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Rare earth resource is a national strategic resource, which plays an essential role in
the field of high technology research and development. In this paper, we aim to use
remote sensing quantitative inversion prospecting technology, use surface-to-
surface mode, and model inversion and evaluation through convolutional neural
network model to achieve a new research method for large-scale, low-cost, rapid
and efficient exploration of ion-adsorbed rare earth ore. The results show that the
RE2O3 content of samples has significant negative correlation with the second, third
and fourth band of GF-2 image, but has no significant correlation with the first band
of GF-2 image; the convolution neural network model can be used to reconstruct
the RE2O3 content. The content distribution map of RE2O3 obtained by inversion is
similar to that of geochemical map, which indicates that the convolution neural
network model can be used to invert the RE2O3 content in the sampling area. The
quantitative inversion results show that the content distribution characteristics of ion
adsorption rare earth ore in the study area are basically consistent with the actual
situation; there are twomain high anomaly areas in the study area. The high anomaly
area I is a knownmining area, and the high anomaly area II can be a prospective area
of ion adsorption type rare earth deposit. It shows that the remote sensing
quantitative inversion prospecting method of ion adsorption type rare earth
deposit based on Convolutional Neural Networks (CNN) model is feasible.
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1 Introduction

Rare earth resources play an essential role in aerospace, metallurgy, energy, agriculture and
other fields. They are called to be the country’s strategic resources and play’s an essential role in
the economic development technological research and development of the country (Liu et al.,
2015; Qin, 2019). Increasing in the demand of rear earth resource helps to develop the economy
of the country, especially Ion adsorption type rare earth minerals that are dominant in China.
Research in recent years on ion adsorption rare earth ores have become the hot spot of global
rare earth exploration because of the advantages of complete distribution of light and heavy rare
earth elements. The wide distribution range with no radiation by which different rare earth
elements can be separated without mineral decomposition (Chi, 1988; Chi and Tian, 2007; Yang
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and Hu, 2018). In recent years, the geochemical characteristics of rare
earth elements and the role of absorption processes in their
distribution and fixation in Weathering product deposits have been
studied (Abedini et al., 2020; Kiaeshkevarian et al., 2020; Khosravi
et al., 2021; Abedini et al., 2022). A well-protected rare earth resource
development space and a large number of ion adsorption type rare
earth mines have developed in Guangxi lately. Among them, the ion-
adsorption type rare earth mines in the Liutang mining area of
Chongzuo City are rich in valuable rare earth elements and are
easy to mine and wash. Therefore, it has a great significance for
the economic development technological research and development to
develop and utilize the ion adsorption rare earth ore in Liutang mining
area Chongzuo City, Guangxi Province, China.

The traditional rare earth ore exploration methods are mainly
chemical exploration and geological exploration methods. These
methods are time-consuming and labor-intensive and the
exploration cycle is relatively long, which can no longer meet the
current economic development needs. Therefore, remote sensing
quantitative inversion method is a method that combines remote
sensing data and geochemical data to quantitatively observe the
surface target. Then invert the content of the observation target,
mainly to study the content, distribution and migration laws of
various chemical elements on the surface of the earth (Liang et al.,
2016; Zhao, 2017). The remote sensing quantitative inversion method
has the advantages of being comprehensive, macroscopic, economical,
fast, and has a short cycle. It has been widely used in soil heavy metal
pollution monitoring (Qiao, 2010; Ding et al., 2012; Mohamed et al.,
2018; Zhang et al., 2019; Ding et al., 2019), water pollutant monitoring
(Qiao, 2010; Ding et al., 2012; Mohamed et al., 2018; Ding et al., 2019;
Zhang et al., 2019), air pollutant monitoring (Wang, 2006; Du et al.,
2014; Wu et al., 2018), vegetation index (Cozzolino and Moron, 2004;
Huang et al., 2009), and mineral content research (Zhang et al., 2011;
Yang et al., 2012; Möller andWilliams-Jones, 2018). There is also great
potential for applications in mineral exploration. Quantitative
inversion models can be classified into two categories: physical
models and statistical models. Because physical models are
generally very complex and contain a lot of content, at present,
domestic and foreign scholars mostly use statistical models for
quantitative inversion research. Commonly used statistical models
(Ma et al., 2018) are: univariate regression, multiple linear regression
(Cheng, 2007; Guo et al., 2018; Cheng et al., 2019a), partial least
squares (Li et al., 2005; Liu and Zhang, 2007; Xu et al., 2018), neural
networks (Schiller and Doerffer, 1999; Yu et al., 2012; Cao et al., 2017;
Lin et al., 2018) support vector machines, random forests and other
methods (Durbha et al., 2007; Abdel-Rahman et al., 2013; Xu et al.,
2014; Vincenzi et al., 2015; Jiang, 2017; LI et al., 2017; Wang et al.,
2018). With the development of computer technology, artificial
intelligence science and deep learning methods have been
developed, and some scholars began to apply deep learning
methods to quantitative inversion, and have achieved good
inversion results (Wang et al., 2017; Tan et al., 2018; Liu et al.,
2020; Bouslihim et al., 2021). At present, most of the remote
sensing quantitative inversion research is based on the measured
spectral data. Due to the complex acquisition environment of
remote sensing data, it is affected by many factors, results in low
inversion accuracy. In addition, in recent years, the quantitative
inversion research based on remote sensing image data mostly
adopts the multiple linear regression method, results in low
inversion accuracy, Fine-grained image classification based on

