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As an efficient geophysical exploration tool, the airborne electromagnetic (AEM)

method has been widely used in mineral exploration, geological mapping,

environmental and engineering investigation, etc. Currently, the imaging and

1D inversions are the mainstream means for AEM interpretation as the amount

of AEM data is huge and 2D and 3D inversions are not efficient. In this paper, we

propose a 2D fast imaging method for frequency-domain AEM data based on

U-net network. The U-net is a symmetric full-convolution neural network, in

which the partial pooling operation between the convolution layers is replaced

by the up-sampling operation, while the target location is achieved by skipping

connection. This method does not need to consider the complex coupling

between the EM responses and underground structures, but instead it

establishes a mapping relationship between EM responses and the resistivity

model and can quickly achieve accurate imaging of AEM data. We use this

network to image both synthetic and field survey data and compare the results

with the traditional inversion algorithms. The results show that the U-net

imaging have high resolution at high speed that provides a new way for

interpreting large amounts of AEM data.
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1 Introduction

Airborne electromagnetic (AEM) method is an EM technology based on the moving

platform of aircraft. As an important EM exploration tool, it has been widely used in

various geological productions, e.g., geological mapping, mineral, oil and gas, ground

water and geothermal explorations, environmental and engineering investigations, etc.

(Smith et al., 2004; Supper et al., 2008; Tan et al., 2009; Minsley et al., 2012). The AEM

technology is based on the principle of EM induction by hosting a transmitting coil on the

aircraft to emit a harmonic or transient EM field that is coupled with the anomalous

bodies in the earth underground to produce an anomalous field. This anomalous field is

received by a receiving coil, and via imaging or inversions one can get the information on

the underground structures. This method has the advantage that it does not need to have

human access to the survey lines and thus is especially suitable for areas with high

mountains, deserts, swamps and forest, etc. (Gao et al., 2018). In addition, AEM can carry

out geophysical survey at low cost and high efficiency.

OPEN ACCESS

EDITED BY

Shaohuan Zu,
Chengdu University of Technology,
China

REVIEWED BY

Zhihou Zhang,
Southwest Jiaotong University, China
Xin Huang,
Yangtze University, China

*CORRESPONDENCE

Changchun Yin,
yinchangchun@jlu.edu.cn

SPECIALTY SECTION

This article was submitted to
Solid Earth Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 28 October 2022
ACCEPTED 12 December 2022
PUBLISHED 10 January 2023

CITATION

Liu Q, Yin C, Su Y, Liu Y, Wang L, Liang H
and Wang H (2023), Two-dimensional
fast imaging of airborne EM data based
on U-net.
Front. Earth Sci. 10:1082876.
doi: 10.3389/feart.2022.1082876

COPYRIGHT

© 2023 Liu, Yin, Su, Liu, Wang, Liang and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 10 January 2023
DOI 10.3389/feart.2022.1082876

https://www.frontiersin.org/articles/10.3389/feart.2022.1082876/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1082876/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1082876&domain=pdf&date_stamp=2023-01-10
mailto:yinchangchun@jlu.edu.cn
mailto:yinchangchun@jlu.edu.cn
https://doi.org/10.3389/feart.2022.1082876
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1082876


Due to the high cost of multi-dimensional inversions, the

main means of AEM data interpretation are currently still based

on imaging and one-dimensional (1D) inversions (Macnae et al.,

1998; Farquharson et al., 2003). Among them, the imaging

algorithms start from the EM diffusion produced by induced

current loops in the subsurface and convert the survey data (EM

responses) into some intermediate parameters. These parameters

can well reveal the main electrical structures in the underground.

Since an imaging algorithm can quickly extract the underground

structures from massive AEM data, it is suitable for real-time

data processing. The imaging results can also be used as the initial

model for more complex AEM inversions (Yin et al., 2015). The

most commonly used imaging techniques right now include EM

Flow (Macnae and Lamontagne, 1987), the differential resistivity

section (Huang and Fraser, 1996), the conductivity depth

conversion (Wolfgram and Karlik, 1995), the resistivity depth

imaging (Meju, 1998), and the look-up-table method (Huang and

Rudd, 2008).

