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Introduction: The dispersion curve of the Rayleigh-wave phase velocity (VR) is widely
utilized to determine site shear-wave velocity (Vs) structures from a distance of a few
metres to hundreds of metres, even on a ten-kilometre crustal scale. However, the
traditional theoretical-analytical methods for calculating VRs of a wide frequency range
are time-consuming because numerous extensivematrixmultiplications, transfermatrix
iterations and the root searching of the secular dispersion equation are involved. It is very
difficult tomodel site structures withmany layers and apply them to a population-based
inversion algorithm for which many populations of multilayers forward modelling and
many generations of iterations are essential.

Method: In this study, we propose a deep learning method for constructing the VR
dispersioncurve in a horizontally layered sitewith great efficiency. A deepneural network
(DNN) based on the fully connected dense neural network is designed and trained to
directly learn the relationships between Vs structures and dispersion curves. First, the
training and validation sets are generated randomly according to a truncated Gaussian
distribution, in which the mean and variance of the Vs models are statistically analysed
from different regions’ empirical relationships between soil Vs and its depth. To be the
supervised dataset, the corresponding VRs are calculated by the generalized reflection-
transmission (R/T) coefficient method. Then, the Bayesian optimization (BO) is designed
and trained to seek the optimal architecture of the deep neural network, such as the
number of neurons and hidden layers and their combinations. Once the network is
trained, the dispersion curve of VR can be constructed instantaneously without building
and solving the secular equation.

Results and Discussion: The results show that the DNN-BO achieves a coefficient of
determination (R2) and MAE for the training and validation sets of 0.98 and 8.30 and
0.97 and 8.94, respectively, which suggests that the rapid method has satisfactory
generalizability and stability. The DNN-BO method accelerates the dispersion curve
calculation by at least 400 times, and there is almost no increase in computation
expense with an increase in soil layers.
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1 Introduction

Rayleigh waves are formed by the interaction of incident P and SV plane waves at the free
surface and travel parallel to that surface. The phase velocity (VR) dispersion curve of the
Rayleigh wave depends on the medium parameters, such as the layer thickness and the P and S
velocities. Longer wavelength Rayleigh waves penetrate deeper than shorter wavelengths over
layered geologies. This dispersive behavior makes Rayleigh waves a valuable tool for
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determining the shear-wave velocity (Vs) of individual site structures
from a distance of a few meters to hundreds of meters, even at the 10-
km crustal scale of a region. Determining dispersive behavior is one of
the key steps in calculating the theoretical phase velocity dispersion
curve of Rayleigh waves in inverted geological structures, modeling
regional Rayleigh waves and synthesizing seismograms.

To construct the dispersion curve, it is necessary to build a secular
equation based on elastic wave theory and surface boundary
determinations and compute its roots as a function of its
frequency. The most famous method is the Thomson–Haskell
algorithm (also called the transfer matrix method) (Thomson,
1950; Haskell, 1953). In the Thomson–Haskell algorithm, the
dispersion equation is constructed by a sequence of matrix
multiplications involving terms that are transcendental functions of
the material properties of the layered medium. Many researchers have
modified this method throughout the years (Schwab and Knopoff,
1970; Schwab and Knopoff, 1972; Abo-Zena, 1979; Fan et al., 2002) to
improve its numerical stability and efficiency by reducing the
dimension of transfer matrices and simplifying the iterative
multiplication.

Another important class of algorithms for solving Rayleigh wave
eigenvalue problems is the reflection and transmission coefficients (R/
T) method (Kennett, 1974; Kennett and Kerry, 1979; Kennett and
Clarke, 1983). The Rayleigh dispersion equation for a stratified
medium is iteratively established by reflection and transmission
matrices using R/T coefficients. Subsequently, this method was also
modified and improved by other researchers (Luco and Apsel, 1983;
Chen, 1993; Hisada, 1994; 1995; He and Chen, 2006; Pan et al., 2022).

Numerical techniques can also be used to solve the Rayleigh
eigenvalue problem, including the finite difference method (Boore,
1972), numerical integration (Takeuchi and Saito, 1972), the boundary
element method (Manolis and Beskos, 1988; Aung and Leong, 2010),
and the spectral element method (Faccioli et al., 1996; Komatitsch and
Vilotte, 1998). Although these methods have several advantages, they
require more computation time.

