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Gold–Cu skarn deposits are characterized by a diverse mineral assemblage, whose

in-situmajor/trace elements and isotope compositions can provide key constraints

to the migration and enrichment of Au during hydrothermal processes. The Yi’nan

Tongjing Au–Cu deposit is located in the central part of the Luxi district, and both

skarn and Au–Cu ore bodies occur at the contact between the Early Cretaceous

diorite porphyry and theNeoproterozoic toCambrian carbonate rocks. Five stagesof

mineralization were identified: 1) early skarn (garnet–diopside–wollastonite); 2) late

skarn (magnetite–epidote–actinolite±tremolite); 3) oxide (specularite–hematite); 4)

sulfide (pyrite–chalcopyrite–sphalerite–quartz–chlorite); and 5) late quartz–calcite.

The mineralization process in the Tongjing Au-Cu deposit was revealed by detailed

scanning electron microscope-backscattered electron imaging, electron probe

microanalysis, in-situ trace element, sulfur and lead isotope analysis. Magnetite is

enriched in chalcophile elements (Cu, Zn, Pb), Co and Ni, probably due to

hydrothermal overprint. The substitution of As and other elements in the

formation of pyrite is conducive to the entry of Au into pyrite. The increase of Se

and As contents in pyrite from stage IVa to IVb indicates that the temperature, salinity

and oxygen fugacity of the ore-forming fluid decreasewhile the pH rises, resulting in

the unloading of Au. The temperature of Au mineralization based on the Se content

in pyrite does not exceed 300°C. Furthermore, V positively correlatedwith Ti andNi/

Cr ratios ≥1 in magnetite and most Co/Ni ratios in pyrite >10 all confirm their

hydrothermal origins. The restricted sulfur (δ34SV-CDT = −0.5–1.2‰; mean = 0.4‰)

and lead (206Pb/204Pb = 17.323–17.383; 207Pb/204Pb = 15.424–15.452; 208Pb/204Pb =

37.367–37.454) isotopic compositions suggest that the deep magma provided the

primary mineralized material, accompanied by a relatively small amount of shallow

crustal material. The Yi’nan Tongjing Au–Cu skarn deposit was formed in the Early

Cretaceous, which is an important metallogenic response to the strong

decratonization of the North China Craton induced by the paleo-Pacific Plate

OPEN ACCESS

EDITED BY

Fei Xue,
Hohai University, China

REVIEWED BY

Leilei Dong,
University of Science and Technology
Beijing, China
Qihai Shu,
China University of Geosciences, China
Xiangguo Guo,
Inner Mongolia University of
Technology, China

*CORRESPONDENCE

Zhao-Lu Zhang,
zhzhl@sdut.edu.cn

SPECIALTY SECTION

This article was submitted to Economic
Geology,
a section of the journal
Frontiers in Earth Science

RECEIVED 30 October 2022
ACCEPTED 06 December 2022
PUBLISHED 10 January 2023

CITATION

Cai W-Y, Zhang Z-L, Liu X, Gao J-L,
Ma M, Li Y, Song Y-X and Li Z-S (2023),
Metallogeny of the Yi’nan Tongjing
Au–Cu skarn deposit, Luxi district, North
China Craton: Perspective from in-suit
trace elements, sulfur and lead isotopes
of sulfides.
Front. Earth Sci. 10:1084212.
doi: 10.3389/feart.2022.1084212

COPYRIGHT

© 2023 Cai, Zhang, Liu, Gao, Ma, Li,
Song and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 10 January 2023
DOI 10.3389/feart.2022.1084212

https://www.frontiersin.org/articles/10.3389/feart.2022.1084212/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1084212/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1084212/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1084212/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1084212/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1084212/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1084212&domain=pdf&date_stamp=2023-01-10
mailto:zhzhl@sdut.edu.cn
mailto:zhzhl@sdut.edu.cn
https://doi.org/10.3389/feart.2022.1084212
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1084212


roll-back. This study shows that there is a large potential of Early Cretaceous skarn

mineralization in the Luxi district.
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1 Introduction

Skarn deposits are an important resource of Au, Ag, Pb,

Zn, W, Sn, Fe, and Cu and other metals on a global scale

(Einaudi et al., 1981; Hedenquist and Lowenstern, 1994;

Meinert et al., 2005; Chen et al., 2007; Chang et al., 2019;

Shu et al., 2021; Niu et al., 2022). Skarn deposits, also known as

contact metasomatic deposits, form at the contact between

intermediate-acid intrusions and carbonate strata (Meinert

et al., 2005; Shu et al., 2017; Chang et al., 2019). It has

experienced a complex mineralization process (magma/

fluid-rock interaction), resulting in a diverse mineral

assemblage (Meinert, 1992; Meinert et al., 2005). Minerals,

especially mineralization-related (e.g., pyrite, chalcopyrite

and magnetite; Cook et al., 2009; Deditius et al., 2014;

Nadoll et al., 2014; George et al., 2018a), can be used to

reveal the key mineralization information such as ore-

forming temperature, elemental substitution and

physicochemical conditions as they often are treated as a

recorder of mineralization processes. Most types of Au

deposits (e.g., orogenic-, epithermal-, intrusion-related, and

carlin-type; Groves et al., 1998; Thompson et al., 1999;

Hedenquist et al., 2005; Baker et al., 2006; Goldfarb and

Groves, 2015) are relatively simple in mineral assemblages,

mainly pyrite and chalcopyrite, where only gold-bearing

pyrite can constrain the detailed mineralization process

(Sung et al., 2009; Fougerouse et al., 2017; Hastie et al.,

2020; Chinnasamy et al., 2021). On the other hand, skarn

Au deposits have a wide range of mineral assemblages and the

major and trace elements of these minerals record a wealth of

mineralization information, which helps us to better

understand the ore-forming mechanism.

The Luxi district is located in the eastern part of North

China Craton (NCC) (Figure 1), and hosts a range of Fe and

Au–Cu skarn deposits (Figure 2). These deposits are closely

associated with Early Cretaceous intermediate magmatic

rocks (diorite and/or diorite porphyry; Xu et al., 2007;

Wang et al., 2011; Duan et al., 2020). The Yi’nan Tongjing

is a representative Au–Cu deposit in the district. Previous

studies mainly focused on fluid inclusions, bulk-ore

C–H–O–S–Pb–He–Ar isotopes, zircon U-Pb and whole-

rock geochemistry (Qiu et al., 1996; Dong, 2008; Gu et al.,

2008; Li et al., 2009; Wang, 2010; Li et al., 2011; Tian et al.,

2015; Zhu et al., 2018), revealing that fluid immiscibility led to

the precipitation of mineralized material, but the

physicochemical conditions for occurrence, migration and

unloading of ore-forming elements are still unclear. The

wide range of sulfur and lead isotopic compositions of

metal minerals makes it difficult to determine the source of

the ore-forming material, and lacks sufficient spatial

resolution to reveal the possible multi-stage mineralization

processes.