Although the imaging can recover the main underground

structures, yet it cannot deliver the information on the layer

boundaries and depths, so that an inversion is sometimes

indispensable. Considering that AEM methods have very high

sampling rate, and the electrical properties in neighbor stations

don’t change much, so a 1D inversion can well interpret AEM data.

The mostly used 1D inversion methods include the damped least-

squares inversion (Chen and Raiche, 1998), the Occam’s inversion

(Constable et al., 1987), the laterally constrained inversion (LCI)

(Auken and Christiansen, 2004), the weighted laterally constrained

inversion (WLCI) (Cai et al., 2014), and holistic inversion (Brodie

and Sambridge, 2004), etc. These methods have achieved good

results in the inversion of AEM data for mineral exploration,

groundwater detection, and engineering study (Vallée and Smith,

2009a; 2009b; Cai et al., 2014; Yin et al., 2016).

However, all these inversion methods are highly dependent of

the initial model and can easily be trapped into local minima. Trans-

dimensional Bayesian inversion (Yin et al., 2014) and simulated

annealing (Hodges and Yin, 2007) can obtain globally optimal

solutions, but such methods require a lot of forward calculations,

which are inefficient and not suitable for the inversion of massive

AEM data. To deal with all these problems, people in recent years

introduced the deep learning method for fast imaging of AEM data

(Haber et al., 2019; Li et al., 2020; Noh et al., 2020).

The neural network is a general-purpose approximator capable of

approximating any non-linear function (Van der Baan and Jutten,

2000). The deep neural network is evolved from the traditional neural

network, but its network structure is deeper. It can approximate

complex non-linear mapping functions. The non-linear learning and

fitting ability are its most outstanding features. In geophysical

exploration, there generally exists a complex non-linear

relationship between the geological model and EM responses, and

the deep neural network is very suitable for geophysical data imaging

and interpretation. At present, the artificial neural network has been

well applied in geophysical area for image recognition, data

processing and imaging. Puzyrev (2018) implemented the deep

learning to the inversion of EM data using convolutional neural

networks. Iturrarán-Viveros et al. (2021) successfully used the

machine learning as a seismic prior velocity modeling method for

full waveform inversion. Yang andMa (2019) developed amethod to

directly establish velocity model from original seismic records based

on supervised deep full convolutional networks (FCN).

The conventional fully-connected neural networks have

strong non-linear fitting capabilities to different kinds of data,

yet it has been unable to make a major breakthrough in the field

of image processing. The reason is that although the traditional

fully connected neural network can be used in image processing

in theory, its data processing method will inevitably straighten

the two-dimensional (2D) image into 1D vector, which will lose

the spatial information of image data. Meanwhile, the excessive

network parameters can lead to low training efficiency, network

overfitting, etc. The U-net (Ronneberger et al., 2015) is a deep

neural network that realizes the encoding and decoding through

down-sampling and up-sampling operations. Its hidden layers

are all composed of convolutional ones. It can achieve accurate

segmentation by feature fusion of different scales on the channel

dimension (Huang et al., 2020), and thus establish a direct

mapping relationship between data and the models. Right

now, the application of U-net in the geophysical field have

also become mature and achieved good results in fault

identification (Wang et al., 2021), pick-up of first arrival (Zhu

and Beroza, 2019), and resistivity data inversion (Liu et al., 2020).

Since the convolutional neural networks have their unique

advantages in processing image data, inspired by the above

researches, we try in this paper to use U-net for AEM data

imaging. We take frequency-domain AEM data and 2D

underground resistivity model as the input and output of the

network and establish a mapping relationship between them via

the U-net, to achieve fast imaging of AEM data based on the deep

neural network. We will verify the effectiveness of our imaging

method through both theoretical and field data.

