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A series of extensional structures, including the southern Tibet detachment system

(STDS), the north-south trending rifts (NSTR), and the northern Himalayan gneiss

dome (NHGD), developed from the collision and compression between the Indian

and Eurasian plates. These tectonicmovementswere accompanied bymagmatism

and polymetallic mineralization. Cuona Rift (CR) is located on the STDS next to the

Yalaxiangbo Dome (YD) and passes through the Zhegucuo-longzi fault (ZLF), the

Lhozhag fault (LZF), the Rongbu-Gudui fault (RGF), theCuonadongdome (CD), and

the YD. The study area contains numerous metal deposits, such as rare metal ore,

lead zinc ore, gold deposits, and two geothermal fields, i.e., the Cuona geothermal

field (CGF) and the Gudui geothermal field (GGF). Current research on the

geological structures from the STDS to the YD is mainly based on

magnetotelluric and natural seismic imaging. These surveys have a low

resolution, making it impossible to image the shallow crust in detail. This study

obtained about a 112 km S-wave velocity profile from the STDS to the YD using the

multichannel surface wave imaging method. The profile results indicated that the

average thickness of the sedimentary layer from the STDS to the YD is 400–500m,

while it ismore than 800mat certain fault zones. TheCD is connected to the high-

velocity body below the Zhaxikang ore concentration area (ZOCA) and may have

the same provenance. The thermal conductivity reveals that the CGF, theGGF, and

the ZOCA have high values and a more intense thermal radiation capacity. This

drives the migration and circulation of the thermal fluids in the CGF and the GGF,

causing them to continuously transmit heat to the shallow surface along the fault

system. The migration of the thermal fluids extracts useful elements from the

geological bodies through which it flows. When these elements mix with the

atmospheric infiltration water, it precipitates to form the Zhaxikang hydrothermal

superimposed transformation type lead-zinc polymetallic deposit.
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Introduction

The Indian and Eurasian plates collided and extruded to

form the Gangdise tectonic belt and the Tethyan Himalayan

tectonic belt (Figure 1A). This belt is bounded by the Yarlung

Zangbo suture zone (Tapponnier et al., 2001; Yin., 2006; Zhang

et al., 2012). It has successively experienced the primary collision

(65–41 Ma), the late collision (40–26 Ma), and the post-collision

(25–0 Ma) (Hou et al., 2006, 2009; Qi et al., 2008). During the

post-collisional evolutionary stage, it formed a series of

extensional structures, including the southern Tibet

detachment system (STDS), the north-south trending rifts

(NSTR), and the northern Himalayan gneiss dome (NHGD).

This extensional phase was accompanied by a series of magmatic

activities and polymetallic mineralization (Armijo et al., 1986,

1989; Zhang and Ding., 2003; Ding et al., 2006; Zhang et al., 2007;

Xu et al., 2006; Zhang., 2007b; Zhang and Guo., 2007; Gao et al.,

2016; Wang et al., 2017). The NSTR is located in the Tethys

Himalayan structural zone to the north of the STDS (Figure 1B),

one of the most prominent geomorphic features of the Tibetan

Plateau, and the Lhasa block to the south of the Karakulun-Jiali

fault zone (KJFZ). It is essential to investigate the intra-

continental orogenic processes, deformation mechanisms, and

magmatic activities of the Tibetan Plateau (Armijo et al., 1986,

1989; Taylor et al., 2003; Zhang and Ding., 2003; 2007a; 2007b;

Yin., 2006; Zeng et al., 2011).

The research area is located near the Cuona Rift (CR),

between the STDS and the YD. The geologically complex CR

forms the easternmost part of the NSTR and passes through

many geological structures, including the STDS, the Cuonadong

dome (CD), the Zhaxikang ore concentration area (ZOCA) and

the YD. the research area is home to many metal mining areas

such as Zhaxikang, Suoyue and Mingsai, and also the geothermal

fields including the Cuona and Gudui. Some of the main

questions in the research area focus on the relationship

between the geothermal fields, mineralization, and faults and

whether this mineralization is related to magmatism. Current

studies have considered the geochemistry, geothermal aspects,

and tectonic geology of the area, while related geophysical

research has primarily focused on broadband seismic data,

electromagnetic data, and deep reflection data (Unsworth

et al., 2005; Shi et al., 2015, 2016; Tian et al., 2015; Xu et al.,

2015; Liang et al., 2016; Wang et al., 2017; Dong et al., 2020; Wu

et al., 2022; Xue et al., 2022). This geophysical research has

mainly focused on the deep geological structure and its

evolutionary dynamics, but little research focused on the

shallow geological structures of the study area. It is crucial to

determine the characteristics of the shallow geological structure

to understand how the deep hot material affects the shallow

geological structures and associated mineralization.