In conventional methods, most efforts to calculate the dispersion
curve are primarily focused on building the dispersion equation and
searching for its phase velocity solution as a function of frequency. The
computational efficiency is improved by reducing the dimension of the
transfer matrix and/or simplifying the iteration of the dispersion
equation. However, tedious matrix iteration and root searching
cannot be avoided.

In inversion analysis, the velocity structure is estimated by
minimizing the deviation between the theoretical and experimental
dispersion curves. For population-based inversion algorithms, many
populations of multilayer forward modeling and many generations of
iterations are essential to search the optimal site parameters (shear wave
velocity, overburden thickness, etc.). It is difficult to model site structures
that have many layers and apply population-based inversion algorithms
(Picozzi and Albarello, 2007; Lu et al., 2016; Poormirzaee, 2016; Lei et al.,
2019; Poormirzaee and Fister, 2021). Therefore, it is necessary to develop a
fast, accurate, stable dispersion curve construction method.

The increasing number of populations and the requirement of
refining the site layers induce tremendous iteration calculation costs
in the population-based inversion algorithm. Under these situations,
conventional forward methods struggle to satisfy the big data processes.
Deep learning (DL) techniques are one of the most potent ways to
establish a good mapping relationship between the seismic signals and
geophysical parameters. Once a DL model is trained, it can map the site

velocity structure to the Rayleigh dispersion curve directly and quickly
under similar geological conditions. The DL method has been widely
applied in various geotechnical earthquake engineering applications to
replace the complex conventional numerical calculation method. Jo
et al. (2022) used a trained deep neural network (DNN) to replace the
conventional history matching method, greatly reducing the
computational cost of predicting well responses, such as oil
production rate, water production rate, and reservoir flow direction.
Wamriew et al. (2022) used a trained convolutional neural network to
improve the efficiency and accuracy of microseismic event monitoring.
Their model avoids the shortcoming that the conventional methods,
which are affected by manual intervention and require substantial data
preprocessing, rely on. Tschannen et al. (2022) accelerated the
compilation speed in wavelet extraction through deep learning,
which restrains the iterative adjustment parameters and potential
noise. Similarly, some researchers in surface wave exploration have
applied deep learning to extract dispersion curves (Alyousuf et al., 2018;
Zhang et al., 2020; Dai et al., 2021) and invert velocity structures
(Aleardi and Stucchi, 2021; Fu et al., 2021; Luo et al., 2022).
Alyousuf et al. (2018) used a fully connected network to extract the
fundamental-mode dispersion curve. Zhang et al. (2020) presented a
convolution network to automatically extract dispersion curves. Dai
et al. (2021) developed a DCNet deep learning model that can correctly
extract the multimode dispersion curve from the segmentation
dispersion image. Fu et al. (2021) applied DispINets to inverse the
shear velocity from themultimode dispersion curve. Aleardi and Stucchi
(2021) proposed a Monte Carlo-based hybrid neural network to resolve
the degradation shortcomings in the inversions. Luo et al. (2022) used a
DNN to investigate the range of the initial model and the reliability of
the shear velocity structure. Through these successful applications, deep
learning techniques have demonstrated their potential in constructing
dispersion curves from site data with high efficiency.

Deep learning-based surface wave exploration research may be
defined as a systematic process that consists of two essential
components. One is establishing a sufficient and reasonably
distributed dataset that includes all the geophysical states (Alwosheel
et al., 2018). Another is designing a network that has high accuracy and
efficiency. However, no one dataset ensures that the site structures of
different regions are covered. Researchers (Chauhan andDhingra, 2012;
Assi et al., 2018; Itano et al., 2018) rely on the mathematical
understanding of the algorithm, empirical judgment, and trial and
error to determine the network architectures, which incurs high
computational costs. Researchers have proposed a data-driven
method to limit the initial calculation space and utilized a
population-based algorithm to enhance the computational efficiency
of nonlinear parameter combinations (Guo et al., 2021; Luo et al., 2022).
Therefore, we use the Vs–h empirical relationship of nine regions in
China to generate the dataset and use the Bayesian optimization
algorithm to search a high-precision, low-parameter network.