multimodal features is a very hot research topic in the fields of
computer vision and pattern recognition, which aims to divide
coarse-grained or basic categories of things into more detailed
subcategories, and its main feature is that the visual similarity
between different categories is very high, and the visual similarity
between the same categories is very low. Therefore, the visual
similarity of images between different species in these fine
classifications is very high, and it is necessary to extract the fine-
grained features to distinguish, but labeling in fine-grained categories
generally requires a lot of domain knowledge, so the labeling workload
is large, and the requirements for labelers are relatively high.
Therefore, to improve the inversion accuracy of remote sensing
quantitative inversion based on remote sensing images has become
an important issue in the research of remote sensing quantitative
inversion.

Remote sensing rare earth prospecting is carried out based on the
spectral characteristics of rare earth ores, which are related to the
atomic structure of rare earth elements. The spectral absorption
characteristics of rare earth elements mainly depend on the F-F
electronic transition of REE3+. As early as more than 50 years ago,
scholars have studied the visible-near-infrared reflection spectral
characteristics of rare earth minerals (Adams, 1965; Hunt, 1977),
and some other scholars have studied the spectral characteristics of
rare earth minerals since then (Batsanov et al., 1969; Dai, 2013; Turner
et al., 2014; Boesche et al., 2015). With the development of remote
sensing technology, domestic and foreign scholars have applied
remote sensing technology to the exploration and research of rare
earth minerals, and achieved certain results (Zhang et al., 2012; Zhao
et al., 2014; Boesche et al., 2015; Cheng et al., 2019b). However, many
scholars at home and abroad have studied the spectral characteristics
of rare earth ores and rare earth elements, and also applied remote
sensing technology to the exploration of rare earth ores, but most of
them use alteration information extraction methods for rare earth ore
exploration, and the application of remote sensing quantitative
inversion for rare earth ore exploration is still very few, especially
the exploration of ion adsorption rare earth ore. We use CNNs for
feature extraction, which has the advantage that users do not care
about specific features at all, that is, the encapsulation of feature
extraction is realized. Convolutional neural network technology is
used to automatically extract the optical features of minerals for
mineral identification. The successful application of these
technologies will have far-reaching application value by reducing
the cost and time required to process and identify minerals (Lou
et al., 2020).

