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High-strength alterations in the water level due to extreme climate change and
increased anthropogenic activities have implications for methane (CH4) and carbon
dioxide (CO2) emission variations in shallow lakes. However, the consistency of the
carbon emission flux in response to water-level fluctuations and temperature is still
unclear. Here, we evaluated the water depth (WD) on the magnitude and variation
sensitivity of CH4, CO2, and GHG, and then the temperature dependence of carbon
emissions was estimated at different water levels. The water depth threshold
indicated a maximum CH4 (97.5 cm) and CO2 (10 cm), resulting in a water depth
threshold of GHG at 54.6 cm. Inside the whole WD, the effect of rising water depth
on CH4, CO2 and GHG sensitivity shifted from a positive effect to a negative effect at
a WD of 97.5 cm. And CH4, CO2 and GHG in 10 cm<WD<97.5 cm show the highest
emission flux and sensitivity to varying water depths. Furthermore, a consistency of
carbon emission flux responding to water depth and temperature was only found in
specific zones of shallow lakes with 10 cm<WD<97.5 cm, indicating that the
temperature dependence of CH4 and CO2 are driven by the hydrological regime
without water level stress, shifting the GHG emission flux. Ensuring the restoration
management goal related to the carbon peak by governing the time of threshold
occurrence is essential.
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1 Introduction

Hydrological regimes of shallow lake wetlands play a vital role in controlling
physiochemical, biological processes and function (Poff et al., 1997; Mitsch and Gosselink,
2015; Hilt et al., 2017; Palmer and Ruhi, 2019), especially in the establishment and maintenance
of specific wetland types (Mitsch and Gosselink, 2015; Yang et al., 2020). However, strong
alterations in hydrological regimes caused by both extreme climate change and increased
anthropogenic activities contribute to the widespread loss and degradation of wetlands globally
(Millennium Ecosystem Assessment, 2005; Davidson, 2014; Gardner et al., 2015; Liu et al.,
2020a). In the restoration process with water regulation (Jiang et al., 2016; Kong et al., 2017;
Moor et al., 2017), the abrupt increase in water level elevation due to ecological water transfer
projects and reductions in seasonal water level fluctuations resulting from water level controls
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inevitably induced changes in biological processes while also
influencing carbon C) balances (Martínez-Santos et al., 2008; Kong
et al., 2017; Olefeldt et al., 2017).

As indicators of C balances, CH4 and CO2 fluxes are outputs of
biological processes related to moisture restriction, and a threshold is
proposed while CH4 or CO2 emissions vary with water level according
to Shelford’s tolerance law (Shelford, 1913; Shelford, 1931; Odum,
1971; Erofeeva, 2021). Additionally, the threshold is amplified or
minimized due to the fluctuating pattern of the water level (e.g.,
constant non-fluctuation, natural fluctuations driven by normal
meteorological factors, and high-strength alterations due to extreme
climate change and increased anthropogenic activities) with the same
annual or multiyear mean water level.

Shifts in water level lead to threshold variations in CH4 and
CO2 and are mainly governed by the transfer between anaerobic
methane (CH4) production and aerobic CH4 oxidation processes.
Within the optimal threshold range, higher water levels are
generally associated with higher net CH4 emissions and less
CO2 emissions (Jacinthe, 2015; Li X. et al., 2019; Ye et al.,
2019), resulting in uncertainty in total carbon emissions (GHG).
The “enzyme latch” theory has been used to clarify wetland C
responses to varying water levels (Ise et al., 2008). As shown in a
previous study, the reduction of electron acceptor concentrations
with water level drawdown alters the accumulation of aromatic
solubility and hydrolase activity (Wang et al., 2017), which explains
the positive, neutral and negative effects of water level reduction on
soil organic carbon (SOC). Additionally, water level fluctuations
will alter redox conditions directly, subsequently triggering CH4

and carbon dioxide (CO2) emissions to occur (Granberg et al.,
1997; Chimner et al., 2016; Van der Lee et al., 2017) and resulting in
relative contribution differences to GHGs.