This paper proposes the rapid constructing dispersion curve
method based on DNN with Bayesian optimization (DNN-BO)
to improve forward modeling efficiency. The fully connected
dense neural network is set as the DNN main architecture.
Bayesian optimization is applied to optimize the DNN
architecture by iteratively testing the potential combination.
We design a method to generate the random layer site that
ensures the diversity and abundance of the dataset. Finally, we
discuss and analyze the accuracy and efficiency of the rapid
method.
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2 Dataset generation

The number and distribution of the dataset samples are closely related
to the accuracy and generalization of the DL methods that determine the
applicability of the method. The site velocity structure is a two-
dimensional spatial structure composed of the shear wave velocity and
the burial depth. The most straightforward method is to randomly and
uniformly generate site samples for all types of sites in this space for the
shear wave velocity at each depth. However, the uniform sampling
method produces many invalid samples and has a high cost in the
precomputing of the dispersion curves and the training of the model.
Furthermore, the site velocity structure generated in this way conforms to
a uniform distribution that dilutes the main site characteristics and does
not reflect the natural sedimentation law. Therefore, it is crucial to
construct a representative site structure dataset.

2.1 Site characteristics

Sediments on the surface gradually accumulate in the progress of
geophysical evolution. More sediments will settle in the upper layer,
which causes the lower layer to have a greater consolidation and shear
wave velocity. Consequently, in the most general site type, the shear
wave velocity increases with depth. Geological tectonic movements,
such as earthquakes, volcanoes, and debris flows, have affected
sedimentary processes and physical states. Some soft sediments are
forced to a deeper layer, and hard sediments are forced up to shallower
layers, resulting in a small portion of the sites containing soft or hard
interlayers. Sedimentary conditions, topographies, and other

geological factors also influence the formation of site sediments,
which leads to each region having specific regional characteristics.

2.2 Vs–h empirical relationship

The uniform sampling method dilutes the main site characteristics
and directly uses the drilling data in a regional area as the dataset,
affecting the DL method’s applicability. As shown in Figure 1, we
statistically analyzed the Vs–h empirical relationship in Fujian,
Harbin, and Kunming (Supplementary Attached List S1). Based on
these results, a comprehensive empirical relationship between shear
wave velocity and burial depth is fitted, and the statistical relationship
boundary points are used to determine the upper and lower
boundaries of the dataset. In view of the site characteristics and
regionality, the truncated normal distribution approach is adopted
to generate the random layers dataset that utilizes the comprehensive
Vs–h relationship as the mean.

Vsmean � 132.64*h0
0.18, (1)

Vsmin � 97.23*h0
0.13, (2)

Vsmax � 410.22*h0
0.15. (3)

2.3 Generating dataset

For a single site velocity structure, the Vs under each burial depth
is randomly generated from a truncated normal distribution with

FIGURE 1
Fitting the empirical relationship between Vs and its burial depth in different regions.
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Vsmean as the mean, and Vsmin and Vsmax are used as the upper and
lower bounds. The layer thickness is a random value within [1, 30] m.
When Vs is more than 800 m/s, the number of site layers will not
continue to increase. Compared with the layer thickness and Vs, the
compression wave velocity and density have less influence on the
dispersion curve (Donoho, 1995). The compression wave velocity of
each layer is set as twice Vs, and the density is set at 1.85 g/cm3. This
study generates 10,000 random layer site structures as input and uses
the R/T method to calculate the dispersion curve as output. The
dataset is divided into a training set and a validation set at a ratio of 4:1.
The validation set does not participate in the training of the DLmodel.

To verify the velocity distribution at different depths, the velocity
space at a depth of every meter is divided into 100 cells at 8 m/s
intervals. The probability density of each Vs cell is calculated by the
percentage of sites in the total dataset. Figure 2 shows the distribution
probability of shear velocity occurring at a depth of every meter in
10,000 site samples. Overall, Vs increases with burial depth, and there

are two light-colored areas on the left and right. This indicates that the
incremental sites make up the majority of the dataset, and a small
number of sites have soft or hard interlayers. The estimated area is
covered, indicating that the site velocity structure generated with a
truncated normal distribution is representative and encompasses all
the regions’ sites.