2 Theory

We first define a relationship function between AEM

responses and 2D underground resistivity structures, i.e.

Yx,d � f R,H, x( ) (1)

where H denotes the flight height of an AEM system, R

denotes the survey data. We assume that a subsurface

element at a horizontal coordinate x and depth d has a

resistivity of Yx,d. The neural network aims to establish a

mapping relationship:

fθ: R,H, x −→ Y (2)

where θ denotes the trainable parameters (weights and biases) in

the network. In addition, in the training set, the survey points
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stay unchanged for different sample models, so Equation 2 can be

written as

fθ: R,H −→ Y (3)

In this paper, the flight altitude is used as a trainable

parameter when analyzing the effect of flight altitude on

imaging results. Otherwise, it is treated as a fixed value. Thus,

Equation 3 can be further simplified to

fθ: R −→ Y (4)

Since a very complex coupling relationship exists between

AEM responses and the underground conductivity, it is generally

very difficult to solve the function f based on the Maxwell’s

equations. Thus, in this paper we use the neural network to fit this

function so that we can quickly predict the geoelectric structures

in the underground from the AEM data.

2.1 Training set construction

To construct a training set that closely resembles the real

subsurface model, we introduce a Gaussian random rough

surface (Kobayashi et al., 2002), whose power spectrum is

described by

P kx, ky( ) � δ2lxly
4π

exp −kx
2lx

2 + ky
2ly

2

4
( ) (5)

where δ is the root-mean-square height of the rough surface that

determines the scale of the rough surface in the vertical direction.

kx and ky are the wave numbers of the rough surface in the x and

y directions, lx and ly are the correlation lengths along the x and

y directions that are related to the scale of the rough surface in

the horizontal direction. For rough surfaces with horizontal

scales of lx and ly, a larger root mean square height means a

rougher surface. Therefore, we simulate the random shape of the

subsurface anomalies and the undulating interfaces by the

Gaussian random rough surfaces.

To train our network, we use MATLAB to establish certain

number of resistivity models and use the staggered finite-

difference method to calculate the EM responses. For this

purpose, we write the governing equation for the secondary

electric field as

∇×∇× Es � −iωμσEs − iωμ σ − σb( )Eb (6)

where the time harmonic factor eiωt has been assumed. Eb and Es

are the primary and secondary field, respectively, σ is the

underground conductivity (equal to the reciprocal of the

resistivity), σb is the conductivity of a background half-space,

μ is the vacuum magnetic permeability. We apply the spatial

differences to replace the derivatives in Equation 6 and discretize

the governing equation in the frequency domain, and then we use

the quasi-minimal residual (QMR) method to solve the linear

equations system and obtain the frequency-domain AEM

responses. Finally, we match the calculated responses and the

corresponding resistivity models into sample pairs to construct

the desired training set.

The 2D resistivity model we establish in this paper is on the

x, z-plane. Considering that the footprint of a frequency-domain

AEM system is generally very small, we set up the resistivity

models with 16 × 32 rectangular grids. The thickness of the first

layer is 5m, and the thickness of each layer increases by a factor

1.12. The grid size in the horizontal x direction is 30 m. The

parameters of the AEM system are chosen to be consistent with

those used for the survey data. Table 1 gives the frequency and

transmitter-receiver (T-R) offsets. Assuming that the survey line

is aligned in the x direction, the interval between the measuring

points is 30 m.We calculate AEM responses of five frequencies at

each measuring point, so that we can construct sample pairs with

multi-frequency data from all measuring points along a survey

line and the corresponding underground resistivity model of

16 × 32 parameters.