This study utilizes deep reflection data and multichannel

surface wave data processing to determine the S-wave velocity

structure of the shallow 1 km deep geological layer between the

STDS and the YD. This method is widely used in urban seismic

exploration but is limited by its shallow detection depth.

Explosive source energies are applied to derive deep seismic

reflection data, which can reveal a deeper stratum structure. This

research uses the S-wave velocity profile to discuss changes in the

sedimentary layer, the S-wave high-velocity anomaly area, the

geothermal resources, and the metallogenic background between

the southern Tibet detachment system and the

Yalaxiangbo dome.

Geological setting

There are several geological structural units between the

STDS and the YD. The typical structure is the CR, which is

oriented north to south. The CR is situated at 92°E and

stretches from Sangri County in the north to Cuona

County in the south along a total length of about 220 km

and an average width of 5–15 km (Wu et al., 2008b; Zeng et al.,

2009; Xie et al., 2017). From the south to the north, it crosses

the Cuona Graben and the Qiongduojiang Graben

(Figure 1C). The Qiongduojiang graben cuts through the

eastern part of the YD (Wu et al., 2007a; 2008a; Zeng et al.,

2011). A canyon, with a deep basin base of 200–300 m, and a

wide valley bottom in the south, occurs north of the

Qiongduojiang Graben at an altitude of about

4,400–4,500 m. Snowy mountain ridges border its eastern

and western sides. These mountains extend in the northern

and southern directions. The Cuona graben is a wide valley

graben with gently undulating hills and valleys at an elevation

of about 4,600–4,800 m. Its width varies greatly, ranging from

about 10 km at its widest point to approximately 1 km at its

narrowest. It is located in the Tethys Himalayan block, but

passes through the STDS in the south and extends into the

high Himalayan block. The Cuona Graben and the

Qiongduojiang Graben cut through the east-west oriented

structural belt and thrust fault zone, where sediments of

varying thicknesses are deposited (Wu et al., 2007a; 2007b;

2008a; Ha et al., 2018).

Several thrust faults, including the Qiongduojiang fault

(QDJF), the Rongbu-Gudui fault (RGF), the Zhegucuo-longzi

fault (ZLF), and the Lhozhag fault (LZF) are developed in the

study area (Figure 1C). Two essential and geologically complex

dome structures, the CD and YD, also occur in the study area.

The CD is a newly discovered dome structure located close to the

CR and the STDS. Granites of different ages are developed in

their core, while metamorphic rocks occur in the eastern part of

the dome (Luo et al., 2020). Several rare metal mines occur in this

area (Li GM et al., 2021; Li HL et al., 2021; Liang et al., 2021; Fan

et al., 2021; Zhang et al., 2022; Xia et al., 2022). The YD is situated

in the central extension area of the CR (Zhang et al., 2007) and

forms the easternmost part of the northern Himalayan dome

belt. Similar to the CD, the YD is also composed of gneiss and
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leucogranite, with the CR cutting through the YD (Zeng et al.,

2009). The STDS is located in the southernmost part of the study

area, in southern Tibet in the northern Himalayas. The STDS is

composed of weakly metamorphic or non-metamorphic

sedimentary rocks, with strong deformation in some areas

(Burchfiel et al., 1992; Yin et al., 2006).

FIGURE 1
(A) Locationmap of South Tibet. (B) Schematic diagram of the north-south rift valley distribution in the Tibetan Plateau, asmodified from Zhang
et al. (2020) and Bian et al. (2021). (C) Geological structure and survey line location map of the study area, as modified from Tapbonnier et al. (1982),
Dong et al. (2020), and Wu et al. (2007b, 2008b).
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Data and method

Data

The Institute of Geology of the Chinese Academy of

Geological Sciences laid a nearly south-north oriented deep

reflection seismic profile between the STDS and the YD from

2018 to 2019. This profile passed through the STDS, CR, CD,

ZOCA, and YD and had a total length of about 112 km. A total

of 478 single seismic shots with a shot interval of 250 m and a

trace interval of 50 m were collected. Every single shot has

720 traces, and the sampling rate is 2 ms. Table 1 shows the

specific seismic acquisition parameters. From the original

single shot record (Figure 2), it can be seen that the surface

wave signal is evident in both the far-offset (green circle) and

the near-offset (red circle). Therefore, the surface wave signal

can be fully extracted and used to obtain the shallow shear

wave velocity structure through inversion. After removing the

poor signal-to-noise ratio data, it retained 453 dispersion

curves.