In this study, the possible substitution mechanism between

elements, elemental behavior during mineralization and key

controlling factors were investigated, and the source of ore-

forming material was also constrained. Based on detailed field

geological investigations and ore texture, electron probe

microanalysis and in-situ laser ablation-inductively coupled

plasma-mass spectrometry (LA-ICP-MS) trace element

composition analyses were performed on metal minerals

(magnetite, pyrite, sphalerite and chalcopyrite), and in-situ

LA–ICP–MC–MS sulfur and lead isotope analyses were

conducted on pyrite and chalcopyrite.

2 Geological setting

The NCC is adjacent to the Central Asian Orogenic Belt in

the north, and the Qinling–Dabie Su–Lu Orogenic Belt in the

south (Figure 1). The NCC is the oldest and largest craton in

China (Zhai and Santosh, 2011; Zhao and Cawood, 2012) and

eventually cratonized and stabilized at approximately 1.85 Ga

(Zhao et al., 2001; Santosh, 2010; Zhai, 2011). During the

Mesozoic, the nature and thickness of the subcontinental

lithospheric mantle beneath the eastern NCC were changed

(Menzies et al., 1993; Xu, 2001; Zhu et al., 2011; Yang et al.,

2012), which triggered extensive tectonism, magmatism, and

large-scale metal mineralization (e.g., Au, Fe and Cu) (Mao

et al., 2003; Wu et al., 2005a; 2005b; Zhu et al., 2012; Zeng

et al., 2013, 2020). The NCC holds approximately 50% Au

production and proven reserves of China (Deng and Wang,

2016; Yang et al., 2021). These Au deposits are mainly distributed

in the Xiaoqinling-Xiong’ershan, Liaodong, Chifeng-Chaoyang,

Yanshan, Zhangjiakou, Bayan Obo-Baotou, Jiaodong and Luxi

districts (Figure 1B).

The Luxi terrane is dominantly composed of Neoarchaean

gneisses, amphibolites and TTGs and Paleoproterozoic

granitoids (Song et al., 2001; Wan et al., 2011; Wu et al.,

2013), which are overlain by Neoproterozoic Tumen Group

(littoral clastic and carbonate rocks) and Paleozoic to

Cenozoic sequences (Guo et al., 2014; Deng et al., 2018). The

Paleozoic strata are widely exposed in Luxi, including carbonate,
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shale and clastic rocks (Dong, 2008), whilst the Mesozoic to

Cenozoic strata mainly consist of terrestrial clastic and volcanic-

sedimentary rocks (Niu et al., 2004; Hu et al., 2006).

Ninety-five percent of the exposed igneous rocks in Luxi are

Precambrian units, and the rest are small-scale Mesozoic

intrusive rocks, mainly formed in the Early Jurassic (ca.

185–180 Ma; Lan et al., 2012) and Early Cretaceous (ca.

135–125 Ma; Xu et al., 2004; Yang et al., 2006; 2008; Zhang

et al., 2021). The Early Cretaceous magmatism is exemplified by

the Laiwu kuangshan and Yi’nan Tongjing intrusive complex

(Wang et al., 2011; Duan et al., 2020; Gao et al., 2022). They are

mainly composed of diorite and gabbro, with a small amount of

granite, which is closely related to the large-scale Fe and Au

deposits in the area (Hu et al., 2010; Wang, 2010; Duan and Li,

2017).

3 Deposit geology

The Yi’nan Tongjing Au-Cu deposit is located 8 km north

of Yi’nan County in western Shangdong Province, China,

which is mainly composed of six ore segments: Shanzijian,

Gongquan, Jinlong, Gongquandong, Duijinshan and

Tonghanzhuang (Figure 3).

Cambrian sequences are widely exposed in the ore

district (Figure 3), including Changqing Group

(Zhushadong and Mantou formations) and Jiulong Group

(Zhangxia and Gushan formations), which are the main ore-

hosting rocks (Figure 4A; Liu et al., 2014). They consist of

limestone, dolomite, sandstone and shale (Figure 4A; Dong,

2008), whilst these rocks extend along NW–SE (300°) and

incline to the SW at angles of 10–30° (SDGG, 2008). The

Archean Taishan Group (metabasic volcanic–sedimentary

rocks; Guo et al., 2014) is overlain by the Proterozoic Tumen

Group (Tongjiazhuang Formation) in unconformable

contact (Figure 4A; Dong, 2008). The Tongjiazhuang

Formation includes shale intercalated with thin limestone,

in which skarnization occurred (Figure 4A; SDGM, 2015).

Faults in Tongjing are affected by the Tan-lu fault, mainly

including NNE-, NW-, and SN-trending faults (Figure 3).

The NNE- and NW-trending faults are characterized by

multi-stage activities, which are filled with mineralized

quartz or carbonate veins (SDGG, 2008). Besides, the

NNE-trending faults were cut by NW-trending faults.

Magmatic intrusion (e.g., Tongjing intrusive complex)

often occurred at the intersections of these two sets of

faults (Dong, 2008). Tongjing complex comprises

pyroxene/quartz diorite in the middle as xenoliths, a small

volume of hornblende diorite porphyry in the west and

quartz diorite porphyry distributed around them

(Figure 3), which were formed in the Early Cretaceous

(136–126 Ma; Xu et al., 2007; Wang, 2010; Wang et al.,

FIGURE 1
(A) Simplified geological and tectonic map of the NCC (modified after Yang et al., 2021); (B) Geological map with the distribution of gold
deposits in the NCC (modified after Zhao et al., 2005; Deng and Wang, 2016; Li and Santosh, 2017; Li et al., 2020).
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2011; Li et al., 2011; Duan et al., 2020). Diorite is intruded by

the diorite porphyry or occurs as xenoliths in the latter,

indicating its early emplacement (Duan et al., 2020).

Skarnization and Au-Cu mineralization mainly occur in

the contact zone between the Tongjing complex and

Proterozoic to Cambrian carbonate sequences (Figure 4A)

and in the structurally weak zone of the strata (Dong, 2008;

SDGG, 2008).

More than ten major ore bodies have been identified in

Tongjing, and they are mainly hosted in Neoproterozoic to

Cambrian strata or the contact between these strata and

diorite porphyry (Figure 4A; SDGM, 2015). The ore bodies

occur around intrusive rocks in a circular belt (Dong, 2008),

so the trends of the ore bodies vary greatly. The ore bodies are

layered and lenticular (Figure 4B), with lengths of 15–240 m,

widths of 0.5–25 m and depths of 200 m (SDGG, 2008).

However, the scale of a single Au–Cu ore body is generally

small (Figure 4B). For example, the No. 1 ore body is hosted in

thin sandstone and shale of the Zhushadong Formation and

occurs in layers. The ore body has a strike of 134° and dips at

10–15° to the SW. It is approximately 160 m long, 0.5–8.95 m

thick, and extends to depths of 150 m. The average grades of Au,

Cu and Fe in the ore body are 2.89 g/t, 0.19% and 0.63%,

respectively (SDGG, 2008).