However, the relative contribution difference of CH4 and CO2

to GHG threshold uncertainty is larger under multiple stressors.
Stressor impacts can combine additively or can interact, causing
synergistic or antagonistic effects (Simmons et al., 2021). Birk et al.
(2020) evaluated the effects in European lakes, and only one of the
two stressors had a significant effect of 39%; 28% of the paired-
stressor combinations resulted in additive effects, and 33% resulted
in interactive effects. Based on metabolic theory, the temperature
dependence of carbon emissions is extremely general in wetlands,
including shallow lakes. Studies have shown that both CH4 and
CO2 show exponential growth within −25°C–35°C (Song et al.,
2010; Chen et al., 2021), and temperature dependence is widely
found in various wetland types and scales (Yvon-Durocher et al.,
2012; Yvon-Durocher et al., 2014; Chen et al., 2021). However, it is
unknown whether the GHG threshold uncertainty is amplified or
minimized when high-strength water level fluctuations and
temperatures act simultaneously.

As the relative contribution variation of CH4 and CO2 depends
on the anerobic condition change along with water depth (Van der
Lee et al., 2017), the threshold of GHG emissions in shallow lakes is
between the thresholds of CH4 and CO2. Additionally, upon
Shelford’s tolerance law and metabolic theory, the sensitivity of
carbon emissions to varying water depths is related to temperature.
Consequently, the objectives of the present study are 1) to explore
the response of the characteristics of CH4, CO2 and GHG emissions
to water depth; 2) to assess the sensitivity of CH4, CO2 and GHG
emissions to varying water depths inside or between WD intervals;
and 3) to attribute the effects of water depth changes on the

temperature dependence of carbon emissions. To achieve this,
we subdivided water level intervals based on turning points
found in the response process of CH4 and CO2 to water depth.
Additionally, accounting for the ecological response of CO2 and
CH4 flux and sensitivity to variations in water depth, we also
attempted to extend our results to enrich the general theory as
it pertains to shallow lake wetland restoration. In this study, we
choose Lake Baiyangdian (BYD) as a case study, using CH4, CO2

and GHG as quantitative indicators of carbon emission magnitude
and variation.

2 Materials and methods

2.1 Case study

The BYD (38◦43′to 39◦02′N, 115◦38′to 116◦07′E) is the
largest inland freshwater lake-marsh wetland in the North
China Plain (Figure 1). It includes 94 km2 of raised fields and
greater than 3700 of ditches that subdivide the basin into 140 small
shallow lakes, with a surface area of 366 km2 and an average water
depth of 2 ± 0.35 m (CCLCAC, 2000). Historically, nine rivers fed
the BYD; however, most of these rivers have dried up due to climate
changes and increased anthropogenic activities (Liu et al., 2010).
Ecosystem processes and functions in the BYD, which is a typical
shallow lake for which reeds are the dominant emergent plant, are
sensitive to water-level fluctuations, namely, fluctuations related to
net primary productivity and organic matter. With a decline in
water level, macrophytes, especially reeds, have exhibited a
tendency to expand, resulting in terrestrialization in some
shallow lakes within the BYD (e.g., Zaozha Lake and Guding
Lake) (Cui et al., 2017). To maintain the water ecology and
integrity of the BYD, ecological water transfer projects have
been implemented since the 1980s to replenish the lake (Wang
et al., 2018). Specifically, the planning outline of the Xiong’an New
Area, which has jurisdiction over BYD, includes an ordinance for
its ecological restoration. Inevitably, under highly intensive
anthropogenic activities, hydrological regime alterations have
caused aquatic ecosystem changes to occur (Wang et al., 2018;
Li Y. L. et al., 2019) and affected the C sequestration capacity of the
lake (Li et al., 2009; Chen et al., 2017).

