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The Huayuan orefield in the SW Yangtze Block (SW China) is a world-class Pb-Zn orefield, with over 20 million tonnes (Mt) metal reserve. However, the Pb-Zn ore fluid source and evolution in Huayuan remain controversial. This study determined the major and trace element compositions of the newly-identified apatite from the Pb-Zn ores, using electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The apatite samples are of hydrothermal origin, and have high CaO (52.57–57.15 wt%), P2O5 (39.26–42.88 wt%) and F (1.82–3.90 wt%) but low Cl (< 0.42 wt%) contents. The samples have total rare Earth element content (ΣREE) of 74.07–1,255.34 ppm, and they all show negative Eu and weakly positive Ce anomalies. The result suggests that the apatite was formed in an environment with decreasing oxygen fugacity, and in relatively F-rich, Cl-poor, and REE-poor ore-forming fluid. We geochemically compared the apatite from Huayuan with those from different geneses by Fisher discriminant. The result suggests that the Huayuan apatite is distinct from typical magmatic and purely hydrothermal apatite, and that the ore-forming fluids may have had multiple sources. The mixing of fluids with different origins may have triggered significant metal ore deposition.
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1 INTRODUCTION
The Huayuan orefield, containing approximately 300 Pb-Zn deposits with over 20 million tonnes (Mt) of Pb-Zn reserve (Zhao et al., 2016; Li, 2018), is a world-class carbonate-hosted Pb-Zn orefield (Shu, 1983; Xie, 1983; Zhou et al., 1983; Sun et al., 1985; Peng, 1986; Wei et al., 2017). The Huayuan Pb-Zn deposits have simple ore mineralogy, and are characterized by large tonnage low-grade ores (avg. 4% Pb + Zn) (Wei et al., 2020). The ores are hosted by the Lower Cambrian Qingxudong Fm. (LCQF) carbonate rocks, and the ore-forming fluids have low-medium temperature (140°C–220°C) and medium-high salinity (11.0–19.0 wt% NaCleqv) (Liu and Zheng, 1999; Cai et al., 2014; Duan et al., 2014; Wei et al., 2017). Bitumen and methane are found in fluid inclusions (Liu et al., 1999; Zhou et al., 2014), and the dominant mineralization is interpreted to be thermochemical sulfate reduction (TSR) related (Zhou et al., 2014; Wei et al., 2017). The basement clastic rocks are considered as the primary metal source (Yang et al., 2022; Zhang et al., 2022).
In terms of the ore-fluid origin, some authors proposed a formation water source (Zhou et al., 2014; 2017), whereas some others preferred a deeper origin (Wei et al., 2017; Wu et al., 2021). Hydrothermal apatite, a resistate accessory mineral suitable for geochemical and geochronological analyses (Hassan et al., 1977; Kordian et al., 2020; Wang et al., 2022), could provide new clues for the fluid source(s) and evolution (McClellan and Van Kauwenbergh, 1990; Ayers and Watson, 1993; Prokopyev et al., 2017; Hu et al., 2019). In recent years, in situ microanalysis on accessory minerals (incl. apatite) is increasingly used to determine the evolution of magmatic-hydrothermal activity and the mineralization age (Barfod et al., 2005; Edfelt et al., 2005; Deng et al., 2015; Kusebauch et al., 2015; Pan et al., 2016; Xu et al., 2019). In this study, we have newly discovered apatite from the Huayuan Pb-Zn orefield, and have analyzed their geochemical compositions (via EMPA and LA-ICP-MS) to trace the ore-material source(s) and the hydrothermal evolution. We also compared our data with an apatite database. The Fisher discrimination analysis was also conducted to classify the genetic type of apatite from Huayuan.