Method

This study uses the multichannel surface wave data

processing method, extracts the surface wave signal from the

deep reflection data, and obtains the S-wave velocity structure by

inversion (Figure 3). Currently, multi-surface wave imaging

technology is primarily used for urban geological exploration,

with a particular emphasis on shallow layer imaging (Park et al.,

1999; Xia et al., 1999, 2015; Yin et al., 2018; Andajani et al., 2019).

There are relatively few studies on the application of surface wave

extraction from deep reflection data. Compared to the reflection

data during petroleum seismic exploration, the deep reflection

data collected by explosive sources has a more intense surface

wave signal and deeper detection depth. This is beneficial for

inversion imaging. Before data processing, it is necessary to

intercept the original data. Single-shot data can only obtain

the shear wave velocity information of a specific underground

position in multichannel wave imaging. Therefore, the direct use

of 720 channels of a deep reflection single shot data does not

accurately reflect the information of a specific underground

TABLE 1 Deep reflection seismic data acquisition parameters.

Seismic acquisition parameters

Shot interval Small shot: 250 m; Medium shot: 3,000 m; Large shot: 50,000 m

Trace interval 50 m

Sampling rate 2 ms

Record duration Small and medium shots: 30 s; Large shots: 60 s

Offset Small shot: 14,975 m; Medium shot: 22,475 m; Large shot: full array

Receiving mode Small, medium: 720 channel reception; Large shot; full array

Instrument types 428 Digital seismograph

Source mode Explosive source

FIGURE 2
Original single-shot data (Location is shown in Figure 1C).
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location. When there are a limited number of receiving channels,

the mapping resolution of dispersion energy will be poorer,

complicating the extraction of the dispersion curve. This study

selected the most appropriate 60 channels bilateral for single-

shot dispersion extraction. The phase shift method was applied to

transform the single shot record into a dispersion energy

diagram. Finally, based on the dispersion curve, the one-

dimensional S-wave velocity structure was obtained by

inversion, and the two-dimensional profile was derived by

interpolation.

Data processing and results

Spectrum analysis

Spectrum analyses were performed on the single-shot records

of five geological units: STDS, CR, CD, ZOCA, and YD

(Figure 4). Based on the frequency spectrum, single-shot

energy is primarily concentrated between 0 and 50 Hz, with a

main frequency of 10 Hz. The amplitude values of the single-shot

records near the STDS (No. 9275), the CR (No. 9863), and the

CD (No. 10194) are small. This is due to the proximity of these

points to faults and rifts, which contain many Quaternary

sediments. These sediments cause the rapid attenuation of

seismic wave energy. The amplitude values of the single-shot

near the ZOCA (No.10599) and the YD (No.11260) are large

because the rock mass integrity is better. The lithology of the

ZOCA and the YD consists of leucogranite and metamorphic

rocks with a high density; therefore, the seismic energy waves

weaken slowly. The amplitude spectrum of the ZOCA varies

significantly with frequency and contains many peaks. This can

be due to the complex geological structure and diverse

lithological types in the mining area (Guo et al., 2019; Jiao

et al., 2019).

Surface wave dispersion extraction

This paper selects the fundamental dispersion curve

according to the maximum value in the dispersion energy

diagram. The single-shot dispersion curves indicate that the

frequency is maintained between 1 and 10 Hz, and the phase

velocity is between 500 and 2,500 m/s. The ratio of the energy of

the measuring point to the maximum energy at this frequency is

1. It considers the signal-to-noise ratio of the picked dispersion

FIGURE 3
Flowchart of surface wave data processing.
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curve is the best. This ensures that the chosen fundamental

dispersion value is the maximum. As shown in Figure 5, the

single shot dispersion in different research areas demonstrates

that the corresponding signal-to-noise ratios of various signal

frequencies are close to 1, resulting in more reliable inversion

findings.

FIGURE 4
Amplitude–frequency graph for the single-shot of the STDS (No.9275), the CR (No.9863), the CD (No.10194), the ZOCA (No.10599), and the YD
(No.11260).