Based on our preliminary field investigations, combined with
diverse geomorphological, hydrological, and vegetative conditions
in the lake, we chose seven sample strips consisting of 21 sample
sites (Figure 1A). According to the historical water levels from
1960 to 2019 (Supplementary Figure S1), 21 sample sites were
examined considering the annual water depth. As shown in Figures
1B, C, three sample sites were conducted in each sampling strip,
where sampling strip S1 consists of sample sites marked as S1_1,
S1_2, and S1_3. Triplicates or four repetitions were set for sample
sites with water depths of negative and positive, respectively,
according to the spatial heterogeneity of terrain and biological
factors (Figure 1C). We performed five field surveys: in June,
October, and December 2020, and in February and April 2021.
We simultaneously tested the water depth (WD) and temperatures
of water (T_Water), air (T_Air) and chamber (T_cham) for each
field survey. In above, we obtained 105 couples of data for further
analysis. And the water depth involved in all sampling sites ranged
from -1.10 m to 4.20 m.
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2.2 Greenhouse gas and environmental factor
measurements

2.2.1 Greenhouse gas collection and measurement
The in situ CH4 and CO2 emissions were measured with the static

opaque chamber and gas chromatography technique (Zhang et al.,
2020; Gao et al., 2022). The fluxes of CH4 and CO2 were measured
simultaneously with the collection of surface water and local ambient
air samples. At each site, four floating chambers were deployed from
the open water alongside the zone of emergent vegetation. These
chambers were of the same size and shape and streamlined with a
flexible plastic foil collar to minimize the effects of chamber-induced
turbulence when measuring fluxes. Each chamber was also covered
with aluminum foil to reflect sunlight and minimize internal heating.
Chambers were allowed to drift, and each chamber measurement
lasted for 60–80 min. After mixing the contents of the chambers three
times, 50 mL of gas was extracted from the chambers and transferred
to airtight gas sampling bags at 0, 5, 10, 20, 40, 60, and 80 min. This
multi-chamber method and prolonged deployment not only increased
the probability of capturing ebullition but also incorporated
spatiotemporal variability in both diffusion and ebullition within
and among streams and rivers. The concentrations of CH4 and
CO2 in the gas samples were determined as described above, and
CH4 and CO2 fluxes were calculated based on the closed-chamber
technique (Yuan et al., 2021).

2.2.2 Meteorological and soil physiochemical
property measurements

The water depth, air temperature, temperature in the chamber,
and soil temperature at a depth of 5 cm were simultaneously measured
in situwhile gas samples were collected. For samples in deep water and
shallow water, a portable water quality analyzer (Hach H40 d) was

used to simultaneously monitor water temperature, pH, dissolved
oxygen (DO), and redox potential (Eh).

2.3 Evaluation of carbon emission flux in
response to water depth

2.3.1 Assessment of the water depth threshold by a
piecewise regression model

As the carbon emission fluxes showed significant piecewise
regression varying with water depth, a piecewise regression model
was applied to the carbon emission flux series to detect the turning
points for CH4 flux, CO2 flux and GHG varying with water depth
(Toms and Lesperanc, 2003; Yang et al., 2017):

y � β0 + β1t + ε t≤ α
β0 + β1t + β2 t − α( ) + ε t> α

{ } (1)

where t is the water depth; y is the carbon emission flux; β0, β1 and β2
are regression coefficients; and α is the assumed turning point, which
was determined based on carbon emission flux analysis. The range of
the α value was set to be the water depth when β1 and β2 were found to
be different. Least squares linear regression was used to estimate the
three regression coefficients, and a t-test was applied to test if β2 was
not equal to zero.