2 REGIONAL GEOLOGY
The Yangtze Block is bounded by the Qinling, Sanjiang, Songpan–Ganze, and Cathaysia terranes/fold-belts to the north, west, northwest, and southwest, respectively (Figures 1A, B). It comprises a late Paleoproterozoic-early Neoproterozoic crystalline basement of meta-sandstone/-siltstone and silty slate, covered by Upper Ediacaran to Quaternary sedimentary sequences (Metcalfe, 2006; Hu et al., 2022). Regional magmatism was minor and largely ore-unrelated (Yang and Lao, 2007; Duan et al., 2014). The Yangtze Block has undergone multiple tectonic events (Metcalfe, 2006; Charvet, 2013): 1) 850 to 820 Ma: the Yangtze Block and Cathaysia Block were amalgamated along the Jiangnan suture (e.g., Zhao et al., 2011); 2) after ∼820 Ma, Neoproterozoic to Ordovician deep-water sedimentary rocks were deposited in central South China along a failed Neoproterozoic intracontinental rift (i.e., the Nanhua rift) (e.g., Wang and Li, 2003). During the intracontinental Wuyi-Yunkai orogeny (490–410 Ma), the Nanhua rift had evolved into a foreland basin (Yao and Li, 2016). In the Early Triassic, the South China-North China collision occurred along the Qingling-Dabie Orogen, and the Cimmerian continental ribbons (incl. Indochina and Sibumasu) were accreted onto the southwestern South China margin (e.g., Metcalfe, 2006). The NE-trending Huangyuan–Zhangjiajie regional fault zone controlled the distribution of Pb-Zn deposits in the Xiangxi–Qiandong metallogenic belt (XQMB) (Figures 1C; Figure 2) (Li et al., 2010).
[image: Figure 1]FIGURE 1 | (A) Regional tectonic map of the western Hunan-eastern Guizhou Pb-Zn metallogenic belt (modified after Zhou et al., 2013; Wu et al., 2021); (B) Geotectonic map of the Huayuan Pb-Zn orefield in the Upper Yangtze Block (modified after Wu et al., 2021). (C) Geologic map of the Western Hunan Pb-Zn metallogenic belt in South China (modified after Wu et al., 2021; Yang and Lao, 2007) showing the distribution of Pb-Zn deposits, structures, and strata.
[image: Figure 2]FIGURE 2 | (A) Geological map of the Huayuan Pb-Zn orefield (modified after Duan, 2014). (B) Geological profile of the Danaopo Exploration Line No. 53.
3 OREFIELD GEOLOGY
3.1 Stratigraphy
Exposed strata in Huayuan comprises the metamorphosed basement made of the Banxi Group meta-sandstone/-siltstone and silty slate, the Upper Ediacaran Dengying Formation (Fm.) cherty dolostone, and the Lower-Middle Cambrian to Ordovician clastic and carbonate rocks (Figure 2). The Pb-Zn sulfide ores occur in the reef zones of carbonate platform facies, particularly the LCQF reef limestone (Tang et al., 2012). The Qingxudong Formation comprises a lower member (mainly argillaceous/dolomitic/algal limestone) and upper member (mainly argillaceous/micritic dolomite) (e.g., Wu et al., 2021). Magmatic rocks are rarely distributed in the district.
3.2 Structures
Faults are well developed and controlled the Pb-Zn orebody distribution in the Huayuan orefield (Figure 2). These faults are dominantly NE- and NNE-trending, including the Huayuan-Zhangjiajie (dip angle: 60°–75°), Lianghe-Changle (dip angle: 25°–30°), and the Malichang (dip angle: 40°–60°). Among them, the Huayuan-Zhangjiajie fault is the main ore-controlling structure. Open-space structures (incl. Pores, joints, and stylolites) developed in the carbonate rocks may have served as the ore deposition sites in the Huayuan Pb-Zn orefield (Fu, 2011).
3.3 Orebodies
Major deposits in the Huayuan orefield include the Danaopo (4.5 Mt), Qingshuitang (2.9 Mt), Limei (3.0 Mt), and the Yutang (3.5 Mt). Four types of orebodies were recognized in the orefield (Figure 3): 1) stratiform replacement type is widespread and accounts for 80% of the total Pb + Zn reserve (ore grade: 3% Zn + Pb). The orebodies dip gently to the SE (dip angle: 2°–12°); 2) vein type is strictly controlled by NE-trending faults (ore grade: >10% Pb + Zn), distributed mainly in the northern Huayuan orefield with dip angle of 30°–50°; 3) breccia type is only distributed in the third bed of the LCQF lower member, and is commonly by high grade (ore grade: >25% Pb + Zn); iv) lenticular type is distributed in the third-fourth bed of the LCQF lower member, and is usually multilayered (commonly three to seven layers; ore grade: 4–10% Pb + Zn).