Based on field and petrographic observations, five

paragenetic stages at Tongjing deposit are recognized: 1) early

skarn; 2) late skarn; 3) oxide; 4) sulfide; and 5) late quartz–calcite

(Figure 5, Figure 6, Figure 7). The mineral assemblage of the early

FIGURE 2
Simplified geological map of the Luxi district with major deposits marked (modified after Deng et al., 2018).
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skarn stage consists mainly of anhydrous garnet, diopside and

wollastonite. They are mainly present in striped, veinlet, and

scarce relics in Au-Cu ores (Figures 5F,H). The coarse garnet is

replaced by an epidote along the edge (Figure 6K). The

wollastonite occurs as long-prismatic and platelike. As the

main stage of Fe mineralization, the late skarn is characterized

by the occurrence of epidote, tremolite, actinolite and magnetite

(Figures 5B,E–G), which are widely developed in strips or blocks.

Magnetite and epidote are filled by late pyrite, chalcopyrite and

calcite along the gap between particles (Figures 6A,L). The oxide

stage is marked by the pervasive occurrence of hematite,

specularite and quartz, occurring in veinlets and lumpy, which

is superimposed on the early skarn stage. Specularite is mostly

acicular and cut by late sulfides or chlorite veins (Figures 5H, 6C),

whilst hematite grew along the edge of magnetite. Pyrite and

chalcopyrite as well as minor sphalerite and bornite occur in the

sulfide stage (Figure 6B). These minerals often replace the skarn

minerals (Figures 5B,E), occurring as interstitial fillings or cross-

cut veins (Figures 5F,G, 6A). The gangue minerals in this stage

include chlorite, quartz, sericite, fluorite and calcite. Chlorite is

veined, striped or irregularly shaped and overprinted on the early

reddish brown or dark green hornstone (Figure 5H). This is the

main Au-Cu mineralization stage, and the formation of native

gold is related to chalcopyrite and pyrite (Figures 6D–G). Gold is

wrapped in pyrite and chalcopyrite in granular or irregular shape

(Figures 6D,G; Supplementary Figure S1A,B), and occurs along

the edge of euhedral pyrite (Figure 6E; Supplementary Figure

S1D) or in quartz vein (Figure 6F; Supplementary Figure S1C,E).

Stage IV is further divided into two sub-stages: Stage IV-a mainly

includes pyrite and minor chalcopyrite, occurring in massive,

disseminated or stripped, and quartz is rare in this sub-stage

(Figure 5A); Chalcopyrite-pyrite-quartz veins occur in the stage

IV-b, and these veins cut through the stage IV-a and earlier stages

(Figures 5C,D,F–G). The quartz–calcite veins in stage V are poor

in sulfides, and both they and fluorite veins cut early ores

(Figure 5I, Figures 6K,L).

4 Samples and analytical methods

Twenty-two samples (21YNT01 to 21YNT22) in this

investigation were selected from the Jinlong ore segment

FIGURE 3
Geological map of the Yi’nan Tongjing Au–Cu deposit, modified after SDGM (2015) and Duan et al. (2020). The cross section of the exploration
line (a-a’) is shown in Figure 4B.
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526 m level and the Gongquandong ore segment 180 m level.

Forty-one polished thin sections with thicknesses of 30 and

50 μm for subsequent mineralogical and geochemical

analyses. Pyrite, chalcopyrite, sphalerite and magnetite

from Au-Cu ores were chosen for EPMA, LA–ICP–MS and

in-situ S and Pb isotope analyses.

FIGURE 4
Sketchmap showing the stratigraphy and the occurrence of ore bodies in the Yi’nan Au–Cu skarn deposit (A), modified after Dong et al. (2008);
Geological cross-section along exploration line 12 of Jinlong ore segment (B), modified after SDGM (2015).
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4.1 Electron probe microanalysis (EPMA)

Mineral compositions of gold, sulfides and oxides grains were

analyzed by a Japan JEOL JXA-8320 electron probe with four

wavelength-dispersive spectrometers at Shandong institute of

geological sciences, Ji’nan, China. Gold and sulfides analyses were

conducted using an accelerating voltage of 20 kV, a beam current of

20 nA and a beam size of 1 μm. Natural pyrite (S, Fe), chalcopyrite

(Cu), sphalerite (Zn), galena (Pb), bismuth selenide (Bi, Se),

antimony telluride (Te, Sb) and arsenopyrite (As) were used for

standardization, while other elements (Co, Ni, Au, Ag) were

standardized on metals. The operational voltage was 15 kV, with

a beam current of 10 nA, and a diameter of 5 μm for oxides analyses.

The standardized natural minerals and synthetic compounds were

followed: magnetite (Fe), almandine (Al), jadeite (Si), diopside (Mg),

rutile (Ti), rhodonite (Mn), celestite (Sr), nickel (Ni), vanadium (V),

chromium trioxide (Cr), sphalerite (Zn). Raw data ZAF corrections

weremadewith proprietary JEOL software. Theminimumdetection

limit is usually <0.01 wt%.

4.2 LA-ICP-MS in situ trace element
analysis

Element analysis of mineral in thin sections was conducted

by LA–ICP–MS at Nanjing FocuMS Technology Co. Ltd.

FIGURE 5
Photographs of hand specimens from the Tongjing Au–Cu deposit. (A) Striped Au ore with specularite precursor, accompanying chlorite and
pyrite; (B) Au–Cu ore including chalcopyrite, pyrite and magnetite and hematite relic, cut by later quartz and fluorite veinlets; (C)
Chalcopyrite–pyrite–quartz vein cutting the massive Au–Cu ore; (D) Pyrite–quartz vein cutting the disseminated Au ore; (E) Au–Cu ore with
magnetite relics, crossed by later quartz veinlets; (F,G)Garnet or epidote skarn withmagnetite and hematite, cut by chalcopyrite–pyrite–quartz
vein; (H) Au–Cu ore showing striped sulfides and oxides, reddish and grey hornstone, epidote, chlorite and garnet relic. Most specularite and
magnetite are replaced by pyrite in situ, the irregular (pyrite–) chlorite veins cutting hornstone or magnetite vein, with late carbonate–quartz vein
cutting the ore; (I) Multistage carbonate veins cutting early dark grey hornstone. Abbreviations: Cab–carbonate; Ccp–chalcopyrite; Chl–chlorite;
Ep–epidote; Fl–fluorite; Grt–garnet; Hem–hematite; Hr–hornstone; Mgt–magnetite; Py–pyrite; Qtz–quartz; Spe–specularite.
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LA–ICP–MS analyses of metal oxides and sulfides were

performed using a Teledyne Cetac Analyte Excite laser-

ablation system coupled to an Agilent 7,700× quadrupole

ICP–MS. The 193 nm ArF excimer laser was focused on the

surface of oxides and sulfides, with a fluence of 6.0 J/cm2 and

3.0 J/cm2 respectively. Each acquisition incorporated 20 s

background (gas blank), followed by a spot diameter of 40 um

at 6 Hz (oxides) or 5 Hz (sulfides) repetition rate for 40 s. Helium

(370 ml/min) was applied as a carrier gas to efficiently transport

aerosol and wasmixed with argon (~1.15 L/min) viaT-connector

before entering the ICP torch.