2.3.2 Sensitivity of carbon emission flux to water
depth

To evaluate the sensitivity and final effect of water depth on CH4,
CO2 and GHG sensitivity, we compare the magnitude of emission
sensitivity in all WD intervals with a baseline of average water depth of
all sites. The carbon emission flux sensitivity to water depth (ΔC,WD)

FIGURE 1
Location of Lake Baiyangdian (BYD, Figure 1A), seven sampling strips (Figure 1A; Figure 1B), and repetitions at each sample site (Figure 1C). As shown in
Figure 1B, three sample sites were conducted in each sampling strip, where sampling strip S1 is consist of sample sites marked as S1_1, S1_2, and S1_3. And
Rep1 to Rep4 showed the repetitions in each sample sites.
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is equal to the difference between the CH4, CO2 and GHG emission
fluxes at specific water depths and the average water depth. ΔC, WD is
quantified as follows:

ΔC,WD � Ci − C0( )/C0

hi − h0( )/h0 (2)

where ΔC,WD represents the sensitivity of carbon flux equivalent to
water depth change (mg CO2-eq/m

2/h/cm), Ci and hi represent the
CH4 or CO2 flux in each pair of data points of site i (mg CO2-eq/m

2/h)
and the corresponding water depth (cm), and C0 represents the CO2

equivalent (mg CO2-eq/m
2/h) corresponding to the average water

depth h0 in the water depth interval of interest. To evaluate the
sensitivity of the total carbon emissions GHG at each sampling
point, CH4 flux is converted to CO2 flux equivalent, and the
conversion factor is 25 (Huang et al., 2021).

GHG � 25*CH4 + CO2 (3)

2.4 Dependence of carbon emission flux on
temperature

To exclude the independence between water depth and
temperature, we tested the correlation between each pair of
variables. The correlation between temperature and water depth in
all WD intervals is identified, and pairs of data with significant
correlations are removed. The apparent activation energy was
selected as the characterization index of the temperature
dependence of carbon emission. The temperature-dependent
quantification of CH4 and CO2 emissions is based on the
Boltzmann-Arrhenius function of the form (Jaap van der Meer,
2006; Price et al., 2010; Chen et al., 2021):

ln Ri T( ) � �E + εiE( ) 1
kTC

− 1
kT

( ) + lnR TC( ) + εiR (4)

where lnRi(T) represents the natural logarithm of the CH4 or CO2

emission flux at any location i at the absolute temperature T (K); �E is
the average apparent activation energy (E) between the sample sites,
which characterizes the wetland greenhouse temperature dependence
of gas emissions; k is the Boltzmann constant (8.62 × 10–5 eV k−1); and
lnR (TC) represents the natural pair of emission fluxes at the sample
site at the TC level (average temperature in the dataset) number.
Consideration of E and emission flux due to differences in other
organisms (e.g., substrate supply, microbial community structure and/
or composition, physiological adaptation and/or adaptation) and
abiotic (e.g., annual mean temperature) between different sites lnR
(TC) estimates were different, and a linear mixed model was used to
quantify the temperature dependence of carbon emissions.

2.5 Statistical analysis

The spatiotemporal differences in CH4 and CO2 emission
fluxes and their significance were characterized using analysis of
variance (ANOVA). All variables were tested for homogeneity of
variance and normal distribution. For the variable data satisfying
the normal distribution, the Pearson correlation coefficient was
used for analysis; otherwise, the Spearman correlation coefficient

was used for correlation analysis. SPSS 22.0 was used to construct a
linear mixed model and quantify the temperature dependence.
Then, the slope and intercept are treated as random variables
according to the mean of �E; lnR(TC), and the sample point
deviation is defined as the average value of each sample εiE; ε

i
R,

respectively, so that the sample difference is related to carbon. The
magnitude of the overall effect of the emission temperature
dependence was quantified as the standard deviation of the
random effects term. In terms of random effect model selection
for data analysis in different water depth intervals, SPSS 22.0 is
used to evaluate different models, and the Akaike information
criterion (AIC) in the maximum likelihood method is used to
evaluate whether different random variables are included in the
linear mixed model. The selection of random variable parameters is
performed. The smaller the AIC value is, the better the effect.
Among them, Model one includes all potential fixed effects and
only one random effect, corresponding to the change in intercept,
and Model two includes all potential fixed effects and two random
effects, that is, corresponding to the change in slope and intercept.