[image: Figure 3]FIGURE 3 | Different types of orebodies in the Huayuan Pb-Zn orefield: (A) layered, (B) veined, (C) breccia, and (D) lenticular orebody.
3.4 Alteration and mineralization paragenesis
The Huayuan Pb-Zn orefield contains both oxide and sulfide ores, with metallic minerals including mainly sphalerite, galena, and pyrite (Figure 4), and non-metallic minerals including mainly calcite, dolomite, barite, and fluorite. Ore textures include vein (Figure 4A), disseminated (Figure 4E), metasomatic (Figure 5I), poikilitic (Figures 5A,F,I), and cataclastic (Figure 5I). The alteration can be divided into the diagenetic, hydrothermal, and supergene periods (Wu et al., 2021), with the hydrothermal period further divided into three stages: (early-ore Ⅰ) calcite + dolomite + fluorite + pyrite + sphalerite; (main-ore Ⅱ) calcite + dolomite + barite + pyrite + sphalerite + galena; and (late-ore Ⅲ) calcite + sphalerite + galena.
[image: Figure 4]FIGURE 4 | Photos of ore types in the Huayuan Pb-Zn orefield.
[image: Figure 5]FIGURE 5 | Back-scattered electron (BSE) photographs of apatite from the Huayuan Pb-Zn orefield: (A) automorphic apatite; (B) hypidiomorphic apatite; (C) xenomorphic apatite; (D) xenomorphic apatite with flow structure; (E) hypidiomorphic-xenomorphic apatite with numerous fluid inclusions; (F) pyrite inclusions in apatite; (G) apatite in veins with pyrite; (H) apatite cutting fissures formed by diagenesis; and (I) apatite and pyrite distributed around sphalerite.
3.5 Petrography characteristic of apatite samples
The apatite samples were collected from recrystallized limestone in the lower part of LCQF. Pyrite, sphalerite, barite, and apatite were deposited in the holes formed by dissolution and recrystallization. Apatite grains are scattered around sphalerite, and are euhedral hexagonal to anhedral granular, with sizes of 20–60 μm (Figure 5). Some apatite grains contain pyrite and zircon inclusions (Figures 5F,G,I). Euhedral apatite has a flat smooth surface and lacks impurities or fluid inclusions. Anhedral apatite has many fluid inclusions.
4 SAMPLING AND ANALYTICAL METHODS
4.1 Sampling
Stage Ⅱ disseminated pyrite-sphalerite ore samples were collected from the Danaopo deposit (drill-hole ZK53049, 265–229 m depth, 109°28′E, 28°29′N). Eighteen polished thin-sections were prepared and observed under the optical microscope and SEM to determine the mineral paragenesis. Eight apatite-bearing samples were selected for in-situ major and trace element analyses.
4.2 EPMA major and minor element analysis
The analysis was conducted on a JEOL JXA-8230 Electron Probe Microanalyzer equipped with five wavelength-dispersive spectrometers (WDS), at the Laboratory of Microscopy and Microanalysis, Wuhan Microbeam Analysis Technology Co. Ltd. The samples were first carbon-coated, with the precautions (suggested by Zhang and Yang, 2016) taken to minimize the difference of carbon film thickness between samples and obtain a largely uniform (∼20 nm thick) coating (Zhang and Yang, 2016). Details of the EPMA procedures are described in Yang et al. (2022). Operating conditions for quantitative WDS analyses include 15 kV accelerating voltage, 5 nA beam current, and 5 µm spot size. Data were corrected online using the ZAF (atomic number, absorption, fluorescence) correction procedure. The peak counting time is 10 s for Ca, S, P, Cl. F, Si, Sr, Mg, Na, Zn, Cu, Fe and 20 s for Mn and Ti. The background counting time is half of the peak counting time on the high- and low-energy background positions. The following standards were used: Apatite (P, Ca), Barium fluoride (F), Halite (Cl), Pyrite (S), Olivine (Si), Jadeite (Na), Pyrope garnet (Fe), Strontium fluoride (Sr), Rhodonite (Mn), Rutile (Ti), Cuprum (Cu), Zinc (Zn), and Diopside (Mg).