This paper investigate about the Liutang mining area in Guangxi
as the study area, uses the geochemical exploration data of the mining
area and remote sensing data of GF-2 as the research data and the
following effects are hoped to be obtained. Firstly, after constructing
the surface-facing pattern sample set, the Spearman correlation
analysis between the rare earth ore content and the GF-2 image
band resolution was performed, and it was expected that the
RE2O3 content of the sample would have a significant correlation
with the wavelength band of the GF-2 image, and the results of the
significant correlation between the geochemical exploration RE2O3

content data of the sample and the reflectance data of the GF-2 image
band were obtained. Secondly, the convolutional neural network
method was used to quantitatively invert the content of ion-
adsorbed rare earth minerals in the study area, and the
convolutional neural network model proposed could invert the
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RE2O3 content very well. The Kriging interpolation pattern of the
sample RE2O3 content obtained by the model inversion was similar to
the RE2O3 content distribution characteristics of the geochemical
exploration map. Finally, the accuracy of the model is tested, and
compared with the high-definition images of the study area, the
distribution characteristics of the expected inversion results are
basically in line with the actual situation, and it is proved that the
quantitative inversion method of remote sensing of ion-adsorbed rare
earth ore based on convolutional neural network model is feasible.

2 Materials and methods

2.1 The study area

This paper investigate the Liutang mining area of Chongzuo City,
Guangxi Province as the study area. The Liutangmining area is located

in the northwest of Chongzuo City. The geographic coordinates are
107°13′30″~107°15′00″ east longitude and 22°27′00″~22°28′09″ north
latitude. The mining area is located in the syncline core of Chongzuo,
rising from northwest to southeast and dipping from southeast, with a
gentle dip angle (10°–20°), and is cut by the Jinlou fault. The exposed
strata in the mining area are the Lower Triassic Beisi Formation and
the Quaternary strata, the core rock of the syncline is volcanic lava and
the surrounding rocks are the Besi Formation limestone. The lithology
of the exposed magmatic rocks is the acidic volcanic lava in the Lower
Triassic Beisi Formation, mainly rhyolite lava and secondarily granite
porphyry, The rhyolite lava is in the upper part, and the granite
porphyry is near the limestone in the lower part. The outcrop
magmatic rocks are distributed in the whole mining area, and the
dip angle is mainly 0°–25° (Gao et al., 2009; Qin, 2019; Qin et al., 2019)
(Figure 1).

The ion-adsorbed rare earth ore is formed by the of the middle-
acid volcanic rock mass in the upper part of the Triassic Beisi

FIGURE 1
Regional geological map of Guangxi Chongzuo Liutang mining area.
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Formation rich in rare earth ions under the action of the internal force
of the geological structure and then subjected to weathering and
denudation. It is decomposed at the bottom, and the rare earth
ions are migrated, adsorbed, and finally enriched in the middle and
lower parts of the weathering crust. The mining area is characterized
by lower mountains and hills, and the climate belongs to the
subtropical monsoon climate, which is warm and humid, which is
conducive to chemical weathering, so that the upper part of the acidic
volcanic rock body develops into a large-scale weathering crust, which
is conducive to the formation of ion adsorption rare earth minerals.
From the formation mechanism of ion adsorption rare earth ore, we
can get the following information: the ore-hosting layer of ion
adsorption rare earth ore deposit is mainly the weathering crust of
acid volcanic rock mass. On the plane, the mineral content of the ore
body is directly related to the degree of development of the weathering
crust, the higher the degree of weathering greater the thickness of the
weathering crust and greater the thickness of the ore body. Generally,
the thickness of the ore body is highest at the mountainside, followed
by the top of the mountain, and the thinnest or none at the bottom of
the mountain. On the profile, ore bodies are often enriched in the
middle and lower parts of the weathering crust (Figure 2).

2.2 Geochemical data and processing
methods

The geochemical data used in this study come from the sample
data obtained by the Guangxi Zhuang Autonomous Region
274 Geological Team during field drilling and exploration in the
Liutang mining area. Because remote sensing images can only reflect
the characteristics of surface features, only the topsoil samples
(0–0.5 m from the surface) in each drilling sample were taken as
the sample data for remote sensing quantitative inversion research,
and finally a total of 374 sample data were obtained. The chemical
composition analysis of the sample was determined in Youyan Rare
Earth New Materials Co., Ltd., and the rare earth ore content was the
sum of the oxide content of various rare earth elements in the selected
sample. As shown in Table 1, the data of 374 samples followed the
normal distribution in population, with a minimum content of .16%, a
maximum content of 15.99%, a mean content of 3.47%, and a standard
deviation of 2.06%. Using GPS to determine the coordinates of the
drilling site while collecting the drilling data, the sample data can be
projected onto the remote sensing image, the sample point location
plot is shown in the Figure 3.