Forty-one isotope signals in sulfide were collected in this

experiment, and the values were calculated by using MASS-1 and

GSE-1G as an external standard and no internal standard. For

oxide, United States Geological Survey basaltic glasses, including

BIR-1G, BHVO-2G, BCR-2G and GSE-1G, were used as external

calibration standards as these are of the similar matrix as

anhydrous silicate. Raw data was performed offline by

FIGURE 6
Photomicrographs of Au–Cu mineralization in Tongjing deposit. (A) Pyrite and chalcopyrite filled along the gap of subhedral magnetite; (B)
Pyrite is replaced by chalcopyrite along the edges of pyrite, chalcopyrite overprinted by sphalerite; (C) Acicular specularite filled or replaced by pyrite
and chalcopyrite; (D) Natural gold occurring in euhedral pyrite as irregular particles, they wrapped by chalcopyrite; (E) Irregular or granular natural
gold grew along the outer edge of euhedral pyrite, they appearing in chalcopyrite in BSE images; (F) Irregular stripped native gold occurring in
fissures inside the euhedral pyrite in BSE images; (G) Silver-bearing natural gold wrapped in chalcopyrite in BSE images; (H) Chalcopyrite, pyrite and
early residual magnetite occurring in Au–Cu ores; (I) Pyrite containing spindle-shaped hessite; (J) Pyrite and tetradymite growing together; (K)
Carbonate veins filled along the gap of euhedral garnet, epidote replacing garnet around the edge of garnet; (L) Epidote, chlorite and carbonate
alterations with specularite. Sp–sphalerite; Au–native gold; other abbreviations as for Figure 5.
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ICPMSDataCal software (Liu et al., 2008). The precision of each

analysis is better than 20% for the most elements.

4.3 In-situ S isotope analysis

In-situ sulfur isotope spot analysis of sulfides (pyrite and

chalcopyrite) was carried out at Nanjing FocuMS Technology Co.

Ltd., utilizing an Analyte Excite laser-ablation system (Bozeman,

Montana, United States) and a Nu Plasma II MC–ICP–MS

(Wrexham, Wales, United Kingdom). The 193 nm ArF

excimer laser was focused on the surface with a spot of 50 μm

pit size for chalcopyrite, 33 µm for pyrite and 40 µm for

sphalerite, 5 Hz pulse frequency and 2.5 J/cm2
fluences. The

single spot was ablated for 30 s collection of background

signal and 35 s data. The integration time of Nu Plasma II

was set to 0.3 s (equating to 115 cycles during the 35 s).

Natural pyrite Wenshan (δ34S = +1.1‰) was used as an

external bracketing standard every fourth analysis to ensure

precision and account for instrument drift. Pressed powder

pellets of pyrite GBW07267 and chalcopyrite GBW07268

(δ34S = +3.6‰, −0.3‰ respectively, from the National

Research Center for Geoanalysis, China) and fine-grained

sphalerite SRM 123 (δ34S = +17.5‰, from National Institute

of Standards and Technology, U.S) were treated as quality

control. All measurements are presented relative to CDT, and

the long-term reproducibility of δ34S is better than 0.6‰

(1 Standard Deviation).

4.4 In-situ Pb isotope analysis

The in-situ lead isotope analyses of pyrite were performed on

a Neptune Plus MC–ICP–MS (Thermo Fisher Scientific, Bremen,

Germany) equipped with a Geolas HD excimer ArF laser ablation

system (Coherent, Göttingen, Germany) at the Wuhan Sample

Solution Analytical Technology Co., Ltd., Hubei, China. The spot

diameter ranged from 60 to 90 μm dependent on Pb signal

intensity, with 8 Hz pulse frequency and 6.0 J/cm2
fluence. A

new signal-smoothing and mercury-removing device were used

downstream from the sample cell to efficiently eliminate the

short-term variation of the signal and remove the mercury from

FIGURE 7
Mineral paragenesis for the Yi’nan Tongjing Au–Cu deposit.
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the background and sample aerosol particles (Hu et al., 2015).

Sph-HYLM as an external standard was used to monitor the

precision and accuracy of the measurements. The obtained

accuracy is estimated to be equal to or better than ±0.2‰ for
208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb, with an external

precision of 0.4‰ (2σ). More detail of the in-situ Pb isotopic

ratios analysis was described. All data reduction for the

MC–ICP–MS analysis of Pb isotope ratios was conducted

using “Iso-Compass” software (Zhang et al., 2020).

5 Results

5.1 Major element compositions analyzed
by EPMA

A total of 76 EPMA analyses spots were completed on single

particles of metal oxides and sulfides, including 45 spots of pyrite,

12 spots of chalcopyrite, 4 spots of sphalerite from the stage IVa

and IVb and 15 spots of magnetite as euhedral-subhedral

octahedron in stage II or relics in stage IV. The above EPMA

results are listed in Supplementary Table S1.

The Fe content of the magnetite ranged from 65.39 to

71.33 wt%, lower than the stoichiometric value of 72.40 wt%.

In general, the trace element contents for the magnetite vary from

below detection limits to ~2 wt% (Supplementary Table S1).

Silicon, Mg and Al contents of magnetite are 0.17–1.70 wt%

(avg. 1.24 wt%), 0–0.57 wt% (avg. 0.23 wt%) and 0–0.75 wt%

(avg. 0.36 wt%). EPMA elements mappings of magnetite show

the oscillatory variation of Si, Al and Mg (Figure 8), indicating a

change in the composition of ore-forming fluid.

Iron and S contents of pyrite are 46.11–46.75 wt% (avg.

46.42 wt%) and 53.32–53.62 wt% (avg. 53.49 wt%) in stage

IVa, 40.49–46.78 wt% (avg. 45.38wt%) and 51.72–53.29 wt%

(avg. 53.35 wt%) in stage IVb. The contents of Fe, Cu, S and

Zn in chalcopyrite from stage IVb are 28.55–30.12 wt% (avg.

29.64 wt%), 33.39–34.83 wt% (avg. 34.26 wt%), 33.52–35.11 wt%

(avg. 34.44 wt%) and 0.01–1.51 wt% (avg. 0.21 wt%),

respectively. Zinc and S contents of sphalerite are

51.36–59.13 wt% (avg. 55.73 wt%) and 32.38–32.83 wt% (avg.

32.62 wt%) in stage IVb, with a Fe content of 3.74–7.07 wt% (avg.

4.94 wt%) and a Cu content of 3.54–7.84 wt% (avg. 5.25 wt%).

The fineness [1,000·Au/(Au+Ag), by weight; Hough et al.

(2009)] of Au grains has been calculated based on EPMA results

(n = 11), with the detailed data in Supplementary Table S1. The

two generations of visible gold have distinct characteristics in

mineral assemblage and composition (Supplementary Table S1).

Au-1 exhibits irregular droplets and is wrapped by chalcopyrite

and euhedral pyrite (Figures 6D,G; Supplementary Figure

S1A,B), and the Au content of Au-1 (85.94–97.02 wt%, avg.