4.3 LA-ICP-MS trace element analysis
The analysis was performed at the Key Laboratory of Metallogenic Prediction of Non-ferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education. The analysis used a Telydyne Cetac HE 193 nm laser ablation system, coupled with an Analytik Jena PlasmaQuant MS Elite plasma mass spectrometer. The National Institute of Standards and Technology (NIST) standard SRM610 was used as the external standard, Ca as the internal standard, standard GSE-2G as the other standard, and NIST SRM612 for signal correction during the analyses. The analytical conditions include 3.5 J/cm2 energy density, 15 µm beam spot size, 5 Hz frequency, 13.5 L/min Ar gas flow, and 1.1 L/min He flow. The apatite ablation time of 70 s, comprising 20 s background measurement, 30 s sample signal measurement, and 20 s for washing. The instrument tuning conditions are as follows: NIST SRM 610 206 Pb and 232Th contents > 600,000 counts; 248ThO/232Th < 3‰; 206 Pb/238U = .20–.25; 232Th/238U = .95–1.05. The elements measured include Sc, Ti, Ga, Rb, Sr, Y, Zr, Nb, Mo, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, Lu, Hf, Ta, Pb, Th, and U. The detection limit and analytical errors are listed in Supplementary Table S2.
4.4 Fisher discriminant analysis
Fisher discriminant analysis is a linear dimensionality reduction technique that maximizes the separation between several classes (Duda and Hart, 1973). We performed the Fisher discrimination on the compiled apatite data in python. A short mathematical description follows.
Stacking the training data for all classes into a [image: image] by [image: image] matrix [image: image] and representing the ith row of [image: image] with the column vector [image: image], the total-scatter matrix is
[image: image]
where [image: image] is the total mean vector whose elements correspond to the means of the columns of [image: image]. Define [image: image] as the set of vectors [image: image] which belong to the class [image: image], the within-scatter matrix for class [image: image] is
[image: image]
where [image: image] is the mean vector for class [image: image]. Let [image: image] be the number of classes, then
[image: image]
is the within-class-scatter matrix, and
[image: image]
is the between-class-scatter matrix where [image: image] is the number of observations in class [image: image].
The first FDA vector [image: image] can be determined as
[image: image]
The second FDA vector is computed so as to maximize the scatter between classes while minimizing the scatter within classes among all axes perpendicular to the first FDA vector, and so on for the remaining FDA vectors. It can be shown mathematically that FDA vectors are equal to the eigenvectors [image: image] of the generalized eigenvalue problem
[image: image]
where the eigenvalues [image: image] indicate the degree of overall separability among the classes by projecting the data onto [image: image]. With FDA vectors determined, observations are then classified in this reduced FDA space using discriminant analysis (Duda and Hart, 1973; Chiang et al., 2000; 2004; Hastie et al., 2009).
5 ANALYTICAL RESULTS
5.1 Major element composition
The apatite samples have high CaO (52.57–57.15 wt%, mean 54.62 wt%, n = 90), P2O5 (39.26–42.88 wt%, mean 41.18 wt%, n = 90), and F (1.82–3.90 wt%, mean 2.92 wt%, n = 90) concentrations. The Cl content is low (<.42 wt%, mean .085 wt%, n = 90), with that of some samples below the detection limit. The Fe content is .02–.53 wt% (mean .19 wt%, n = 90). The maximum Na2O, MgO, SiO2, SO3, MnO, and SrO contents are .40 wt%, .74 wt%, 1.3 wt%, .89 wt%, .54 wt%, and .40 wt%, respectively (Supplementary Table S1).
5.2 Trace element compositions
The apatite samples are characterized by elevated total rare Earth element concentrations (ΣREE = 74.07–1,255.34 ppm, avg. 388.09 ppm, n = 6). The concentrations of total light and heavy REEs (LREEs and HREEs) are of 63.06–1,106.44 ppm (avg. 294.80 ppm, n = 6) and 11.01–153.05 ppm (avg. 93.29 ppm, n = 6), respectively. Except for samples DZK114J-4–1 (ΣLREE/ΣHREE = 5.73) and DZK114J-9–2 (ΣLREE/ΣHREE = 7.43), the ΣLREE/ΣHREE of the most apatite samples are 1.02–2.23 (avg. 1.62, n = 4) (Supplementary Table S2).