FIGURE 2
Artificial outcrop photographs of rare earth orebodies (A,B), microscopic photographs (C) and outcrop of rock identification (D).
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2.3 Remote sensing data and processing
methods

The remote sensing data used in this study are GF-2 remote
sensing data. The GF-2 satellite was successfully launched on

19 August 2014. It is the first civilian optical remote sensing
satellite with a ground resolution of 1 m independently developed
by China. GF-2 is equipped with panchromatic and ground
resolutions of 1 m. It is a 4-m multispectral camera with sub-meter
ground resolution and high positioning accuracy. The multispectral

TABLE 1 Correlation analysis of geochemical exploration data.

Amount of
data

Distribution Minimum content (%) Maximum content (%) Content mean (%) Standard deviation (%)

RE2O3 374 Normal distribution .16 15.99 3.47 2.06

FIGURE 3
Distribution of sampling points.
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imagery of the GF-2 satellite includes four bands. The payload
specifications of the GF-2 satellite are shown in Table 2. Since the
technical indicators of the GF-2 satellite shows that the band spectrum
is mainly concentrated in the visible light band. It can be seen from
previous studies that various rare earth elements have characteristic
absorption bands in the visible spectrum (Dai, 2013; Dai et al., 2018).
Therefore, the band spectrum of the GF-2 image contains the
characteristic absorption band of rare earth elements, and the GF-2
remote sensing image can be used as the research data to quantitatively
invert the content of rare earth minerals.

The remote sensing image of GF-2 (Figure 4) obtained in this
paper was taken on 12 November 2020. The row number of the image
is 187/12. The image swath covers the study area. The cloud cover at
the time of shooting is less than 5%, which is not affected by cloud
cover. Although the shooting time of the obtained remote sensing
images is different from that of the geochemical exploration data, the
research mining area adopts leaching technology to mine rare earth
ore. This mining method has little effect on the rare earth ore content
on the surface. Therefore, the mining of ore bodies has little effect on
the quantitative inversion research of rare earth ore by remote sensing,
and the obtained GF-2 images can be used for quantitative inversion
research of remote sensing with geochemical data.

Since the acquisition of remote sensing satellite images is affected
by many factors, the acquired GF-2 remote sensing images need to be
preprocessed to reduce the bias caused by these factors. In order to
reduce the influence of sensing instruments (sensors) and
atmosphere on the spectral reflectance of remote sensing images,
it is necessary to perform radiometric calibration and atmospheric
correction on the acquired remote sensing images. To reduce the
image deviation caused by the satellite shooting and projection, it is
necessary to use high-definition and accurate remote sensing images
for geometric correction processing, the pair of image spectral curves
before and after correction is shown in the Figure 5. Finally, the
preprocessed image is cropped to obtain remote sensing data from
the study area.

2.4 Method of constructing surface-to-
surface correspondence pattern sample set

Traditional remote sensing quantitative inversion and
quantitative inversion research is basically carried out by using
the corresponding relationship between sample geochemical data
and remote sensing image pixel spectral data (point-to-surface).
However, the geochemical data obtained from exploration is the
chemical composition data of the surface drilling samples. Now
the chemical composition of the geochemical samples points is
compared with the pixels of the remote sensing image, the
geochemical sample is a point on the pixel, if the scale
between the geochemical data and the remote sensing image
data does not match. In order to reduce the inversion error
caused by the scale mismatch, this study constructed a sample
set of the surface-to-surface correspondence pattern
corresponding to the sample geochemical data and the remote
sensing image pixel spectral data. Firstly, according to the
coordinates of the sampling point, the rare earth ore content
data of the sampling point is projected onto the remote sensing
image, and the spectral data of the pixel corresponding to the
sampling point is extracted. Then the Kriging interpolation
method is used to interpolate the rare earth ore content data
of the sample points into a geochemical map with the same pixel
size as the remote sensing image, and the rare earth ore content
data corresponding to the sampling points are extracted from the
geochemical map. Finally, the extracted image spectrum data
match with the rare earth ore content data extracted from the
geochemical map to construct a surface-to-surface corresponding
pattern sample set (Figure 6).

