a downstream task, the pre-trained model always
performs well, which proves the effectiveness of our method. We also
explore how the masking ratio influences accuracy in the downstream task.

Our model is based on RNN, which is quite costly. We think a low
cost model is necessary so that we can train on bigger datasets. We
think a bigger model and dataset may achieve higher accuracy. We
hope that by using the self-supervised pre-training, we can better apply
deep learning to seismic signals.
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FIGURE 6
Schedule of learning rate of pre-training.

FIGURE 7
Training loss on the training dataset.

FIGURE 8
Training loss on validation dataset.

FIGURE 9
Comparing the accuracy of different masking ratios and non-pre-
training.
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