91.16 wt%) is significantly higher than that of Au-2

(62.03–84.91 wt%, avg. 71.70 wt%). Au-2 mainly occurs at the

edge of pyrite or in pyrite–quartz vein (Figures 6E,F;

Supplementary Figure S1C,E), and the Au-2 has a higher Ag

content (14.65–29.68 wt%, avg. 24.24 wt%) than the Au-1

(1.51–7.51 wt%, avg. 5.88 wt%). The average fineness of Au-1

FIGURE 8
BSE image (A) and maps of Fe (B), Si (C), Al (D), Mg (E) and Cr (F) in zoned magnetite from Tongjing Au-Cu deposit.
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and Au-2 is 939.17 (919.65–984.69, n = 5) and 745.68

(690.28–852.89, n = 6), respectively. According to the gold

and silver series mineral classification (Zhang and Chen,

1995), the Au fineness indicates that Au-1 and Au-2 belong to

the high-medium temperature Au–Ag series in the Yi’nan

Tongjing Au–Cu deposit.

5.2 Trace element chemistry by
LA–ICP–MS

The 98 individual LA–ICP–MS spots were analyzed for the

pyrite, chalcopyrite, sphalerite and magnetite relics from Au-Cu

ores. The analytical results are presented in Supplementary Table

S2 and Figures 9, 11–13 and Supplementary Figure S1, S2. We

selected chalcopyrite and pyrite with no inclusions for analysis to

obtain precise results.

5.2.1 Magnetite
The lithophile elements in magnetite grains include Na

(179–380 ppm, avg. 251 ppm), Mg (27.06–186 ppm, avg.

109 ppm), Al (146–4,427 ppm, avg. 2069 ppm), Si

(7,316–116616 ppm, avg. 8,965 ppm), K (202–605 ppm, avg.

371 ppm), Ti (15.44–283 ppm, avg. 113 ppm), Sr

(8.04–17.30 ppm, avg. 12.14 ppm) and Ba (5.20–20.60 ppm,

avg. 10.15 ppm). Magnetite has a high content of chalcophile

elements, including Cu (4.74–1,199 ppm, avg. 216 ppm), Zn

(19.51–81.83 ppm, avg. 50.74 ppm), Ga (1.83–13.12 ppm, avg.

7.47 ppm), In (0.38–13.71 ppm, avg. 3.72 ppm) and Pb

(9.12–66.76 ppm, avg. 27.82 ppm). The contents of As

(319–1,456 ppm, avg. 703 ppm), Ni (39.39–369 ppm, avg.

182 ppm), Cr (12.35–1,416 ppm, avg. 236 ppm), W

(5.39–176 ppm, avg. 86.34 ppm) and Mo (6.52–65.48 ppm,

avg. 34.77 ppm) in magnetite are relatively high, and the Ca

content is lower than the detection limit.

5.2.2 Pyrite
Pyrite in stage IVa has large compositional variations

(Supplementary Table S2, Figure 9). The contents of Co

(75.60–285 ppm, avg. 146 ppm), Ni (1.22–6.01 ppm, avg.

2.99 ppm), As (50.10–104 ppm, avg. 84.20 ppm), Se

(1.99–3.36 ppm, avg. 2.64 ppm) and Te (7.55–56.53 ppm, avg.

21.01 ppm) are distinctly higher than other trace elements in

pyrite, such as Cu (3.60 ppm), Zn (1.13 ppm) and Au

(0.02–0.13 ppm, avg. 0.06 ppm). Compared with pyrite in

stage IVa, pyrite in stage IVb contains relatively higher trace

elements (Co (350–84521 ppm, avg. 39,259 ppm), Ni

(25.06–13117 ppm, avg. 2,408 ppm), Cu (0.55–5,227 ppm, avg.

582 ppm), Se (16.49–215 ppm, avg. 43.26 ppm), Ag

(0.24–3,921 ppm, avg. 443 ppm), Bi (0.45–3,641 ppm, avg.

201 ppm), Pb (0.06–7,021 ppm, avg. 271 ppm), Te

(1.77–3,877 ppm, avg. 257 ppm), As (1.08–4,899 ppm, avg.

842 ppm), Zn (1.02–28.15 ppm, avg. 4.65 ppm; 309–674 ppm,

avg. 455 ppm), Au (0.05–444 ppm, avg. 28.42 ppm), and Sb

(0.07–2.01 ppm, avg. 0.48 ppm)).

5.2.3 Chalcopyrite
Trace element data of chalcopyrite from stage IVb are shown

in Figure 9. The contents of Zn (3.80–2,799 ppm, avg. 979 ppm),

Co (0.36–5,839 ppm, avg. 410 ppm), Ni (0.27–2,451 ppm, avg.

177 ppm), Ag (8.80–72.34 ppm, avg. 34.02 ppm), Pb

(1.50–42.00 ppm, avg. 20.54 ppm), Bi (2.45–31.07 ppm, avg.

11.42 ppm) and Se (12.23–28.61 ppm, avg. 21.90 ppm) from

chalcopyrite are distinctly higher than other trace elements

(Figure 9). The contents of Ti, As, Cd, In, Sn, Sb, Te and Au

from chalcopyrite are 0.87–2.34 ppm (avg. 1.45 ppm),

1.15–111 ppm (avg. 32.86 ppm), 0.30–12.05 ppm

(avg.4.91 ppm), 2.00–3.74 ppm (avg. 3.11 ppm), 0.71–3.40 ppm

(avg. 1.70 ppm), 0.23–1.91 ppm (avg.0.57 ppm), 1.22–28.62 ppm

(avg. 8.26 ppm), and 0.03–1.09 ppm (avg. 0.22 ppm), respectively

(Supplementary Table S2, Figure 9).

5.3 Sulfur and lead isotope compositions

Sulfur isotope compositions were determined in chalcopyrite

and pyrite by LA–MC–ICP–MS, and the results are listed in

Supplementary Table S3, Supplementary Figure S2 and plotted in

Figure 10A,B. In general, the sulfur isotope compositions of

different sulfides are consistent and fall within a narrow δ34S
range of -0.54 to +1.22‰ (avg. 0.44‰, n = 38). The δ34S values of
pyrite in stage IVa and stage IVb are -0.54 ~ +0.95‰ (avg.

0.24‰, n = 8) and 0.11 ~ +1.22‰ (avg. 0.65‰, n = 18),

respectively; the δ34S values of chalcopyrite in stage IVb range

from -0.19 to +0.73‰ (avg. 0.26‰, n = 12). The in-situ Pb

isotopic ratios of pyrite in stage IVb are presented in

Supplementary Table S4, Supplementary Figure S2 and

Figure 10C,D, and the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb

ratios are 17.323–17.383, 15.424–15.452 and 37.367–37.454,

respectively (n = 12).