Figure 3 shows the violin plot of the VR dispersion curve
corresponding to the random layer site dataset. In the violin plot,
the different colors of the violin represent the velocity distribution at
different frequencies, and the width of the violin shows the data
distribution at different velocities. The wider the violin at the phase
velocity is, the more sites with that velocity are in the dataset. The
distribution of the violin plot at each frequency is roughly a single
peak, and the data distribution is relatively concentrated. The violin
shapes at the 1.6 Hz, 2.8 Hz, and 4 Hz frequencies are roughly similar
to those at other frequencies. However, more discrete values indicate
that the VR value changes significantly in this range, and the
dispersion curve is prone to local fluctuation, which requires
attention for the frequency range. The local fluctuation in the
dispersion curve reflects a soft or hard interlayer. As a result, the
frequency distribution of the dispersion curve is reselected. Within
0–1 Hz, the frequency step is set at .2 Hz; within 1–20 Hz, the
frequency step is set at .0077 in logarithmic coordinates.

3 Methods

Constructing a dispersion curve from the site velocity structure is a
regression task in deep learning. The commonly used DL models
include DNN, CNN, and LSTM. The fully connected dense network is
chosen as the main body and is usually called DNN (Bishop, 1995;
Nabian and Meidani, 2018). It has a simple architecture and fast
learning features. As shown in Figure 4, this paper proposes a network
architecture called DNN-BO. The DNN builds the mapping
relationship between the site velocity structure and the dispersion
curve. Bayesian optimization (BO) is used to automatically select
DNN hyperparameters, such as the number of hidden layers, the
number of neurons, and the activation function. A complete DNN
architecture includes an input layer, some hidden layers, and an
output layer. Before inputting the data, the random layer sites
sample through the equivalent shear velocity calculation method to
make their features correspond one-to-one with the input neurons.
The dataset is normalized and input into the network. In the hidden
layer, the site velocity structure features are extracted through the
neurons connected in pairs. BO updates the DNN architecture based
on the cross-validation method objective function minimization. The
search strategy outputs the optimal network architecture until the stop
condition or iteration count is reached. Finally, the stability,
generalization, and efficiency of the rapid method are verified by
the validation set.

3.1 Data processing

In the dataset, the number of site layers and layer thicknesses vary
over a wide range. It is better to set a constant node size for the DLmodel.
Therefore, the site layers are converted by the equivalent shear wave
velocitymethod tomeet the size of theDNNnodes. As a consequence, the
equivalent shear wave velocity method is adopted (Eqs 4–6) to make Vs

FIGURE 2
Velocity probability density map.

FIGURE 3
Phase velocity dispersion point violin plot.
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and the layer thickness correspond to the number of input nodes. In this
way, the total number of site layers is standardized at 20.When the dataset
contains more than 20 site layers, we prioritize searching for two adjacent
layers with a minimum Vs difference. Then, the equivalent shear velocity
method is used to calculate the Vs of the original two adjacent layers, and
the sum of the two layer thicknesses is used to replace the original
thickness. The aforementioned steps are repeated until the dataset
contains 20 site layers. When the dataset has fewer than 20 site layers,
we search for the thickest layer and divide it into two layers. After the
division, the Vs of each layer remains unchanged, and the layer thickness
is half the original. The aforementioned process is repeated until the
dataset contains 20 site layers.

t � ∑ vsi
di
, (4)

d � ∑ di, (5)
vse � d/t, (6)

where vsi represents the shear wave velocity of the ith layer, di
represents the thickness of the ith layer, vse represents the
equivalent shear wave velocity, d represents the calculation depth,
and t is the sum of the transit times of the shear wave velocity in each
layer.

Vs is nearly 100 times larger than the layer thickness. If the original
site data are directly input into the neural network, this underestimates
the weight of the layer thickness and may lead to premature neural
network saturation. Therefore, the max–min normalization method is
adopted to normalize the dataset into [0, 1].

xi � Xi −Xmin

X max −Xmin
, (7)

where Xi represents the eigenvalue of the column, Xmin and Xmax

represent the maximum and minimum values of the eigenvalue of the
column, respectively, and xi represents the normalized eigenvalue.