3 Results

3.1 Carbon emission flux varying with water
depth

The CH4, CO2 and GHG fluxes varied with water depth, and
turning points were found at 97.5 cm, 10 cm and 54.6 cm (water depth
threshold, WDT), respectively. As shown in Figure 2, CH4 and CO2

fluxes increased when the water depth was less than the WDT, while
decreasing trends were shown when the water depth was larger than
theWDT. CH4 flux and CO2 flux ranged from −0.07 mg CO2-eq/m

2/h
to 8.32 mg CO2-eq/m

2/h and −4.76 mg CO2/m
2/h to 196.52 mg CO2/

m2/h, respectively, with a higher absolute value of the regression slope
at water depths of -97.5 cm–54.6 cm. The regression slopes of CH4 and
CO2 are 0.018 and −0.008 mg CO2-eq/m

2/h/cm, respectively, and
0.558 and −0.162 mg CO2-eq/m

2/h/cm, respectively, when the water
depth is lower and higher than the WDT.

Additionally, The GHG varied between −1.70 mg CO2-eq/m
2/h

and 360.02 mg CO2-eq/m
2/h, showing a similar pattern in the

regression slope with CH4 and CO2 fluxes. And the corresponding
regression slopes of GHG are 0.848 and −0.301 mg CO2-eq/m

2/h/cm,
respectively. Moreover, the turning point of GHG in response to water
depth is lower than that of CH4 and higher than that of CO2.

3.2 Sensitivity of carbon emission flux varying
with water depth

Both CH4 and CO2 show the highest sensitivity in
10 cm<WD<97.5 cm, and the sensitivities are 4.89 mg CO2-eq/m

2/
h/cm and 4.01 mg CO2/m

2/h/cm, respectively (Figure 3A). The
medium and lowest sensitivity of CH4 and CO2 occurred when
WD<10 cm and WD>97.5 cm, respectively. The sensitivities are
0.52 mg CO2-eq/m

2/h/cm and −0.30 mg CO2-eq/m
2/h/cm for CH4

emissions varying with water depths of WD<10 cm andWD>97.5 cm,
and the sensitivity of CO2 emissions in the corresponding range of
water depths is 0.16 mg CO2/m

2/h/cm and −0.04 mg CO2/m
2/h/cm.

Additionally, GHG shows similar results when comparing the
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magnitude of sensitivity in focused water depth. The sensitivity is
4.51 mg CO2-eq/m

2/h/cm, 0.35 mg CO2-eq/m
2/h/cm and −0.18 mg

CO2-eq/m
2/h/cm, where we evaluate the magnitude of the sensitivity

on its absolute values.

For the whole water depth of −110 cm–420 cm, CH4, CO2 and
GHG sensitivity shows a consistent trend with water depth elevation
(Figure 3B). Flux sensitivity increased when the water depth was less
than the WDT of CH4 (97.5 cm), followed by a declining trend when

FIGURE 2
Characteristics of carbon fluxes varying with water depth, where CH4, CO2 and GHG are shown in Figure 2A, Figure 2B, and Figure 2C, respectively.

FIGURE 3
Carbon emission sensitivity varying with water depth. Figure 3A shows the average sensitivity of CH4, CO2 and GHG in each focused WD interval, and the
corresponding emission sensitivity at each water depth is described in Figure 3B.
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WD>97.5, and sensitivity remained relatively low atWD>200 cm. The
elevation of water depth, from WD<10 cm–10 cm<WD<97.5 cm,
shows a positive effect on the CH4, CO2 and GHG sensitivities,
promoting by 8.48, 23.86 and 11.76 times, respectively. However,
CH4, CO2 and GHG sensitivities were reduced by nearly 1-fold
(0.94–0.99) when the mean water depth was further elevated to
WD>97.5 cm.