FIGURE 5
Signal-to-noise ratio of dispersion curves at different positions (The ratio of the energy of the measuring point to the maximum energy at this
frequency).

Frontiers in Earth Science frontiersin.org06

Wang et al. 10.3389/feart.2022.1086080

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1086080


The dispersion curves of specific geological units, including

the STDS, CR, ZOCA, and CD, were analyzed (Figure 6). The

overall phase velocity near STDS and CR is less than 1,500 m/s,

which can be attributed to the presence of Quaternary sediments

and weathered and broken rocks between the fault and rift. These

rocks cause low S-wave velocities. The dispersion near the CD

and the ZOCA has a high phase velocity of 2000 m/s and

2,500 m/s, respectively, which can be due to granite and

metamorphic rocks in these two areas (Jiao et al., 2019). The

dispersion curve of ZOCA shows a significant curved bulge near

3 Hz, demonstrating certain high-low velocity anomalies

underground. These anomalies can be attributable to the

change of ore veins or the mining goaf (Jiao et al., 2019; Fan

et al., 2021; Wu et al., 2021; Zhang et al., 2022). Analysis of the

dispersion curves at different positions can reveal the formation-

related details.

Initial model establishment and inversion

A reasonable initial model is necessary to provide proper

constraints for inversion. The regional velocity changes greatly as

the deep reflection profile passes through several geological units.

Therefore, it is necessary to establish different initial models for

the positions. The phase velocity of the fundamental Rayleigh

surface wave is the most sensitive to the S-wave velocity at a

depth of 1/3 of its wavelength. The relationship between the

phase velocity and S-wave velocity satisfies formula C=0.92 Vs. in

a uniform half-space Poisson medium. If the measured Rayleigh

wave phase velocity is divided by 0.92 to obtain the S-wave

velocity, the depth is 1/3 of its wavelength, which is a suitable

initial model (Xia et al., 1999; Luo et al., 2008). Therefore, this

paper used the dispersion curve measured by different single-

shot records and calculated the S-wave velocity corresponding to

different frequencies using the above formula. Then, based on

various frequencies, the wavelength corresponding to different

frequencies was calculated using the relationship between wave

velocity and wavelength, and 1/3 of its wavelength was taken as

the inversion depth. S-wave velocities at various depths can be

obtained through the calculation presented above. Finally, the

above S-wave velocity variation with depth was utilized as the

initial model for inversion (Figure 7, red dotted line). The initial

model was divided into ten layers, from shallow to deep, based on

the principle of “shallow subdivision and deep coarsening”.

This study used open-source software to inverse the

dispersion curve with the initial model (Herrmann, 2013). In

order to ensure the reliability of the results, the inversion result

error is greater than 5%, which will be discarded. Moreover, it

carried out 30 iterative inversions (Figures 7B, D, F). Based on the

inversion results, the S-wave velocity of the CR (No. 9863)

changes greatly in the depth range of 0–200 m and slightly in

the depth range of 200–600 m (Figure 7A), which is less than

FIGURE 6
Dispersion curves of the STDS (A), CR (B), CD (C), and ZOCA (D).
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1,500–1700 m/s, indicating the low-velocity characteristics

between the rift and the fault. The S-wave velocity increases

in a “trapezoidal” trend within 300 m of the CD (No.10194),

reflecting the sediment’s characteristics around the CD

(Figure 7C). At 300 m, the velocity suddenly increases and

stays at about 2000 m/s, indicating the intrusive leucogranite

body (Jiao et al., 2019). The velocity near the ZOCA (No.10599)

is generally high and alternates greatly between ‘high’ and ‘low’

FIGURE 7
S-wave velocity inversion results at the CR, CD, and ZOCA. (A,C,E) are the inversion results of one-dimensional S-wave velocity. (B,D,F) are the
dispersion curves of the iterative process.
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velocities, which can be related tomineralization (Figure 7E). The

extension of the vein and the mined-out area will affect the

S-wave velocity, resulting in alternating high and low velocities.

Therefore, the velocity changes significantly from shallow to deep

in the one-dimensional S-wave profile. The actual change in

strata characteristics can be obtained from the inversion results

based on the various initial models established at different points.