TABLE 2 GF-2 satellite payload technical index table.

Load Band number Spectral range (μm) Spatial resolution (m) Width (km)

Panchromatic Multispectral Camera 1 .45–.90 1 45 (2 cameras combined)

2 .45–.52 4

3 .52–.59

4 .63–.69

5 .77–.89

FIGURE 4
GF-2 remote sensing image used in the study.
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2.5 Correlation analysis method

According to the principle of remote sensing quantitative
inversion, it can be seen that the spectral characteristics of the
same mineral are the same, and the same mineral with different
contents is only different in the spectral reflectance, so there is a
certain relationship between the characteristic spectral reflectance
of the mineral and the content of the mineral. Based on the
correlation, the inversion model between the rare earth ore
content and the reflectance of the remote sensing image band
can be established.

In this paper, correlation analysis is carried out on the constructed
surface-to-surface correspondence pattern sample set in SPSS
software. Because the distribution of RE2O3 content data of the
collected samples does not conform to the normal distribution, so
Spearman correlation analysis is recommended for the correlation
analysis of this research instead of Pearson correlation because
Spearman correlation analysis correspond to two-way correlation
analysis. Correlation analysis of a sample set of corresponding
patterns.

2.6 Convolutional neural network model
modeling method

Convolutional Neural Networks (CNN) is a type of feedforward
neural network that contains convolution operations and has a deep
hierarchical structure. It is one of the representative algorithms of deep
learning. The convolutional neural network has strong representation
learning ability, and can classify the input information according to its
hierarchical structure invariant to translation. The convolutional
neural network structure consists of an input layer, a convolutional
layer, a pooling layer, a fully connected layer and an output layer.
Convolutional neural network has stronger learning ability and feature
expression ability than other methods because of its multi-layer
characteristics (Li et al., 2016; Liang, 2019; Yuanni et al., 2019).
CNN require a smaller sample size for training through the
receptive field and weight sharing, and they can therefore obtain a
relatively ideal neural network with restricted sample sizes (He et al.,
2022). It can be seen that the ability of convolutional neural networks
to learn features and the generalization performance of the limit
learning machine can reduce the amount of computation and

FIGURE 5
Comparison of image spectral curves before and after correction (A), before correction; (B), after correction.

FIGURE 6
Schematic diagram of the construction surface-to-surface correspondence mode.
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achieve good classification accuracy compared with traditional
methods. Moreover, deep learning methods can better solve the
complex relationship between remote sensing images and ground
observation targets than shallow machine learning methods, and can
achieve better remote sensing image recognition and classification
effects, so the use of deep learning methods for remote sensing
quantitative inversion is expected to improve the accuracy of
inversion.

The convolutional neural network model established in this study
(Figure 7) has two pooling layers (pool) and a fully connected layer
(affine), and a dropout layer (Figure 9) is connected behind the fully
connected layer to increase the establishment of the stability of the
convolutional neural networkmodel. The ratio of control neurons in the
dropout layer to remain activated in this study is set to .7. After the
dropout layer, the SoftMax, cross-entropy error (Eq. 1) is output, the
performance of the model is judged according to the error value, and
then it is transferred to the back propagation process. The 4-band
reflectance data of the GF-2 image is used as the independent variable,
in order to increase the number of independent variables, the reflectance
data of the four bands were copied four times to become 16 independent
variables, and then the 16 independent variables were changed into a 4 ×
4matrix, the convolution kernel of the convolutional layer was set to 2 ×
2, and the maximum subsampling method was used for the pooling
layer, and the ratio of training samples to test samples is set to 2: 1. The
convolution kernel of the convolutional layer is set to 2 × 2, the
maximum subsampling method is selected for the pooling layer, and
the ReLU function is selected for the activation layer. The learning rate
of the gradient optimization algorithm is set to .001, the number of
trainings is set to 5,000, and the output layer is 1, that is, the content of
ion adsorption rare earth ore.