2.2 Data preprocessing and network
training

To obtain better training performance and accelerate the

convergence, it is necessary to preprocess the training set before

putting it into the neural network for training. Here we adopt the

logarithmic normalization to keep the range of training data

within [0, 1]. Specifically, for the resistivity parameters, we have

Yi � log Yi( )
log Yi( ) max + a

(7)

while for AEM data, we have

Xi � log Xi| |( ) + b

log Xi| |( ) max + c
(8)

where the parameters a, b, c are introduced to ensure that the

normalized parameters and data range from 0 to 1. These

parameters should be chosen based on the ranges of the

model parameters and the data in the training set. We then

TABLE 1 Parameters of AEM system (Rønning et al., 2020).

Coils Frequency (Hz) Configuration T-R offset m)

A 880 Coplanar 6.025

B 980 Coaxial 6.025

C 6,600 Coplanar 6.20

D 7,001 Coaxial 6.20

E 34,000 Coplanar 4.87
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put the normalized training set into the training process shown in

Figure 1. After that, we use an Adam optimizer (Diederik and

Jimmy, 2014) to update the weights of the network and minimize

the loss function to obtain the best training performance. In the

network training process, we set the initial value of learning rate

to 10−4 and the number of samples per batch to 32. The loss

function used here is defined as the mean square error (MSE) of

the difference between the model parameters and the predicted

ones, i.e.

MSE � 1
n
∑n
i�1

Yi − Ŷi( )2 (9)

where Yi and Ŷi represent respectively the true and the predicted

resistivity model, n denotes the number of samples in each batch.

In the above network training process, we use the

TensorFlow (Abadi et al., 2016) to establish the U-net

network structure and perform the entire training process on

a platform for data modeling and analysis at https://www.kaggle.

com/. The GPU version accessed by this platform is Tesla P100-

PCIE-16GB. Taking advantage of these supporting conditions,

the training time required to loop a training set containing

100,000 samples for one epoch is approximately 60 s.

2.3 U-net architecture

The U-net has a “U" network structure. It was first used for

the medical image segmentation. After that, it has also been

successfully used in seismic data processing, inversion and

interpretation in recent years (Yu and Ma, 2021). This

method improves the traditional full convolution neural

network (FCN) (Shelhamer et al., 2015). Its unique

convolution operation can not only effectively reduce the large

memory consumption caused by too many network layers, but

can also largely reduce the number of weights and bias in the

network, and thus ease the over fitting to the data.

The U-net architecture used for our training task is shown in

Figure 2. Since the network input has a dimension of 32 × 10

(including 32measuring points and five frequencies with real and

imaginary responses), we interpolate the input data into 32 × 16,

and then transpose it to match the output dimension of 16 × 32.

Considering that the sizes of our input and output data are small,

too many down-sampling operations may lead to the loss of

image information, which will reduce the positioning accuracy in

the up-sampling process, we remove two down-samplings and

up-samplings operations in the original U-net architecture.

However, to solve the problem with insufficient extraction of

high-level features due to fewer down sampling and

convolutions, we added two convolution operations after each

down-sampling.

As shown in Figure 2, when we put AEM responses as input

data into the trained U-net, the corresponding geoelectric model

will be output after the forward propagation process. The

numbers above and below each blue rectangle represent the

number of channels and the data dimension of the current

layer. The network used in our imaging process takes 64, 128,

and 256 channels. The blue arrows represent the convolution

operation shown in Figure 3. In each layer of convolution, we

select the ELU (Exponential Linear Units) function (Clevert et al.,

2015) as the activation function, so that the network has non-

linear fitting capability. The red arrows represent the maximum

pooling operations, as shown in Figure 4. The green arrows

represent the up-sampling operations, which are the operations

of data recovery via interpolations. The grey arrows represent the

skip connections. This operation introduces the feature

information on corresponding scales in the contracting path

into the up-sampling process, so as to achieve feature fusion at

different levels for a more precise imaging. It should be pointed

out that in order to reduce the loss of edge information, we fill in

all zeros to outside grids in each convolution operation to ensure

that the data dimension will not be changed during the

convolution process (see Figure 3).