The well-trained DL model output dispersion curve value is still in
the normalized scope and needs to be returned to the original scope.
The denormalization formula is shown in Eq. 8:

~y � _y* y max − ymin( ) + y min, (8)
where _y represents the DL model output value, ymax and ymin

represent the maximum and minimum values of the original data,
respectively, and ~y represents the denormalized value.

3.2 Tuning the DNN hyperparameters using
Bayesian optimization algorithms

The DL model itself contains many parameters that need to be
determined manually. These parameters are collectively referred to as
hyperparameters. The hyperparameters determine the complexity and
computational accuracy of the model. There are many types and wide
ranges of hyperparameters in the DL models. It is challenging to
manually find the most suitable hyperparameter combination for the
dataset. At present, hyperparameter optimization mainly depends on
the mathematical understanding of the algorithm, empirical
judgment, and trial and error (Chauhan and Dhingra, 2012; Assi
et al., 2018; Itano et al., 2018; Feurer et al., 2019). However, these
empirical methods have a high chance of missing the optimal
hyperparameter combination to match the dataset and building a
bloated network structure that requires too many computing

FIGURE 4
Model building flow chart.
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resources. To find a lightweight and high-precision DL model to
construct the dispersion curve, we set DNN as the main body and use
the Bayesian optimization algorithm to automatically adjust the
hyperparameters, including the number of neurons, number of
hidden layers, activation function, learning rate, and training batch
size. BO is suitable for multidimensional, high-cost valuation
problems and has been widely used in maximum likelihood
hyperparameter optimization (Feurer et al., 2019). In the
geotechnical engineering and seismic engineering fields, it has been
successfully applied for tunnel-boring machine performance
prediction (Zhou et al., 2021), slope sensitivity analysis (Sameen
et al., 2020) and non-destructive testing (Liang, 2019).

The BO algorithm is based on the evolutionary algorithm
combined with the Bayesian network probability model. It contains
two primary functions: the surrogate model and the acquisition
function (Frazier, 2018). The surrogate model function fits the
currently observed points to the objective function and obtains the
similarity distribution between the surrogate model and the actual
model. The acquisition function is used to select the next evaluated
point with the least similarity in the distribution. Both the acquisition
function and the surrogate function accelerate the convergence
process (Snoek et al., 2015). The main idea of BO is to update the
surrogate model by continuously adding new sample points through
the acquisition function without knowing the internal structure and
mathematical properties of the optimization objective function. It is
not until the surrogate model is the same as the actual model or the
iteration count is exhausted that the BO outputs the optimal surrogate

model. This study uses a Gaussian process (GP) surrogate model that
uses the mean and variance to determine the next estimated point. GP
has an infinite-dimensional normal distribution extension on an
infinite-dimensional random process and can consider multiple
hyperparameter optimizations simultaneously (Frazier, 2018).

Figure 5 shows the BO automatic tuning DNN steps. First, the BO
initial parameters are set, which includes setting themean of the k training
loss functions as the objective function, setting the GP as the surrogate
model, and setting its mean and variance as the acquisition functions.
Then, BO randomly selects five DNN hyperparameter combinations to
initialize the surrogate model. In each iteration, the next hyperparameter
combination evaluation point is determined by the minimum acquisition
function similarity. The surrogate model is updated on the objective
function value.When the iteration counts are exhausted, the optimization
strategy outputs the optimal DNN architecture.

Fivefold cross-validation is adopted to avoid overfitting and underfitting
situations that significantly influence the stability of the deep learning-based
dispersion curve construction (Wong, 2015). Figure 6 shows that the original
training set is randomly divided into five equal-sized parts. One part is
selected as the test set, and the other four are the training set. The objective
function is the mean of the five training loss functions. The cross-validation
methodmakes full use of every sample in the dataset. Each evaluatedmodel
will be trained five times in the BO optimization process. In this way, the
generalization ability of the rapid method is reinforced.