L � −1
n
∑

n

i�1log
ew

T
yixi+byi

∑C
j�1e

wT
j xi+bj

(1)

Among them, n is the number of samples; C is the number of
classes; xi is the independent variable of the i-th sample; yi is the
predicted value of each i-th sample; wj and bj are the weight and bias
values of class j.

The implementation of CNN uses the Python programming
language and needs to configure the environment of the pycharm
software. Python is a language that represents the idea of simplicity.
Reading a good Python program feels like reading English. It allows
you to focus on solving problems rather than figuring out the language
itself. Due to its open-source nature, Python has been ported to many
platforms.

A simple test method is used to test the modeling accuracy and
prediction accuracy of the established convolutional neural network
model. In the simple test method, 2/3 of the total sampling samples are
randomly selected for modeling, and the remaining samples are used
for prediction test. Three parameters, R2, RMSE and RPD, are used to
represent the inversion accuracy of the model. In addition, Kriging
interpolation was performed on the rare earth ore content of the
predicted sampling points, and the distribution map of rare earth ore
inversion results in the sampling area was obtained, which was
compared with the geochemical prospecting map to test the
accuracy of the distribution characteristics of the inversion results.

3 Results

3.1 Correlation analysis results

The analysis results (Table 3) showed that the RE2O3 content data
and the spectral data of the second, third, and fourth bands of GF-2
images were significantly correlated, and the correlation was negative.
This shows that the higher the RE2O3 content of the sample, the lower
the spectral reflectance of the image band. The wavelength range of the
b2-b4 band covers 520–890 nm. There are multiple characteristic

FIGURE 7
Schematic diagram of the construction of the convolutional neural network model of ion-adsorbed rare earth ore.
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absorption bands of rare earth elements in this band range. There is a
significant correlation between the total content of rare earth elements
in the sample and the measured hyperspectral in the 560–770 nm
band (Figure 8). Therefore, the correlation between the RE2O3 content
of the sample and the spectral reflectance of the two, three, and four
bands of the GF-2 image is significantly consistent with the spectral
characteristics of rare earth elements previously studied. There is a
significant correlation between the RE2O3 content data of the sample
and the reflectance of the GF-2 image band, so a quantitative inversion
model of the sample RE2O3 content and the reflectance of the GF-2
image band can be established.

3.2 Convolutional neural network modeling
results

After the convolutional neural network is established, the surface-
to-surface corresponding pattern sample set is trained and tested, and
the modeling results and detection results of the convolutional neural
network are obtained. From the comparison chart of the modeling
results of the convolutional neural network (Figure 9A) and the
comparison chart of the detection results (Figure 9B), it can be
seen that the modeling accuracy and inspection accuracy of the
convolutional neural network are high, and the surface-to-surface
corresponds to the pattern sample set. The modeling R2 reached .95,
the RMSE was .003, and the RPD reached 4.65. The test accuracy was
slightly lower than the modeling accuracy (Saeys et al., 2005; Vohland
et al., 2011). The test R2 also reached .91, the RMSE was .005, and the

RPD reached 3.33. According to the standard of the test parameter
index, R2 ≥ .9, RPD ≥ 3, indicating that the established convolutional
neural network model can invert the RE2O3 content of the sample
extremely well. Modeling comparison diagram and inspection
comparison chart. It can be seen that the predicted value of the
RE2O3 content and the measured value fit are well fitted, and the
sample point is distributed around Y = X straight line.

The distribution characteristics of the inversion results in the
sampling area were analyzed using the inversion results of the surface-
to-surface corresponding model sample set. The RE2O3 content of the
samples obtained by the inversion of the convolutional neural network
model was interpolated into the RE2O3 content distribution map of
the sampling area by Kriging interpolation (Figure 10A). There is a
small part of high anomaly area in the middle and the southwest of the
sampling area, and the rare earth ore content is lower in the south and
southwest of the sampling area. Compared with the geochemical
exploration map (Figure 10B) obtained by interpolating the
measured RE2O3 content of the sample, it is found that the content
distribution characteristics of the sample RE2O3 content obtained by
the inversion of the convolutional neural network model are basically
similar to the RE2O3 content distribution characteristics of the
geochemical exploration map. The distribution position of the high
abnormal area in the inversion result of the convolutional neural
network model is the same as the distribution position of the high
abnormal area in the geochemical exploration map, and there is only a
slight difference in the shape. The distribution range in the northwest
is larger than that of the geochemical explorationmap, but the location
is similar, indicating that the established convolutional neural network
inversion model can invert the RE2O3 content of the sample well.