3 Theoretical data imaging

3.1 Model complexity analysis and
verification of imaging results

In the following, we first validate our 2D imaging algorithm

by synthetic data. As we know, the training set determines the

performance of the network. The more complex the training set

is, the more complex geological model the network can predict.

Therefore, in this paper we establish two training sets with

FIGURE 1
Flowchart of U-net training.
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different complexities. The simple training set contains

50,000 samples, while the complex training set contains

100,000 samples. The model sizes of the two training sets are

the same, both have 16 × 32 grids, but the simple training set has

uniform background and contains only one abnormal body. For

the complex training set, we divide the background into upper

and lower layers, with the layer interface being randomly set. In

addition, we put up to three (0–3) abnormal bodies randomly in

the layered background. As for the resistivities, we assign the

background resistivity randomly within 1Ω·m—10,000 Ω·m
(logarithmically 0–9.21) and the abnormal resistivities within

1Ω·m—1,000Ω·m (logarithmically 0–6.91). Then, we randomly

FIGURE 2
U-net network structure.

FIGURE 3
Zero padding and convolution process.

FIGURE 4
Maximum pooling process with a pooling size 2×2.
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combine them into two cases: a conductive background with

resistive anomalous bodies, and a resistive background with

conductive anomalous bodies. After that, we take

1,000 samples from each training set to test the imaging effect

of the network. The resistivity models used for testing do not

participate in the network training.

After numerous tests, we find that 200 training epochs can

deliver good imaging results. Figure 5 and Figure 6 respectively show

the attenuation process of training errors and imaging results of the

two training sets. From Figure 5 it is seen that the curves as a whole

show a downward trend, the two curves of training set and

validation set fit well with each other at the early training stage.

FIGURE 5
Loss errors versus epochs. (A) Simple training models (B) complex training models.

FIGURE 6
Imaging results for training sets of different complexities.
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However, as the training epochs increases, the loss error curves

gradually get flattened. The minimum loss errors for the complex

and simple training set reduce to .0015, .0017, respectively. From the

imaging results shown in Figure 6, one sees that ether for a simple or

more complex model, the neural network can very accurately

establish the mapping relationship between the AEM responses

and the underground resistivities, the layer interfaces and the

boundaries of the abnormal bodies are clearly revealed, the

predicted resistivities are also very close to the true values.

Model1~Model4 are for a uniform background with a single

body; Model5~Model8 are for a complex background with

multiple bodies.

To demonstrate the effectiveness of our imaging algorithm,

we compare in Figure 7 the imaging results of theoretical data

with the traditional inversions. From the comparison, we can see

that the imaging results can clearly reveal the layer interfaces and

anomalous boundaries, and deliver an image very close to the

true model. The inversion results of Gauss-Newton (GN)method

with a uniform half-space as the initial model can only roughly

reveal the shape of the anomalous boundaries, the inverted

resistivity is not accurate. Furthermore, the time

consumptions for the GN inversion and our imaging method

are quite different. While a single iteration in GN inversion takes

several minutes on DELL workstation of Intel R) Xeon(R) Gold

6256 CPU at 3.60 GHz +3.59 GHz, while our imaging takes only

seconds on the same equipment.

3.2 Effect of flight altitude on imaging
results

In airborne EM, the flight altitude has a very significant

impact on EM responses. To analyze the influence of flight

altitude on the imaging of our network, we take

50,000 samples from the complex training set in Section 3.1

and calculate EM responses for four flight altitudes of 30, 50, 70,

and 100 m for each model, so that the training set of

50,000 samples is expanded to 200,000. During the training

process, we take the flight altitude as input in our network.

After the network is trained for 200 epochs, the loss decreases to

.0011 (see Figure 8).

To check the effectiveness of our imaging method, we test the

imaging results at three different altitudes of 40, 50, and 80 m.