The optimization space is closely related to the training cost and the
calculational precision. A broad optimization space signifies a more
comprehensive hyperparameter combination with higher accuracy and
computational costs. A narrow optimization space may miss the optimal
DNN architectures. It is expensive to set up an optimization space that
includes all the hyperparameter combinations. Referring to deep learning-
based surface wave exploration research (Alyousuf et al., 2018; Zhang et al.,
2020; Aleardi and Stucchi, 2021; Dai et al., 2021; Fu et al., 2021; Luo et al.,
2022), this study sets up four hidden layer blocks. The layers of each hidden
layer block are between (0, 2), and the neurons are between (16, 256). The
activation function is chosen among the commonly used nonlinear
activation functions (“relu,” “elu,” “selu,” “gelu,” “tanh,” and “swish”).

The learning rate is one of the essential hyperparameters in deep
learning and is used in training to update the weights and biases of the
neurons and to control the loss function change rate (Werbos, 1988).
When the learning rate is too high, the loss function changes rapidly as the
training progresses, and the convergence speed is fast; however, it may
jump back and forth near the optimal solution. In contrast, if the learning
rate is too low, the loss function changes very slowly, and the convergence
time is too long. The training resultmay fall into a locally optimal solution.
We set the initial learning rate to (.00001, .01) and adopt an adaptive
learning rate algorithm. If the loss function remains unchanged every
three epochs, the learning rate will become half of the previous one.

The training epochs and batch size determine whether the DNN has
fully learned the relationship between the site structure and the dispersion
curve (Prechelt et al., 2012; Alwosheel et al., 2018). Insufficient training
epochs and a large batch size may lead to an underfitting situation.
Therefore, the epochs are set to 100, and the batch size is set to (4, 128).

4 Result

In this section, the DNN-BO model is trained with the random
layer site dataset and outputs the optimal DNN architecture. The
accuracy and efficiency of the rapid method are verified through the

FIGURE 5
Flow chart of Bayesian optimization tuning of the DNN
hyperparameters.
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R/T method’s calculation result. The analysis is conducted through a
Lenovo R7000P 2020 laptop (R7-4800H CPU, mobile 2060 6GB GPU,
and 16GB 3200 Hz DDR4 memory).

4.1 The optimal network architecture

The DNN neurons in the input layer depend on the input data
size, as does the output layer. After data processing, there are
39 neurons in the input layer, the VR values are used as the
output, and there are 50 neurons in the output layer. This study
selects the mean square error (MSE) as the loss function and
Adam (Kingma and Ba, 2014) as the optimizer. Figure 7A shows
that after 100 iterations, BO can quickly find the DNN
architecture most suitable for constructing the dispersion
curve. As seen from Table 1, the optimal DNN is a
three-hidden-layers simple architecture, in which the hidden
layer neurons are 93, 128, and 243, respectively, and “gelu” is
set as the activation function. Figure 7B shows that the optimized
DNN architecture is not underfitted or overfitted during training

and achieves a good convergence state on both the training and
validation sets.

4.2 DNN model evaluation

This study sets the mean square error (MSE), mean absolute error
(MAE), mean absolute percent error (MAPE), and coefficient of
determination (R2) as the overall accuracy evaluation criteria and
adopts the ratio of the predicted VR value with the true VR value at
each frequency as the local evaluation criterion. The smaller the MSE,
MAE, and MAPE values are, the better the calculation effect of the
model. R2 represents the degree of correlation between the predicted
value and the true value of the target variable. The closer the value of
R2 is to 1, the better the degree of correlation. The calculation formulas
are as follows:

MSE � 1
n
∑ Yi − ~Yi( )2, (9)

MAE � 1
n
∑ Yi − �Y

∣∣∣∣ ∣∣∣∣, (10)

FIGURE 6
Five-fold cross-validation.

FIGURE 7
Iterative convergence of the objective function and loss function.
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MAPE � 1
n
∑ Yi − ~Yi

∣∣∣∣ ∣∣∣∣
Yi

( )*100%, (11) R2 � 1 − ∑N
i�1 Yi − ~Yi( )2

∑N
i�1 Yi − �Y( )2 , (12)

FIGURE 8
Phase velocity dispersion curve prediction and ratio curve.
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where Yi represents the VR value calculated by the R/T method. ~Yi

represents the VR value calculated by the rapid method. �Y represents
the average VR of the dispersion curve calculated by the R/T method.