3.3 Temperature dependence of CH4 and CO2
varying with water depth

The results of the correlation analysis of carbon emissions with
water depth and temperature showed that CH4 and CO2 emission
fluxes were correlated with both water depth and temperature
(Table 1). Among them, CH4 was significantly positively correlated
with water depth (p<0.01, r=0.267), CO2 was significantly negatively
correlated with water depth (p<0.01, r=-0.419), CH4 was positively
correlated with temperature (p<0.01, 0.427<r<0.565), and the positive
correlation between CO2 and temperature did not reach a significant
level (0.071<p<0.253, -0126<r<0.157). In addition, there is no

correlation between temperature changes and water depth changes
during the sampling period (0.341<p<0.928); that is, in the paired
analysis data involved in this study, the change law of carbon emission
flux with water depth is not affected by temperature.

The CH4 flux shows a higher temperature dependence than the
CO2 flux, where EM and EC for all water depths are 0.69 eV and
0.35 eV (Figure 4), respectively. For the threeWD intervals, EM and EC
showed similar results in 10 cm<WD<97.5 cm andWD>97.5 cm, and
EM was 114.29% and 204.35% higher than EC. As shown in Figure 5,
EM and EC in WD<10 cm are 0.42 eV and 0.40 eV, respectively, which
are almost the same. The maximum temperature dependence between
CH4 and CO2 was found at WD>97.5 cm.

Both CH4 and CO2 temperature dependence show non-
monotonic increasing or decreasing trends with water depth
elevation or drawdown. For CH4 temperature dependence in the
specific WD intervals, the highest value occurred in
10 cm<WD<97.5 cm, where EM is 1.05 eV (Table 2). The CH4

temperature dependence of WD>97.5 cm is higher than that of
WD<10 cm, where EM is 0.70 eV and 0.42 eV, respectively.
Additionally, CO2 temperature dependence indicates the highest EC
in WD 10 cm<WD<97.5 cm, while the EC is lower in WD>97.5 cm
than in WD<10 cm.

4 Discussion

4.1 Fluxes and variation sensitivity of carbon
emission flux to varying water depth

Turing points at water depths of 97.5 cm and 10 cm for CH4 and
CO2, respectively, indicate a probable threshold, while the carbon
emission flux varies with the fluctuating water level. Redox condition
alteration resulting in microbial tolerance and enzymatic activity is
one of the main causes (Chimner et al., 2016; Van der Lee et al., 2017).
The elevation of water depth increases the ratio of anaerobic
microorganisms to aerobic microorganisms, while the overall
microbial activity decreases, leading to higher CH4 emissions and
less CO2 emissions (Jacinthe, 2015; Mader et al., 2017; Li X. et al., 2019;
Ye et al., 2019). Additionally, the competition among electron
acceptors alters oxidative pathways under oxygen-limited

TABLE 1 Correlations of CH4 and CO2 with water depth and temperature, where *
and ** showed the significant difficance at p < .05 and p < .01.

WD T_Water T_Air T_cham

CH4 correlation 0.267** 0.508** 0.565** 0.427**

Significance 0.002 0.000 0.000 0.000

N 134 105 84 134

CO2 correlation −0.419** −0.118 -0.126 0.157

Significance 0.000 0.231 0.253 0.071

N 134 105 84 134

WD correlation 1 0.009 −0.042 −0.083

Significance 0.928 0.702 0.341

N 134 105 84 134

FIGURE 4
Temperature dependence of CH4 (Figure 4A) and CO2 (Figure 4B) emissions.
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conditions. Recently, Wang et al. (2017) reported that ferrous iron
[Fe(II)] has been shown to decrease with a decrease in water levels
while also acting as a controlling factor of oxidative phenolic activity.
Then, the difference between the relative contributions of CH4 and
CO2 resulted in a turning point of final GHG emissions at a water
depth of 54.6 cm (Holgerson and Raymond, 2016; Zhang et al., 2017;
Chen et al., 2021; Huang et al., 2021).