6 Discussion

6.1 Element behavior during the skarn
formation process

6.1.1 Magnetite
There are weak positive correlations between Al (Mg, Na)

and Si in magnetite (Supplementary Figure S1), which may

indicate the absence of sub-micro-scale silicate inclusions in

magnetite (Bowles et al., 2011; Xie et al., 2017), consistent

with their flat depth profiles (Figure 13A). Considering

magnetite with pervasive micro-porosities is wrapped in metal

sulfide (Figure 6H), magnetite in Tongjing deposit was

interpreted as a hydrothermal overprint that may have
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leached Mg, Si, Al and Ca during the dissolution–reprecipitation

process (Hu et al., 2014). Positive correlations exist for Sn vs W,

Pb vs W and Sn vs Pb (Figure 11A–C) showing that these

elements behave similarly during the skarn formation process.

A correlation between Al and Ga (Figure 11D) indicates similar

geochemical behaviors (Huang et al., 2016). The contents of Co,

Ni, Mo, Cu, Zn and Pb in magnetite would be affected by sulfides

because these elements can partition into magnetite and sulfide

phases in sulfide-bearing magmatic and hydrothermal systems

(Huang et al., 2016). Pyrrhotite and pentlandite do not occur in

the Tongjing deposit, so Ni tends to partitioned into magnetite

(Dare et al., 2012), with a high content of Ni (39–369 ppm; avg.

182.2 ppm; n = 9) in magnetite. The low Co content of magnetite

in the Tongjing and a positive correlation of Cu vs Co

(Figure 11E) imply the increasing amounts of sulfides during

the skarn formation (Huang et al., 2014; Zhao and Zhou, 2015),

consistent with the fact that magnetite is wrapped by pyrite

(Figure 6H).

6.1.2 Sulfide (pyrite and chalcopyrite)
Although the As content of pyrite in stage IVa is lower

than in stage IVb, all points plot well below the solubility

saturation line on the Au-As discrimination diagram

(Figure 12) proposed by Reich et al. (2005), suggesting

that Au+ is the dominant form of Au within the pyrite

crystal lattice and that gold-bearing ore fluids deposited

this sulfide were largely undersaturated (Reich et al.,

2013). Arsenic is relatively rich in pyrite, generally greater

than 20 ppm. A positive correlation exists between As and

Au (Figure 12A) as described by numerous scholars (Mumin

et al., 1994; Reich et al., 2005; Deditius et al., 2014), which is

related to the preferential precipitation of Au in the As-rich

sulfides (Voute et al., 2019). The above positive correlation

indicates As could enter the pyrite lattice through coupled

substitution with Au (Au+ + As3+ ↔ 2Fe2+; Deditius et al.,

2008), illustrated by the fact that As has a flat depth profile

(Figures 13C,D) and the negative correlation between As and

Fe (Figure 12B).

The Co and Ni contents of pyrite in stage IVb are higher

than those in stage IVa and they have nearly flat depth

profiles (Figures 13B–E). The atomic radius and ionic

charge of Co and Ni are very close to Fe2+ (Vaughan and

Rosso, 2006; George et al., 2018b), indicating that Co and Ni

were lattice-bound or homogeneously distributed as

nanoparticles in the pyrite crystals (e.g., Zhang et al.,

2022). Almost all pyrite are below the Au solubility line

FIGURE 9
Trace element distribution diagram showing the variation in the Se, As, Au, Ag, Pb, Te, Bi, Co, Ni, Sb, Cu, Zn, Cd, Tl, and Sn concentrations (in
ppm) for pyrite and chalcopyrite.
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(Figure 12A) but above the Te solubility line (Figure 12C),

despite the fact that the Te content of pyrite in stageIVb is

higher than stage IVa. Hence, potential telluride inclusions

may be characterized by high Te/Au ratios either due to high

Te content or high abundances of other elements, such as Cu,

Ag, Pb and Bi (e.g., high-sulfidation epithermal pyrite;

Naden and Henney, 1995; Berger et al., 2014). Tellurium

of pyrite in stage IV is positively correlated with Bi (R2 = 0.57,

Figure 12D) but also with Ag (R2 = 0.79, Figure 12E), which

may be related to the occurrence of Bi-Te or Ag-Te mineral

inclusions. The identification of the hessite (Ag2Te),

cervelleite (Ag4TeS) and tetradymite (Bi2Te2S) by

microscopic observation (Figures 6I,J; Supplementary

Figure S1F) and their similar peaks and irregular depth

profiles (Figures 13B–D) prove the above conclusion. It is

also worth noting that the concentrations of Ag, Bi and Pb

are highly variable in pyrite and chalcopyrite

(Supplementary Table S2), and they are significantly

positively correlated (Figures 12F,G). The ionic radius of

Ag, Pb and Bi are quite different from those of Cu and Fe

(Wang et al., 2021), thus they cannot enter the lattice of

chalcopyrite or pyrite in the form of a solid solution.

Furthermore, they have similar peaks and irregular depth

profiles (Figure 13E), probably due to the micron-scale

inclusions of matildite (AgBiS2), galenobismutite (PbBi2S4)

and gustavite (AgPbBi3S6) or bismuth-bearing galena

(Maslennikov et al., 2009). Almost all pyrite, chalcopyrite

and sphalerite samples show elevated Bi content (>1 ppm)

(Figure 12H), which probably reflects the contribution of

sedimentation to the hydrothermal system (Koski et al.,

1988; Zierenberg et al., 1993). This is consistent with the

fact that Proterozoic to Cambrian carbonate sequences was

involved during the formation of the Tongjing skarn deposit.

Given the high contents of Co (350–84521 ppm) and Ni

(25–13117 ppm) in stage IVb pyrite, the high Co and Ni

contents in stage IVb chalcopyrite may be due to the

inheritance of the replaced pyrite in stage IVb (Figure 6H;

e.g., the Yaman-Kasy volcanic-hosted massive sulfide

deposit; Maslennikov et al., 2009). The contents of As, Co

and Ni in chalcopyrite vary greatly (Supplementary Table S2)

and generally show a similar peak on the depth profiles

(Figures 13F,G), suggesting the existence of inclusions, for

example siegenite (CoNi2S4). The high Zn content in

chalcopyrite (mostly >100 ppm) may be attributed to the

FIGURE 10
(A). Sulfur isotope compositions of various sulfide minerals in the Yi’nan Tongjing Au-Cu deposit; (B). The histogram of sulfur isotope
compositions; (C). 206Pb/204Pb vs 207Pb/204Pb diagram; (D). 206Pb/204Pb vs 208Pb/204Pb diagram (Zartman and Doe, 1981). The data from the previous
study were obtained from Wan et al., 1992; Qiu et al., 1996; Lin et al., 1997; Hu et al., 2007; Li et al., 2009; Shi, 2014; Zhu, 2014; Tian et al., 2015;
Abbreviations: LC = lower crust; UC = upper crust; O = orogen; M = mantle.
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inclusion of sphalerite or zinc-bearing minerals (e.g., Song

et al., 2019). Furthermore, the Zn vs Cd diagram (Figure 12I)

shows a positive correlation between the two elements in

chalcopyrite, and they share the same irregular depth profiles

(Figure 13H). This also suggests that the Zn content reflects

the proportion of sphalerite inclusions. In addition, the

multi-peaked curve of Zn on the depth profiles (Figures

13F–H) implies the presence of zinc-bearing minerals

inclusions in chalcopyrite. Chalcopyrite samples with high

Ag/As ratios plotting outside of the triangular wedge-shaped

zone (Figure 12J) may suggest the presence of silver-bearing

inclusions, as supported by a positive correlation between Pb

and Ag (Figure 12F).