The data in Table 2 indicate whether the R2 is more than .97, the
MAE value is less than 10, and the MAPE is less than 3.5% in the
training set or the validation set. These results suggest that the rapid
method is highly correlated with the R/T method and has comparable
calculation accuracy.

Figure 8 shows the rapid method results and the ratio curves of
12 randomly selected dispersion curves. Figures 8A–D represent relatively
smooth dispersion curves, and Figures 8E–H represent dispersion curves
with local small-amplitude fluctuations. Their ratio curves between the
predicted and true values are almost a line, with only slight fluctuations
between 2.5 and 5Hz. The results show that the calculation accuracy of the
rapidmethod is nearly the same as that of the R/Tmethod on the dispersion
curve, with smooth or small local fluctuations. Figures 8I–L represent
dispersion curves with strong local fluctuations. There are two positions
with local fluctuations. In contrast to the first local fluctuation position, the
number of frequency points at the second location is relatively sparse,
leading to some deviations in the local change at the high frequency.

The trend in Figure 9 shows that the time spent constructing the
dispersion curve by the R/T method increases linearly with the
increase in site layers, and the time spent by the rapid method
changes little, if at all. When calculating the site model with 10, 50,
and 100 layers, the R/T method takes 15.77 s, 49.45 s, and 88.18 s,
respectively. The rapid method takes less than .05 s, and its
computational cost only slightly increases with the increase in site
layers. The rapid method and R/T method are used to calculate all the

samples in the validation set and take 59 s and 23,473.8 s, respectively.
The aforementioned analysis and time consumption ratio curve show
that the rapid method improves the computational efficiency by at
least 400 times while ensuring the same accuracy.

5 Discussion

Compared with the conventional forward method, the rapid
method has high computational efficiency and the same accuracy,
but it also has some limitations.

5.1 Influence of soft or hard interlayer

The conventional forward modeling method can directly calculate
the site of the arbitrary velocity structure; however, the rapidmethod is
affected by the size and distribution of the dataset for training the
model. In the validation set, the mean ratio difference (MRD) of all
2000 site samples was calculated (Eq. 14). Approximately 2% of the site

TABLE 1 DNN hyperparameters search space and the optimal parameters.

Parameter Optimization range Optimal parameter

Number of 1_hidden layers (0, 2) 1

Neurons in 1_hidden layers (16,256) 93

Number of 2_hidden layers (0, 2) 1

Neurons in 2_hidden layers (16,256) 128

Number of 3_hidden layers (0, 2) 0

Neurons in 3_hidden layers (16,256) 0

Number of 4_hidden layers (0, 2) 1

Neurons in 4_hidden layers (16,256) 243

Activation (“relu,” “elu,” “selu,” “gelu,” “tanh,” “swish”) gelu

Batch size (4, 128) 8

Learning rate (.00001, .01) .00063

TABLE 2 Evaluation standard.

Evaluation standard Training Validating

MAE 8.30 8.9387

MSE 160.89 194.6913

MAPE 2.73% 3.41%

R2 .9803 .9760

FIGURE 9
Calculating time and time consumption ratio.
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samples had an MRD greater than 5%. Figure 10 shows the dispersion
curves and velocity structures of the three site samples with the largest
MRD. There is a large soft or hard interlayer in the shallow layer, and
the overall velocity structure fluctuates back and forth. That situation
makes a small part of the dispersion curves fluctuate locally at high
frequencies. Both sites with a back-and-forth fluctuation velocity
structure and high-frequency dispersion curve frequency points are
very sparse in the dataset, which leads to insufficient DNN learning for
those site characteristics. More research is required to balance the
back-and-forth fluctuation site ratio and to maintain the main site
characteristics in the dataset.

MRD � ∑n
i�1

y true

y pred

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣/n − 1⎛⎝ ⎞⎠*100%, (13)

where y_true and y_pred represent the VR calculated by the R/T
method and the VR calculated by the rapid method, respectively.