Discussion

Characteristics of the sedimentary layer

Numerous peaks with a continuous elevation of over 5,500 m

between STDS and YD are accompanied by many rivers. The

fluvio-lacustrine and glacial sediments provide provenance filling

for the CR and its surroundings, forming a certain thickness of

sediments. Previous studies indicate that the sedimentary

thickness of the Qiongduojiang graben ranges from 400 to

600 m, while the Cuona graben is at least 300 m thick (Wu

et al., 2007b; 2008b). The S-wave velocity profile demonstrates

that the average thickness of the sediment layer between the

STDS and the YD is 400–500 m (Figure 8B, black dotted line).

The STDS, LZF, ZLF, and RGF, can reach sedimentary

thicknesses of up to 800 km or deeper (Wu et al., 2007b;

2008b). The sediment thickness is the thinnest near the

ZOCA. The average sediment thickness of the survey line is

about 600 m since it passes through the western edge of the CD

close to the CR. The sediment thickness of YD in the north is less

than that near CD, at about 400 m thick.

The high-velocity anomaly and magmatic
activity

The east-west extensions of the Tibetan Plateau have formed a

series of north-south rifts in southern Tibet since the Cenozoic

(Armijo et al., 1986; Tapponnier et al., 2001; Hou et al., 2006;

Zhang et al., 2007; Xu et al., 2006; Yin, 2006; Zhang., 2007a, 2007b;

Zhang et al., 2012; Xue et al., 2021). A high-conductivity and low-

velocity layer, which is interpreted as a partial melting layer in the

middle and lower crust, is widely distributed under these north-

south trending rifts (Unsworth et al., 2004, 2005; Nabelek et al.,

2009; Jin et al., 2010; Xie et al., 2017; Liang et al., 2018; Pang et al.,

2018; Xue et al., 2021). Over time, some of these melts migrated

upwards in the CR through the rock boundaries and weak zones

(Hill et al., 2015). These melts condensed and crystallized to form

leucogranite when they reached a position close to the surface.

The Himalayan leucogranites mainly occur along two belts.

The one leucogranite occurs near the STDS is called the high

FIGURE 8
(A) Geologic section. (B) S-wave velocity interpretation diagram.

Frontiers in Earth Science frontiersin.org09

Wang et al. 10.3389/feart.2022.1086080

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1086080


Himalayan leucogranite. The second leucogranite occurs in the

Tethys Himalayan belt and is called the Tethys Himalayan

leucogranite (Wu et al., 2015; Zeng and Gao., 2017; Zhang

et al., 2018; Gao et al., 2019; Cao et al., 2022). Jiao (2019)

used gravity, electrical, and magnetic methods to image the

three-dimensional structure of the ZOCA and its adjacent

area. Based on this imaging, he postulated an intrusive body

of leucogranite under the CD and the ZOCA. It also found

discontinuous high-velocity anomalies below the study area

based on the S-wave velocity profile (Figure 8B). These

anomalies can represent the intrusive body of leucogranite for

different geological periods (Guo et al., 2019; Jiao et al., 2019).

The high-velocity anomaly is divided into five areas: A, B, C, D,

and E. The high-velocity anomalies in areas A and B are close to

the STDS and belong to the high Himalayan terrane and the

Tethys Himalayan terrane, respectively. These anomalies were

caused by the upwelling of deep thermal materials along the

STDS (Jin et al., 2010; Hill et al., 2015; Xie et al., 2017), which

formed the leucogranite located in the high Himalayan

metamorphic rock series and the Tethys Himalayan

sedimentary rock series. Area C is about 1 km underground

and located along the western boundary of the CD, consistent

with the gravity inversion results obtained by Jiao (2019). The

high-velocity anomaly in Area C is connected with Area D,

indicating that the ZOCA and the CD can have the same source

of deep material (Jiao et al., 2019). Due to the existence of several

secondary faults around ZOCA. The ZOCA has higher contact

between the high-velocity body and the shallow surface than the

CD, which can cause reactions between the magma and its

surroundings as it rises to the surface. These interactions can

develop different metal deposit types (Liang et al., 2014; Guo

et al., 2019; Jiao et al., 2019; Zhang et al., 2022). The high-velocity

anomaly in Area E is located under the south-dipping YD. The

deep main body of the anomaly extends more widely to the south

and in the same direction as the Qiongduojiang graben.