4 Discussion

Firstly, the correlation between the RE2O3 content of the ion-
adsorbed rare earth ore sample and the spectral data of the GF-2
remote sensing image was analyzed by using the Spearman
correlation coefficient. The RE2O3 content of the rare earth ore
sample and the spectral data of the second, third and fourth
wavelengths of the GF-2 remote sensing image were significantly
negatively correlated respectively. The convolutional neural network
model established in Section 3.2 was used to quantitatively invert the
study area, and the content distribution map of ion-adsorbed rare
earth ore in the study area was obtained (Figure 11). From the
distribution map of rare earth ore content, it can be seen that the
content distribution of rare earth ore in the study area is relatively
concentrated. The RE2O3 content is mainly concentrated in
.02%–.04%, and the high anomalous areas of RE2O3 content
(RE2O3 content > .065%) are mainly distributed in two areas,
which are divided into No. I and No. II high anomaly areas.
Other small areas with high RE2O3 content are mainly distributed

TABLE 3 Correlation coefficient between RE2O3 content and GF-2 image band spectrum.

Band number b1 b2 b3 b4

RE2O3 Spearman correlation coefficient −0.100 −0.136** −0.148** −0.136**

Sig. (Bilateral) 0.054 0.008 0.004 0.008

** The correlation is significant at a confidence level (two-sided) of 0.01.

FIGURE 8
Correlation diagram of REEs content in rare earth ore samples and
measured hyperspectral.
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in the villages, town buildings in the study area and the acid
magmatic rock distribution area of the Beisi Formation in the
east of the sampling area. The RE2O3 content in the northern and
southeastern parts of the study area is relatively low, mainly between
.02% and .04%, and the areas with RE2O3 content below .02% are
mainly distributed in the rivers and their vicinity in the study area.

Compared with the remote sensing images of the study area, it can
be seen that the high anomaly area I is distributed in the known
mining area, and the high anomaly distribution position in the area is
relatively consistent with the high anomaly distribution position of the
geochemical map, indicating that the inversion result of this high
anomaly area is precise. The high anomaly area II is distributed on the

FIGURE 9
Convolutional neural network model inversion results comparison diagram of surface-to-surface corresponding pattern sample set (A), comparison
diagram of modeling results; (B), comparison diagram of inspection.

FIGURE 10
Kriging interpolation diagram of RE2O3 content in the sampling area (A), interpolation diagram of convolutional neural network inversion results; (B),
interpolation diagram of measured values.
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exposed area of the acid magmatic rock of the Beisi Formation. The
formation is the same as the formation of the samplingmine, and there
is a fault near the formation, because the rare earth element ions of the
ion adsorption rare earth ore come from the magmatic rock. The rare
earth element ions are the basis for the formation of ion adsorption

rare earth ore, and the fault provides the internal force genesis for the
formation of ion adsorption rare earth ore. Therefore, the magmatic
rock distribution area is the precondition for the formation of ion
adsorption type rare earth ore, and the high anomaly area may be the
former scenic spot of ion adsorption type rare earth mine. The area

FIGURE 11
Convolutional neural network remote sensing inversion results of rare earth ore content in the study area.
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with RE2O3 content in the range of .04‰–.05‰ is mainly distributed
in the river in the western part of the study area, and the content of ion
adsorption rare earth ore in the river is higher than that of the
surrounding area. Because the wastewater generated by the
surrounding mining area will be discharged into the river when
mining ion-adsorbed rare earth ore and leaching rare earth
elements, which leads to an increase in the content of rare earth
ore in the river. It is also the reason why the river environment around
the rare earth mining area is polluted, which shows that the
distribution of rare earth ore content in the river is reasonable.