In the range of 10 cm–97.5 cm, CH4, CO2 and GHG showed the
highest emission flux and sensitivity to varying water depths. As
previous studies have shown, emergent vegetation, as part of
biological progress, plays a vital role in gas transport from
sediment to air and dissolved oxygen changes due to and
resistance to hydrodynamic disturbances such as wind and
waves in shallow lakes (DelSontro et al., 2018; Tang et al., 2019;
Ran et al., 2022). Along the inner range, CH4 and CO2 sensitivity
increased with the water depth, indicating a positive effect on GHG
sensitivity before the water depth reached the tolerance value. As
shown in Figures 3A, B positive effect on GHG sensitivity existed in
the range of water depths between 10 cm and 97.5 cm, showing that
the minimum and maximum tolerance values were out of
10 cm<WD<200 cm. In this study, the sensitivities of CH4, CO2

and GHG remained at a low value when the water depth
was >200 cm, which also indicated that with a further increase
in water depth, the changes in carbon emissions were small.

Therefore, the zone (Z) with a water depth range varying from
10 cm to 97.5 cm may be a more critical zone for reducing carbon

emissions through water level control in shallow lakes. Firstly, the
highest emission flux reveled that the maximum emission
reduction potential can be obtained by controlling the
distribution area of Z. Because the potential carbon emission in
Z is larger when the area is the same with other zones, and its
contribution to the whole lake is greater with increased distribution
of Z. Secondly, higher sensitivity to fluctuating water depths
indicated that the emission reduction control efficiency is higher
with lower cost in management practice, as that increase or
decrease amplitude of carbon emission flux in Z, with per unit
water depth variation, is larger than other zones. Finally, regulating
carbon emissions in Z through adjusting the micro-topography and
vegetation distribution is scientific and operable in manage practice
(Tang et al., 2019; Liu et al., 2020b), as the crucial role of emergent
vegetation and submerged vegetation of Z in carbon emissions by
controlling the physical condition and water use (DelSontro et al.,
2018; Tang et al., 2019; Ran et al., 2022).

4.2 Temperature dependence of CH4 andCO2
varying with water depth

Based on Shelford’s tolerance law (Shelford, 1913; Shelford, 1931;
Odum, 1971; Erofeeva, 2021) and metabolic theory (Price et al., 2010),
which state that the sensitivity of carbon emissions to varying water
depths is temperature-dependent (Chen et al., 2021), this study proved
it in specific zones of shallow lakes with water depths varying from
10 cm to 97.5 cm. This study revealed a consistency of carbon
emission flux in response to water depth and temperature. CH4,
CO2 and GHG fluxes show the highest sensitivity to water depth
in 10 cm<WD<97.5 cm, and both EM and EC are higher than those in
other WD intervals. This may be attributed to water depth shifting
carbon emissions by adjusting temperature dependence or to additive
and interactive effects between water depth and temperature (Birk
et al., 2020; Simmons et al., 2021). However, the assumption was not
totally verified in WD<10 cm and WD>97.5 cm.

FIGURE 5
Temperature dependence of CH4 and CO2 varying with water depth. We evaluated the average temperature dependence at all water depths and
separately WD intervals divided by turning points of CH4 and CO2 varying with water depth. The temperature independence of CH4 in WD<10 cm,
10 cm<WD<97.5 cm, and WD>97.5 cm is shown in Figure 5A. The corresponding value of CO2 is described in Figure 5B.

TABLE 2 Temperature dependence of CH4 and CO2 in WD intervals.