The samples have gentle chondrite-normalized REE patterns (Figure 6B) and distinct negative EuN anomalies (Eu/Eu* = .40–.72, avg. .56, n = 6). All samples show weakly positive CeN anomalies (Ce/Ce* = .92–1.21, avg. 1.08, n = 6) and a narrow Y/Ho range (10.47–13.53, avg. 12.65, n = 6).
[image: Figure 6]FIGURE 6 | Chondrite-normalized REE patterns of (A) calcite (after Wei et al., 2017); (B) apatite from the Huayuan Pb-Zn orefield.
The Huayuan apatite are characterized by high Th (10.71–46.42 ppm) and U (1.12–74.29 ppm) concentrations. Except for sample DZK114J-4–1 (Th/U = .14), the Th/U ratio of most apatite samples is 3.55–24.01 (avg. 10.06, n = 5). The Hf, Zr, Ta, W, and Nb concentrations are low (albeit above the detection limits), with maximum values of 1.65 ppm, 3.9 ppm, 10.82 ppm, 7.16 ppm, and 4.28 ppm, respectively.
5.3 Genetic classification of apatite
Fisher discriminant analysis was conducted on the new and published apatite data, based on seven major and 14 trace elements (O’Sullivan et al., 2020), to define a discrimination model for the different types of apatite. Accordingly, 56.3% and 87.9% of the original classified samples are correctly classified, respectively (Tables 1, 2). In the Fisher discriminant plot (Figure 7), the horizontal and vertical axes represent the values of the two canonical discriminant functions. The plot shows clear clustering of data for apatite from the different origins (hydrothermal, magmatic, and the Huayuan Pb-Zn orefield).
TABLE 1 | Fisher discriminant predictive classification, based on major element concentrations.
[image: Table 1]TABLE 2 | Fisher discriminant predictive classification, based on trace element concentrations.
[image: Table 2][image: Figure 7]FIGURE 7 | Classification plots based on (A) major element and (B) trace element concentrations.
6 DISCUSSION
6.1 Genesis of apatite
The general chemical formula for apatite is A10(PO4)6Z2, and the standard chemical formula is Ca5(PO4)3(F, Cl, OH). The A position is mainly a divalent cation dominated by Ca2+, and the Z position is usually an anion, such as F−, OH−, or Cl− (Griffin, 2008). The calcium ions have coordination numbers 7 and 9 (Hughes and Rakovan, 2018): the former is linked to nine oxygen atoms, whilst the latter is linked to one Z ion and six oxygen atoms. Various ions, such as Sr2+, Pb2+, Mg2+, Na+, and Fe2+, can replace the Ca2+ through isomorphism.
Apatite has commonly three major origins, i.e., magmatic, hydrothermal, and tuff (Sha and Chappell, 1999). The Huayuan apatite has much lower ΣREE (74–1,255 ppm, mean 388 ppm, n = 6) than that of typical magmatic apatite, but higher than that of apatite in tuff (Zhu et al., 2004). Therefore, the Huayuan apatite may have had a hydrothermal fluid source. Some apatite samples have pores, fluid inclusions, and flow structures. These pores and fluid inclusions are often aligned perpendicular to the crystal growth surface. These features are related to the apatite crystallization from hydrothermal fluids (Chakhmouradian et al., 2017; Zheng et al., 2022). The LREE concentrations in apatite are lower than those of stage II calcite, possibly caused by the crystallization of calcite and monazite. Fractionation of REE-bearing minerals may have scavenged LREEs from the ore-forming fluids (Henderson, 1984). The Cl content of the Huayuan apatite is low (max 0.423%, avg. 0.085%), similar to that of typical hydrothermal apatite but lower than that of typical magmatic apatite (Cao et al., 2012; Chen et al., 2019). The Huayuan apatite also has high Mg content (max 0.44%, mean 0.03%, n = 90), which differs from that of typical magmatic and purely hydrothermal apatite (O’Sullivan et al., 2020). This may have resulted from the mixing of Mg-rich meteoric water with the hydrothermal ore fluids. The Mg was likely leached from the hanging-wall sequences via meteoric water seepage. Furthermore, the Fisher discriminant classification indicates that the Huayuan apatite is geochemically different from the apatite with magmatic or purely hydrothermal source (Figure 7). This also suggests that fluids from other sources may have involved in the mineralization, e.g., meteoric water. The Sr/Y ratio of the Huayuan apatite (3.20) is higher than that of magmatic-sourced apatite (∼1.60; O’Sullivan et al., 2020). Meanwhile, REE concentrations of the Huayuan apatite also differ from the apatite with clastic origin. Furthermore, the mudstone wallrocks deposited in carbonate platform environment lacks clastics, as observed under the microscope.