Among them, the flight altitude of 50 m has been seen by the

network, while the altitudes of 40m and 80 m are not included in the

training set and thus are unfamiliar to the network. Figure 9 shows

the imaging results of AEM data for three flight altitudes. It is seen

that no matter whether our network is familiar or unfamiliar with

the flight altitude, it can obtain very accurate imaging results.

However, when the network is familiar with the flight altitude

the imaging results are better than those of the opposite cases.

We can hope that with more AEM data for different flight altitudes

being added to the training set, we will be able to improve the

imaging results even for unfamiliar flight altitudes.

3.3 Effect of noise on imaging results

Until now, our imaging results are obtained from the

theoretical data. However, AEM survey data are often

contaminated by noise, so a stable and practical imaging

method must have certain anti-noise capability. As we know,

the neural network is sensitive to changes in the input data, and

FIGURE 7
Comparison of imaging and inversion results. (A) True model (B) Gauss-Newton inversions (C) U-net imaging.

FIGURE 8
Loss versus epoch after flight altitude being added as input.
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generally the longer the training time of a network is, the less

adaptable to the interference of noise and the weaker the stability

of the network is. Therefore, in this section we add different levels

of Gaussian random noise (1%, 5%, 10%) to the test datasets used

in the complex training set in Section 3.1. In addition to the

aforementioned 200 epochs of model training, we train the

training set for extra 50 epochs (the minimum error of the

validation set is .0043). Then, we use the network to image

the test set with different noise levels and analyze the influence of

noise on the imaging results of the network. From the imaging

results shown in Figure 10, we can see that when different levels

of Gaussian noise are added to the test set, the network can

characterize the boundaries of the anomalous body and the layer

interfaces. This indicates that our U-net has certain anti-noise

capability and can recover the model at different noise levels.

However, analyzing the noise immunity of the network for

different training epochs, we find that compared to the

network with fewer training epochs, the network adaptability

FIGURE 9
Imaging results for AEM data at different flight altitudes. (A)Imaging for unknown altitude of 40m (B) imaging for known altitude of 50m (C)
imaging for unknown altitude of 80 m.
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to noise with more training epochs is reduced. Although the

network that underwent 200 training epochs achieves good

imaging results when no noise was added, with increasing

noise level, the depiction to the lower boundaries of the

anomalous bodies begins to distort, and the layer interfaces

begin to become blurred. In contrast, although the imaging

results for 50 training epochs become slightly worse for noise-

free data, they are less affected by the noise in the data.

Summarizing the above discussions, we can draw the

conclusion that actually there exists a balance between the

stability and accuracy of imaging results when using the

network to image AEM data. As the noise level in the

practical survey data cannot be accurately estimated,

numerical experiments need to be done before starting

processing AEM data, so that good imaging results can be

obtained.

4 Field data imaging

To further verify the effectiveness of our network, we apply

our imaging method to a survey dataset collected by the

Norwegian Geological Survey in Byneset area, Norway

(Rønning et al., 2020). Refer to Table 1 for the parameters of

AEM system. Figure 11 shows the quaternary geological map of

survey area. The blue part shows themarine sediments during the

deglaciation period of about 10,000 years ago, which were

exposed to the surface due to the rebound of glaciers. The

60 black lines represent AEM survey lines at a spacing of

about 100 m. The distance between neighbor survey stations is

50 m. The line marked in red denotes the data segments used for

our 2D AEM imaging.

From the previous researches, we know that there exists a

low-resistivity layer within the depth of 100 m in the survey area,

which is the main geological feature in this area (Liu et al., 2018).