6.2 Possible factors controlling the
composition of magnetite and sulfides

It is well known that oxygen fugacity (fO2) is a major factor

that governs element behavior and possibly influenced Au

speciation during the ore-forming process (e.g., Keith et al.,

2014; Ma et al., 2022). The content of V in magnetite can be

used to estimate the relative oxygen fugacity during the ore-

forming process (Nadoll et al., 2014, 2015; Canil et al., 2016), and

increasing oxygen fugacity would decrease the V content in

magnetite by converting V3+ to V4+ or V5+(Takeno, 2005;

Papike et al., 2015). The low V content in magnetite varies

from 1.50 ppm to 41.87 ppm (avg. 18.06 ppm), implying a

FIGURE 11
Correlation diagrams of various trace elements (in ppm) in the studiedmagnetite from the Yi’nan Tongjing Au–Cu deposit. (A) Sn vs W; (B) Pb vs
W; (C) Sn vs Pb; (D)Ga vs Al; (E)Cu vs Co; (F) The Ti + V vs Al +Mn plots displays are clear decreasing temperature trend. Note that those temperatures
are estimates based on published values (Ahmad and Rose, 1980; Beane and Titley, 1981; Leach et al., 1988; Hayes, 1990; Landis and Hofstra, 1991;
Doughty and Chamberlain, 1996; Manske and Paul, 2002; Audetat and Pettke, 2006; Thorne et al., 2008; Sillitoe, 2010; Nadoll et al., 2012); (G) V
vs Ti; (H) Ni/Cr vs Ti; (I) Ti + V vs Ca + Al + Mn (Dupuis and Beaudoin, 2011). Abbreviations: BIF–Banded iron formation, IOCG–Iron oxide-copper-
gold deposits, PCDs–Porphyry Cu deposits, Kiruna–Kiruna apatite–magnetite deposits, Fe–Ti, V–Magmatic Fe–Ti–oxide deposits.
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high oxygen fugacity. Temperature is considered another major

governing factor for the composition of hydrothermal magnetite,

and Ti is a good temperature indicator (Nadoll et al., 2014).

There is a visible temperature trend in the data. Figure 11F shows

a Ti + V vs Al + Mn plot where data points have been attributed

with approximate temperatures—from low temperature (Thorne

et al., 2008), intermediate temperature to high temperature (e.g.,

Manske and Paul, 2002; Sillitoe, 2010). The magnetite grains

mainly fall in the overlapping area of medium temperature

(200–300°C) and high temperature (300–500°C), higher than

the formation temperature of pyrite (see below).

Selenium in pyrite can be used as a proxy for relative

temperature estimations in ore-forming fluids (Huston et al.,

1995; Keith et al., 2018). Selenium can substitute for S in pyrite

(Chouinard et al., 2005), and its concentration increases as fluid

temperature decreases (Keith et al., 2018). Selenium is nearly

completely removed from the fluid at temperatures above 300 °C

(Huston et al., 1995). Compared with the Se content

FIGURE 12
Plots of various trace elements in the studied pyrite from the Yi’nan Tongjing Au–Cu deposit. (A)Au vs As (Gold saturation line is fromReich et al.,
2005); (B) As vs Fe; (C) As vs Te (The green dashed line defines the wedge-shaped zone indicating Te solid solution for pyrites. The red dashed line
defines the solubility limit for Te solid solution in pyrite as a function of As, which is based on the equation presented by Reich et al. (2005) for the Au-
As system.); (D) Bi vs Te; (E) Ag vs Te; (F) Pb vs Ag; (G) Bi vs Ag; (H) Bi vs Pb (after Keith et al., 2016); (I) Zn vs Cd; (J) As vs Ag (The green dashed line
define the wedge-shaped zone indicating Ag solid solution for pyrites; Reich et al., 2005); (K)Ni vs Co (Deditius et al., 2013; Cioacă et al., 2014; Keith
et al., 2016); (L) As vs Se (Gadd et al., 2016; Mukherjee and Large, 2017; Keith et al., 2018 and references therein).
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(16.49–214.74 ppm) of pyrite in stage IVb, the Se content of pyrite in

stage IVa is low, distributed between 1.99 and 3.36 ppm. It indicates

that the temperature of ore-forming fluids in the Tongjing deposit is

not high (<300 °C), consistent with previous studies (190–250°C;

Dong, 2008), but it cannot be excluded from the genetic relationship

with magmatic activities. The Se content of pyrite may vary with the

pH and redox conditions of the ore-forming fluid (Keith et al., 2018).

The low Se (<10 ppm) and (As < 100 ppm) contents of pyrite are

consistent with the Se (avg. 2.64 ppm) and As (avg. 84.20 ppm)

contents of pyrite from stage IVa, indicating that the ore-forming

fluid is characterized by high temperatures, high fO2, moderate to

high salinity and acidic pH, for example porphyry deposit

(Figure 12L; Goldfarb et al., 2005). The high Se (>10 ppm) and

As (>100 ppm) contents of pyrite are consistent with the Se (avg.

FIGURE 13
Representative time-resolved LA–ICP–MS depth profiles for magnetite (A), pyrite (B–E) and chalcoprite (F–H).
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43.26 ppm) and As (avg. 842 ppm) contents of pyrite from Stage

IVb, suggesting that the ore-forming fluids were distinguished by

low temperatures, low fO2, low salinity and near-neutral pH, as in

orogenic and epithermal (LS) deposits (Figure 12L; Goldfarb et al.,

2005; Simmons et al., 2005). Thus, as ore-forming fluid evolves, the

temperature, salinity and fO2 of the ore-forming fluid decrease and

the pH rises, resulting in the unloading of Au. Furthermore, pyrite

and telluride precipitation in the Tongjing deposit was caused by a

decrease in fO2 but pH-independent (Cooke and McPhail, 2001;

Grundler et al., 2013; Keith et al., 2018), which is similar to the

Dongping Au deposit (Cook et al., 2009; Gao et al., 2017).