Geothermal resources and mineralization

The deep melting magma source area of the lower crust and

the local low-velocity melting of the middle crust were formed

during the collision and compression of Eurasian plates. Magma

pockets and local melting that formed at different depths of the

upper crust during the tectonic evolution of the area display a

unique crust-mantle thermal structure in the Tibetan Plateau and

its surrounding areas (Zhang et al., 2014; Liu et al., 2014; Wang

et al., 2017; Wang et al., 2022; 2022b). Several faults developed

between the STDS and the YD, with high- and medium-

temperature geothermal systems existing in the intersections

of these faults. The deeper CR and STDS have a larger

fracture zone, which can conduct heat and water and serve as

a high-quality water storage structure. In the shallow surface,

Jurassic and Triassic metamorphic sandstone and quaternary

sandstone (Figure 8A) serve as natural heat storage layers (Wang

et al., 2022). These conditions between STDS and YD have good

geothermal characteristics and promote mineralization.

The thermal conductivity was determined at different depths

below the survey line using the relation of S-wave velocity and the

thermal conductivity in experimental petrology (Tian et al.,

2020). The average thermal conductivity along the survey line

direction was then calculated using the thermal conductivities of

different depths. The thermal conductivity reveals that the CGF,

the GGF, and the ZOCA have high values and a more intense

thermal radiation capacity (Figure 9). The S-wave velocity profile

(Figure 8B) reveals a continuous high-velocity body under the

CD and ZOCA and a low-velocity channel above the high-

velocity body (Figure 8B, red dotted line). While the high

geothermal gradient enhances the circulation of fluid, the low-

speed channel between ZOCA and CD provides favorable

conditions for the migration and reservoir of ore-forming fluid.

The partially molten body in the deep part of the Tethys

Himalaya (Brown et al., 1996; Nelson et al., 1996; Wei et al.,

FIGURE 9
Average thermal conductivity along the survey line.
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2001; Guo et al., 2019) increases the geothermal gradient of the

region when it invades upward. More heat is radiated to the shallow

geological layers under high thermal conductivity conditions, which

drives geothermal circulation and causes the circulation of the

underground ore-forming fluid in the CD, ZOCA, and the

surrounding fracture system (Zhou et al., 2017). Useful ore-

forming elements (Au, Sb, Pb, and Zn) are gradually extracted

from granitic rock, surrounding rock strata, and basic dikes to form

ore-rich fluid. The circulating fluid mixes with the infiltrated

atmospheric water and then precipitates, causing elements such

as lead, antimony, and silver in the fluid to form sulfide mineral

deposits, such as the Zhaxikang antimony, lead, zinc, and silver

polymetallic deposits (Cox, 2007).

In geothermal fields, the deep molten magma migrates upward

to heat the upper and middle crust. Atmospheric precipitation and

meltwater that permeate downward along the fault zone move

upward along the fissure after being heated by the local

underground molten material and hot fluids (Wang et al., 2017;

Wang et al., 2020a; Wang et al., 2020b; Wang et al., 2022). The

S-wave velocity profile contains three low-velocity channels. These

low-velocity channels are located in the STDS, CR, and RGF

(Figure 8B) and are connected with deep heat sources. The heat

radiation is enhanced by the high thermal conductivity (Figure 9),

increasing the temperature of the superficial fluid. The CGF and the

GGF formed when the high-temperature fluid was exposed.

Conclusion

This study uses the S-wave velocity profile to discuss the thickness

of the sedimentary layer, the characteristics of the high-velocity

anomaly, and the geothermal resources and related mineralization:

1) The average sediment thickness in the STDS-YD was

400–500 m, while the sediment of the STDS, ZLF, and RGF

reached depths of 800 m or deeper. The average thickness of

sediment on the western edge of the CDwas 600 m, while on the

southern edge of the YD, it was about 400 m.

2) A discontinuous high-velocity anomaly area between STDS and

YD represents the Leucogranite intrusion during various

geological periods. A high-velocity anomaly connects the CD

and ZOCA, indicating that they has the same deep material

source. Under the YD, the deep main body of the anomaly

extendsmorewidely to the south and in the same direction as the

Qiongduojiang graben.

3) High thermal conductivities were discovered near the CGF and

GGF, demonstrating a higher thermal radiation capacity. The

geothermal gradient increases when the deep magma intrudes

upwards, causing the circulation of the ore-rich fluid in the fault

system due to the high thermal conductivity. These ore-rich

fluids precipitate under the influence of other factors, forming

the Zhaxikang hydrothermal lead-zinc polymetallic deposit.
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