To set up resistivity models that match the geology in the target

area, we assume an undulating layered structure to replace the

previous block model to construct the training set. Since the

established training set only contains the layered structure with

undulating layers, the mapping relationship becomes simpler

than those of block anomalies, we only construct 10,000 samples

for training, and accurate imaging results have been achieve on

the test set. In addition, as the interval between neighbor survey

stations is around 50m, we set the resistivity model in the training

set with the lateral grid size and the spacing of survey points to

50 m. Totally, we have 32 survey points on each survey line. In

Section 3.3, we have found that the noise in the data can have

impacts on the imaging result, and the longer the training time is,

the more serious this effect will become. After many experiments,

we find that the network after 200 training epochs can obtain

good imaging results. From the loss curves shown in Figure 12,

one can see that the loss value is reduced to .0089 after

200 training epochs.

Before imaging the field survey data, we first test our trained

network on synthetic data. Figure 13 shows the network imaging

results for four different models. It is seen that the network well

images the underground structures. The shapes and positions of

the abnormal layers can be clearly identified. This implies that

FIGURE 10
Imaging results with different training epochs for data with different levels of noise. (A) Truemodel (B–E) imaging results with 50 training epochs
for the noise level of 0%, 1%, 5%, and 10% (F–I) imaging results with 200 training epochs for the noise level of 0%, 1%, 5%, and 10%, respectively.
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our network can work on more practical models with undulating

layers.

Figure 14 shows the comparison between the imaging results

from this paper and those from the inversion based on the

wavelet transform (Liu et al., 2018). It is seen that our

imaging results based on U-net are consistent well with the

inversion results from Liu et al. (2018). The resistivity obtained

from the two methods are also very close. In addition, from the

geological report for the survey area, we are informed that the top

of the target area consists of a thin layer of marine sediments with

the resistivity within 10Ω·m - 50Ω·m, underneath lies a thicker

layer of conductive marine clay and under the marine clay lies the

resistive bedrock. Our three-layer imaging results are well

consistent with the geology in the survey area. This shows the

effectiveness of our U-net network for imaging the AEM survey

data. However, compared with traditional inversions that take

large amount of time, our imaging method takes only a few

seconds to process the data. This means that our imaging method

FIGURE 11
AEM survey area and survey lines in Byneset area, Norway (refer to Liu et al., 2018).

FIGURE 12
Loss versus epoch for the training set used to image the field
survey data.
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can effectively improve the efficiency of AEM data interpretation,

so that it will become possible to process AEM data in real time.

5 Conclusion

In this paper, we have successfully implemented a U-net

neural network for 2D fast imaging of frequency-domain AEM

data. The theoretical examples showed that the network can

accurately establish the mapping relationship between AEM data

and resistivity models and deliver accurate imaging results. In

view of the particularity of AEM systems, we also examined the

impact of the flight altitude on the imaging results and found that

our network can provide better imaging results when the flight

altitude is added to the training as a trainable variable. Moreover,

the tests on noisy data also demonstrated that our U-net-based

imaging algorithm has strong noise immunity. It can obtain

reliable imaging results from noisy data even when no noise has

been added to the training set. Finally, the experiments with the

field survey data showed that the results obtained by our U-net

imaging method are well consistent with 3D inversion results and

the actual geology in the survey area, but at very low

computational cost. This provides a solution to the practical

low-efficiency problem in traditional AEM inversions.

Although the U-net presented in this paper can achieve fast

and high-resolution 2DAEM imaging, however, the construction

FIGURE 13
Imaging results for the synthetic data.

FIGURE 14
Imaging results of survey data acquired in Byneset area, Norway in comparison to the inversion results of Liu et al. (2018). (A) Inversion results (B)
U-net imaging.
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of the training set that matches the geology in the survey area is

very important. This means that we need to have a prior

geological information to set the model samples properly for

the construction of training set, so that we can obtain good

imaging results. If a more random model set-up strategy can be

put forward in the future, or when the scale of the training set can

be extensively expanded at large computational facilities, a

training set with stronger adaptability to the complex

underground structures can be established, the generalization

ability of the network will be largely improved. At that time, we

can expect that the real-time processing and interpretation of

huge amount of AEM data become practical.
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