We suggest that our apatite samples have had a hydrothermal origin, because: 1) they are characterized by weakly negative Eu and weakly positive Ce anomalies, different from typical magmatic or sedimentary apatite (Gao et al., 2021); 2) they are slightly enriched in middle REEs (MREEs) but depleted in both LREEs and HREEs, similar to typical hydrothermal apatite (Chen et al., 2019); 3) they have low U concentration, high Th/U ratio, and coexist with ore-related pyrite; 4) they cut the diagenetic-related fissures; 5) they have high Mg but low Cl concentrations.
6.2 Characteristics of ore-forming fluids
Halogen compositions also vary among magmatic and hydrothermal ore-related apatite (Cao et al., 2012): Porphyry Mo-W ore-related apatite has the highest F content and F/Cl ratio; porphyry W-Mo and Cu-Mo ore-related apatite has lower F content and F/Cl ratio; skarn Cu and Pb-Zn ore-related apatite has the lowest F content and F/Cl ratio (Figure 8A). Due to the high and low solubility of Cl and F in aqueous solution, respectively (Brehler and Fuge, 1974), apatite associated with crustal melt is often F-rich and Cl-poor (Wang et al., 2014). The Huayuan apatite has mostly low F content and low F/Cl ratio (F > 1.8 wt%, Cl < 0.4 wt%), which are higher than the average values of apatite from the other Pb-Zn deposit types (Cao et al., 2012). This suggests material input from deep strata by the ore-forming fluids. Apatite is less susceptible to alteration, and would inherit the Sr and Y signature in the fluids (Pan et al., 2016). The Huayuan Pb-Zn ore fluids were interpreted to be water-rich, as supported by the high apatite Sr/Y ratio (Xing and Shu, 2021). Moreover, Sr isotopes of the Huayuan Pb-Zn ore fluid are higher than those of the LCQF limestone but lower than those of the deep strata (Wei et al., 2017), suggesting that the fluids may have reacted with the deep strata.
[image: Figure 8]FIGURE 8 | Plots of (A) F/Cl vs F (after Cao et al., 2012), (B) Ce/Ce* vs Eu/Eu* (after Ding et al., 2015), and (C) ΣREE vs Cl (data from O’Sullivan et al., 2020) for apatite from different types of deposits.
The apatite Mn, Eu, and Ce concentrations can indicate the magma redox state (Drake, 1975; Streck and Dilles, 1998; Sha and Chappell, 1999; Prowatke and Klemme, 2006; Cao et al., 2012; Miles et al., 2014; Pan et al., 2016; Xiong et al., 2017; Chen and Zhang, 2018; Xiong Y. et al., 2019; Xing et al., 2020). This is because Mn, Eu, and Ce have mainly two valence states, i.e., Mn4+ and Mn2+, Eu3+ and Eu2+, and Ce4+ and Ce3+. Mn2+, Eu3+, and Ce3+ are more likely to replace Ca2+in apatite (Shannon, 1976; Sha and Chappell, 1999; Belousova et al., 2002). When the fluid is oxidized, the proportions of Mn4+, Eu3+, Ce4+, and Eu/Eu* in the fluid increase, whereas the Mn2+ and Ce/Ce* decrease, and vice versa when the fluid is reduced. The Huayuan apatite has negative Eu anomalies (wide Eu/Eu* range) and weakly positive Ce anomalies (Figure 8B), which is likely caused by redox changes. Moreover, the Huayuan apatite was formed during the main ore stage (stage Ⅱ) when extensive thermochemical sulfate reduction (TSR) occurred (Wei et al., 2017), during which the ore-forming fluids have become more reducing. As the TSR proceeded, the Eu/Eu* ratio of the ore fluids (as thus their crystallizing apatite) decreased. The ore-fluid oxygen fugacity in the Huayuan Pb-Zn orefield was considered higher than that of typical Cu-Pb-Zn, W, and Sn deposits (Ding et al., 2015).