WD/cm EM/eV EC/eV (EM-EC)/EC

<10 0.42 0.40 5.00

10–97.5 1.05 0.49 114.29

>97.5 0.70 0.23 204.35

All 0.69 0.35 97.14

Frontiers in Earth Science frontiersin.org07

Yuan et al. 10.3389/feart.2022.1086072

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1086072


In shallow lakes, for WD<10 cm, dramatic decreasing or elevating
water depth shifts anaerobic conditions, and the anaerobic conditions
are even broken due to the surface soil being exposed to air (Van der
Lee et al., 2017; Jane et al., 2021). Based on the limiting factor principle
and metabolic theory, the limitation of water depth restricts the
metabolism of organisms related to CH4 and CO2, resulting in low
temperature dependence and higher sensitivity of CH4 to water depth
(Price et al., 2010; Yvon-Durocher et al., 2014). As shown in this study,
the temperature dependence of CH4 emissions is lowest at
WD<10 cm, and EM is 0.42 eV. However, the difference in CH4

and CO2 sensitivity was maximum (108.99%) in this WD interval,
and the sensitivity of CH4 (0.52) to varying water depths was lower
than 10 cm<WD<97.5 cm. Additionally, the elevated water depth
indicating higher CH4 and CO2 sensitivity was additional evidence
when WD<10 cm, as shown in Figure 3B.

The pattern of temperature dependence is not totally
consistent with the assumption when WD>97.5 cm. Based on
this assumption, water depth shifts carbon emissions by adjusting
the temperature dependence, EM and EC should be higher
accordingly when the sensitivity of CH4, CO2 and GHG of
WD>10 cm is higher than that of WD<97.5 cm. However,
compared with WD<10 cm, EM is indeed increased by 66.67%,
while EC is reduced by -42.50%. Additionally, in WD>97.5 cm,
the difference between EC and EM reaches a maximum (204.35%),
and EC is lower than the mean value (0.35 eV) at all water depths.
Previous studies have shown that CO2 is an important
indicator to characterize the overall activity from
microorganisms to ecosystem scales (Price et al., 2010; Yvon-
Durocher et al., 2012). A higher water depth may result in an
overall metabolic level decline, excluding anaerobic
microorganisms correlated with CH4 (Vicca et al., 2009; Chen
et al., 2020).

Above all, there is a specific water depth scope (Figure 6), such as
10 cm<WD<97.5 cm, ensured by the turning point of CH4 and CO2,
where the temperature dependence of CH4 and CO2 is driven by water
depth, shifting the GHG emission flux. Additionally, in water-limited
conditions and oversaturated conditions with much higher water

levels, the impact of temperature on the magnitude and sensitivity
of carbon flux is also restricted.

5 Conclusion

Based on the limiting factor principle of Shelford’s tolerance law and
metabolic theory, we explore the threshold while the GHG emission flux
varies with water depth in shallow lakes and try to clarify whether the
sensitivity of carbon emissions to different water depths is related to
temperature. We found that the water depth threshold indicates a
maximum CH4 (97.5 cm) and CO2 (10 cm), resulting in a water depth
threshold of GHG at 54.6 cm. InterWD intervals, CH4, CO2 and GHG in
10 cm<WD<97.5 cm showed the highest emission flux and sensitivity to
varying water depths. In the inner WD intervals, the effect of increasing
water depth on CH4, CO2 and GHG shifted from a positive effect to a
negative effect at a WD of 97.5 cm CH4 and CO2 sensitivity increase with
water depth elevation whenWD<97.5 cm, while CH4 and CO2 sensitivity
show a decreasing trend whenWD>97.5 cm. Furthermore, a consistency
of carbon emission flux responding to water depth and temperature is
only found in specific zones of shallow lakes with 10 cm<WD<97.5 cm,
indicating that the temperature dependence of CH4 and CO2 are driven
by the hydrological regime without water level stress, shifting the GHG
emission flux. Linking the result to restoration in shallow lakes, water level
control considering seasonal effects on carbon emission reduction is
essential. We propose an advice to ensure the goal by governing the time
that a turning point occurs and the control costs upon the sensitivity of
carbon emissions to unit water depth variation. As we combined samples
from multiple dates in this study, it is difficult to clarify short time
response and variation of environmental factors, which significantly
impacting carbon process. And more sample sites with higher
temporal or spatial resolution will improve our understanding of these
variations in future research.
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