6.3 Source of ore-forming materials

The sulfur isotope composition of hydrothermal minerals

depends on the total sulfur isotope composition, fO2, pH and

temperature of the fluid (Ohmoto, 1972). At Tongjing, pyrite has

higher δ34S values (avg. 0.52‰; Supplementary Table S3; Figures

10A,B) than chalcopyrite (avg. 0.26‰), indicating that the ore-

forming system is in equilibrium for sulfur isotope fractionation

(Chen et al., 2008). Thus, the total sulfur isotope value of

hydrothermal fluids can be used to indicate the source of ore-

forming material (Chen et al., 2008). The δ34SSulfide-H2S of pyrite at
200°C and 250°C are 0.1‰ and -0.3‰ respectively (Kajiwara and

Krouse, 1971). Previous microthermometric measurements of fluid

inclusions (Dong, 2008) and this study of Se content in pyrite

indicated that the ore-forming temperatures of stages IVa and IVb

are approximately 200°C and 250°C, respectively. According to the

formula (δ34S∑S= δ34SSulfide-δ34SSulfide-H2S; Ohmoto, 1972), the δ34S∑S

values were calculated to be 0.14‰ and 0.95‰ (Supplementary Table

S3) for stages IVa and IVb, respectively. This narrow variation is

comparable to magmatic origin (δ34S = 0 ± 3‰; Ohmoto and Rye,

1979; Chaussidon and Lorand, 1990). Combined with previous bulk-

sulfur isotope analyses (Figure 10A), high δ34S values (up to 5‰) do

not exclude a small contribution from wall rocks (sedimentary or

metamorphic rocks). Such a sulfur isotopic composition, consistent

with the sulfur isotope composition of the other gold deposits in the

Luxi district (Figure 10A), is common in skarn-type deposits (e.g., Shu

et al., 2013; Peng et al., 2016; Cai et al., 2021).

Lead isotope composition can be used to infer the source of Pb,

and thus the ore-forming materials. The Pb isotope data in this study

show a strong linear relationship with the previous data obtained by

bulk analyses (sulfides and diorite porphyry) (Figures 10C,D),

implying that diorite porphyry is a key source of ore-forming

material for mineralization. The in-situ Pb isotope data are more

concentrated (206Pb/204Pb = 17.323–17.383; 207Pb/204Pb =

15.424–15.452; 208Pb/204Pb = 37.367–37.454), indicating a uniform

source. In the 206Pb/204Pb vs 207Pb/204Pb diagram, the Pb isotope data

of pyrite from the Tongjing deposit fall near the mantle evolution

curve (Figure 10C); the data are close to the mantle/orogen and lower

crust curves in the 206Pb/204Pb vs 208Pb/204Pb diagrams (Figure 10D).

This implies that diorite porphyry (major) and marble/limestone are

the source of the ore-forming materials, consistent with what is

suggested by the sulfur isotope composition.

6.4 Ore genesis of Tongjing Au-Cu deposit

Magnetite shows a positive correlation between V and Ti

(Figure 11G), and the behavior of Ni and Cr in magnetite is

decoupled (Ni/Cr ratios ≥1; Figure 11H; Dare et al., 2014),

indicating a hydrothermal magnetite origin (e.g., Huang et al.,

2016). Magnetite is Ca-depleted (below detection limit) and has

low REE contents (1.66–12.15ppm; avg. 4.87ppm), consistent with

the characteristics of hydrothermal magnetite (Knipping et al.,

2015). Furthermore, the plot of Ca + Al + Mn vs Ti + V

(Figure 11I; Dupuis and Beaudoin, 2011) can distinguish

magnetite from various origins. For the Tongjing deposit, the

data of magnetite plot into the skarn field, though a small

number of grains plot in the undefined field due to lower Ca +

Al + Mn contents (Figure 11I).

Cobalt and Ni contents of pyrite can reflect the temperature and

origin of pyrite (Bralia et al., 1979; Campbell and Ethier, 1984;

Bajwah et al., 1987; Gregory et al., 2015). Cobalt prefers to enter

pyrite at high temperatures, while Ni prefers to enter pyrite at low

temperatures (Maslennikov et al., 2009; Zhang et al., 2020). The Co/

Ni ratios of pyrite from Tongjing vary widely, ranging from 0.07 to

1,009 (Figure 12K). Most values are greater than 10, suggesting that

pyrite was formed at a high temperature and originated from

hydrothermal/magmatic (Bralia et al., 1979; Bajwah et al., 1987;

Meng et al., 2018). Low Co/Ni ratios (generally <1; Figure 12K) are
suggested to represent pyrite of syn-sedimentary origin (Koglin et al.,

2010; Large et al., 2014). A few Co/Ni ratios are between 0.01 and 1,

indicating the mixing of carbonate rocks during mineralization. The

variable Co and Ni contents of the studied pyrite are mainly plotted

in or outside the porphyry copper deposit area (away from the

submarine hydrothermal vents and SEDEX deposits areas)

(Figure 12K), also indicating the result of

magmatic–hydrothermal processes. Chalcopyrite and pyrite have

low U and V contents (Supplementary Table S2), indicating that

they precipitated in the hydrothermal fluids.

Deditius et al. (2009) and Tardani et al. (2017) pointed out that

processes such as fluid boiling can fractionate trace elements in

hydrothermal fluids causing systematic compositional differences

and chemical zonation in precipitated pyrite. Results of Loftus-Hill

and Solomon (1967) and Schirmer et al. (2014) highlighted that

oceanic sediments and carbonate-bearing rocks are enriched in Te

compared to other rocks. As the ore-forming intrusion of the

Tongjing Au-Cu deposit, the formation of the Tongjing pluton is

related to the mantle metasomatism by the paleo-Pacific plate (Guo

et al., 2014). The Cambrian sequences are the main wall rock of the

Tongjing Au-Cu deposit, mainly including carbonate rocks such as

limestone and dolomite (Figure 4A; Dong, 2008). We conclude that

the Te of pyrite from the Tongjing deposit may be controlled by its

concentration in the source rocks, which is also supported by the
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occurrence of the nearby Mesozoic Guilaizhuang Au (-Te) deposit

(Yu et al., 2019).

During the Late Mesozoic, the NCC underwent significant

decratonization and massive thinning of the lithospheric mantle,

accompanied by huge upwelling of the asthenosphere due to the

roll-back of the paleo-Pacific plate (Zhu et al., 2011; Li et al., 2020;

Yang et al., 2021). The response to this tectonic event in the eastern

part of the NCC is mainly characterized by large-scale gold

mineralization in the Jiaodong and Luxi districts. The highly

concentrated sulfur and lead isotope values/ratios in this study

indicate that deep magma (probable mantle) source of ore-

forming materials. That is the Tongjing diorite porphyry enriched

in ore-forming elements intruded into limestone and formed a large

number of skarn and Cu–Au ore bodies.

Conclusion

1) Five hydrothermal stages are identified in the Yi’nan

Tongjing Au-Cu deposit: 1) early skarn; 2) late skarn; 3)

oxide; 4) sulfide; and 5) late quartz–calcite.

2) Gold occurs mainly as (silver-bearing) native grains. The

trace element composition of the sulfides and oxides

implies that the original ore-forming fluid is of medium-

high temperature magmatic-hydrothermal origin. The

decrease in temperature, salinity and fO2 of the ore-

forming fluid, and the increased pH of the ore-forming

fluid are critical to the precipitation of ore minerals.

3) In-situ LA–ICP–MS sulfur and lead isotope compositions

indicate that the origin of ore-forming materials comes

from the Early Cretaceous diorite porphyry and partly

from the host rocks (carbonate rocks).

4) The present study provides new constraints for the

mineralization process of skarn deposits in the Luxi district.
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