The apatite ΣREE (74—1,255 ppm) and Cl (< 0.42 ppm) concentrations of the Huayuan Pb-Zn orefield are significantly lower than those with magmatic and magmatic-hydrothermal origins (Figure 8C; O’Sullivan et al., 2020). In addition, the mineralization temperature of the Huayuan Pb-Zn deposits (140°C–328°C; Zhou et al., 2015) is lower than that of typical magmatic-related deposits but higher than that of typical MVT deposits (Xiong et al., 2020; Wu et al., 2021), indicating that the fluid origin was independent from magmatism. The mixing of various fluids may have resulted in the wide range of mineralization temperatures. Moreover, C-H-O isotope studies indicate that the Huayuan ore-forming fluids may include meteoric water. This is consistent with the apatite geochemical signatures that reflect the mixing of brine and meteoric water. In addition, The Fisher discriminant results also suggest that the Huayuan ore-forming fluids may have multiple sources. The Huayuan apatite has higher Mg content (max .44%, mean .03%, n = 90) than typical hydrothermal apatite (O’Sullivan et al., 2020), and the hanging-wall of the Huayuan Pb-Zn orebodies comprises Mg-rich dolomite. We thus suggest that the Mg may have been leached from the hanging-wall dolomite by the percolating meteoric water. The Mg-rich meteoric water may have then mixed with the hydrothermal fluid, passing the high Mg signature into the crystallizing apatite. Therefore, the Huayuan Pb-Zn ore fluids may have included brine and meteoric water components, and are characterized by being F-rich, Cl- and REE-poor, and decreasing oxygen fugacity with the fluid evolution.
6.3 Metallogenic model
The Huayuan Pb-Zn orebodies are hosted in the platform-facies LCQF reef limestone, and structurally controlled by the Huayuan-Zhangjiajie fault zone. The geological and metallogenic characteristics of the Huayuan Pb-Zn orefield are comparable to typical Mississippi Valley-type (MVT) deposits (Leach et al., 2010; 2005; Yang and Lao, 2007; Zhou et al., 2015; Xiong S.-F. et al., 2019). In addition, the Huayuan Pb-Zn metallogeny was likely unaffected by magmatism (e.g., Zhou et al., 2014; Wu et al., 2021; Hu et al., 2022).
Previous studies showed that the sulfide Pb isotopes and sphalerite Zn isotopes of the Huayuan Pb-Zn ores are similar to those of the regional Proterozoic basement rocks (Zhou et al., 2016; Zhang et al., 2022), implying that the basement may have been a key metal source. In addition, the S isotopes of ore sulfides are similar to those of the LCQF limestone (e.g., Zhou et al., 2016; Wu et al., 2021), suggesting that the latter may have been a major ore sulfur source. The regional fault zones, notably the Huayuan-Zhangjiajie, controlled the distribution of Pb-Zn mineralization (Li et al., 2010). Therefore, the Caledonian orogenic event may have facilitated large-scale brine circulation and concentration in the Huayuan district (Wu et al., 2021). The circulating brine may have extracted the metals from the basement rocks, and transported them to the LCQF. The hydrothermal fluid may have mixed with meteoric water in the LCQF, which cooled and diluted the ore fluid and eventually led to ore deposition.
7 CONCLUSION

1) Apatite in the Huayuan orefield is of hydrothermal origin.
2) Ore-forming fluids in the Huayuan orefield may include brine and meteoric water. The fluids are characterized by being F-rich, Cl-poor, and REE-poor, with decreasing oxygen fugacity with the fluid evolution.
3) Metallogeny of the Huayuan Pb-Zn orefield was unlikely to be magmatic-related.
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