5.2 Selection of frequency points

The frequency points of the rapid method output are fixed.
However, in practical engineering, the frequency points are
generally equidistant, and the number of required frequency points
is determined by the site complex. Therefore, we propose a linear
interpolation method to calculate the VR at a specific frequency.
Assuming that the VR of point x is needed, the rapid method can be
used to calculate the left adjacent point x0, VR f (x0), right adjacent
point x1, and VR f (x1). Moreover, it is substituted into Formula (14) to
calculate the VR of this frequency point.

f x( ) � x − x1

x0 − x1
*f x0( ) + x − x0

x1 − x0
*f x1( ). (14)

As shown in Figure 11, the solid green line and the red dots
represent the .4 Hz frequency step dispersion curve calculated by
the interpolation and R/T methods, respectively. When using the
rapid method to construct the dispersion curve with equal
frequency steps, the interpolation process may ignore the local
fluctuation of the high-frequency band because the high-frequency
dispersion points are relatively sparse. Some deviations are applied
to the population-based inversion algorithm. Considering that
there are relatively few of these kinds of sites in the earth’s
sedimentary system, we will seek deep learning or data-driven
methods to solve this problem in future studies, and the R/T
method will be chosen when there is the rare need for high
precision. For population-based inversion, our rapid method can
be effectively applied to construct the dispersion curve of most
sites. The R/T method may be further applied to sites with very thin
soft/hard interlayers to improve the inversion accuracy.

FIGURE 10
Phase velocity dispersion curve prediction graph and velocity structure graph.

FIGURE 11
Interpolated phase velocity dispersion curve graph and its velocity
structure graph.
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5.3 Influence of the number of datasets

Figure 12A shows the computational performance of the rapidmethod
for nine datasets of different sizes.With the increase in samples, the box size
gradually decreases, the 90% confidence interval gradually shrinks, and the
distribution of the prediction results is gradually concentrated. Figure 12B
shows the variation in R2 and MAE with the number of samples for the
same nine datasets. As the number of samples in the dataset increases, R2

rises quickly, and theMAE falls quickly.When the sample size of the dataset
is more than 7,000, the change trend slows down significantly. This means
that each DNN architecture needs only 7,000 samples, and the model is
basically in a convergence state. Therefore, when rebuilding the rapid
construction method of other frequency bands, a dataset size set at
7,000 samples is sufficient.

6 Conclusion

This paper proposes a deep learning-based method for rapidly
constructing 1D dispersion curves. The method consists of two essential
parts: building a reasonable random site dataset and building a high-
precision, lightweight network architecture. For the dataset, we distill a
general empirical relationship between Vs and the burial depth through
Vs–h empirical relationships in nine different regions of China. Based on
this, a technique to generate a random layer site dataset that ensures the
diversity and representativity of the dataset and improves the generalization
and applicability of the rapid method is proposed. To build the network
architecture, the Bayesian optimization algorithm is used to automatically
find the optimal DNN architectures, which include three hidden layers, and
“gelu” is applied as the activation function. This network architecture is well
suited for learning the relationship between the site velocity structure and
the dispersion curve. Finally, a validation set is used to verify the rapid
method’s accuracy, stability, generalization, and computational efficiency.
Based on the analysis of the results, the following conclusions can be drawn:

1) In both the training and validation sets, R2 is more than .97, MAE
is less than 10, and MAPE is less than 3.5%. The evaluation result
from the aforementioned analysis indicates that the rapid method
has comparable accuracy with the R/T method in calculating the
dispersion curve.

2) It is difficult for the rapid method to identify the local fluctuations in
the high-frequency band of the dispersion curve. In the dataset, 2% of
the site samples have an MRD greater than 5%, and in most of those
sites, Vs fluctuates back and forth, which causes a local fluctuation in
the high-frequency dispersion curve. An implication of this is the
possibility that the rapid method is poor at constructing dispersion
curves where the site velocity structure fluctuates.

3) Once the training is completed, the rapid method improves the
computational efficiency by at least 400 times while ensuring the
same accuracy. There is almost no increase in computation expense
with an increase in site layers. This method uses a trained neural
network to replace the complex calculation processes of many matrix
multiplications, transfer matrix iterations and recursive approximations
in the matrix method. The computational cost of multiple iterative
forward modeling is greatly reduced, especially when the population-
based inversion algorithm searches for multilayer site structures.

4) The number of samples impacts the prediction performance of the
rapid method. A dataset of 7,000 samples is sufficient to obtain a
stable model.
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