Other scattered small high anomaly areas are mainly distributed in
villages and towns buildings. This may be because the spectral
reflectance of buildings in the visible light band is similar to the
resolution of ion-adsorbed rare earth minerals, and the convolutional
neural network inversion model cannot distinguish between the two.
The inversion result of RE2O3 content in this area is higher, which is
inconsistent with the actual situation. In addition to these scattered
small areas with high RE2O3 content and two major abnormal areas
with high RE2O3 content, other areas in the study area have lower
RE2O3 content. Compared with the geological map and remote
sensing images of the study area, these areas can also be ruled out
as non-reactive areas. The mining area is also consistent with the
actual situation.

In short, the inversion results of the convolutional neural network
model are not consistent with the actual situation except for some
villages and town buildings, the two main high anomaly areas are in
line with the actual situation, and the distribution of RE2O3 content in
other areas is also in line with the actual situation. Therefore, the
inversion results of the convolutional neural network model are
relatively good, and the buildings in villages and towns can be seen
on the remote sensing images. The false anomaly areas in the study
area can be simply eliminated, so that the potential prospects of rare
earth mines can be circled, indicating the volume of the integrated
neural networkmodel can be applied to prospecting for ion adsorption
rare earth ore.

Finally, there are some shortcomings in this paper:

a) High spatial resolution images help to identify soil information, so
GF-2 remote sensing images were selected for this experiment. In
addition, in order to better identify soil information, it is
recommended to add bands of SAR images (Sentinel-1, for
example) to detect ground minerals at a certain depth.

b) This study only uses the method of convolutional neural networks
for modeling, and does not use other methods for comparison, in
subsequent studies, method comparison can be used as a new
research point.

c) The influence of vegetation cover on the quantitative inversion
results was not considered in this study. The study area belonged to
the subtropical climate with vegetation cover was high all over the
year. The surface information obtained by remote sensing images
would be affected by vegetation, resulting in deviations in the
remote sensing quantitative inversion results of ion-adsorbed rare
earth mines. In future studies, the influence of vegetation cover on
the quantitative inversion results needs to be considered, and the
vegetation index in the remote sensing data is excluded before the
remote sensing quantitative inversion of ion-adsorbed rare earth
ores is carried out.

d) The remote sensing data used in this study are GF-2 images,
which are multispectral remote sensing data, the number of

bands are small, and the spectral range only covers .52–.89 μm.
The spectral range is narrow, and the spectral resolution is also
low, which may lead to the submergence of the spectral band of
rare earth elements and reduce the accuracy of quantitative
inversion. In future studies, high-spectral resolution remote
sensing images should be selected as research data as far as
possible.

5 Conclusion

Generally, this paper investigates Liutang mining area of
Chongzuo City, Guangxi Province as the study area, and uses GF-
2 remote sensing images and geochemical exploration data of the
study area as the research data for quantitative inversion. Secondly,
the surface-to-surface corresponding pattern sample set is
constructed and Spearman correlation analysis is executed, then
the convolutional neural network model is used to execute
quantitative inversion modeling of ion-adsorbed rare earth ore,
and the experiment is performed. Finally, the quantitative
inversion of the content of ion-adsorbed rare earth ore in the
study area was carried out, and the feasibility of quantitative
inversion of ion-adsorbed rare earth ore by remote sensing based
on convolutional neural network method was analyzed. Specifically,
the following conclusions are drawn:

a) After Spearman correlation analysis between rare earth ore content
after constructing the surface-to-surface correspondence pattern
sample set and GF-2 image band reflectance, it was found that the
RE2O3 content of the sample has a significant negative correlation
with the second, third, and fourth bands of the GF-2 image
respectively. Only the correlation with the first band of the GF-
2 image was not significant, therefore, a quantitative inversion
model of RE2O3 content can be established by using the
geochemical RE2O3 content data of the sample and the
reflectance data of the GF-2 image band.

b) Based on the band spectral data of GF-2 images, a convolutional
neural network model was established, and the established model
was tested. It was found that the RPD of the established
convolutional neural network model was above 3.0. It shows
that the established convolutional neural network model can
invert the RE2O3 content very well. The distribution of RE2O3

content in the sampling area obtained by inversion is basically
similar to the distribution characteristics of RE2O3 content in the
geochemical exploration map, indicating that the convolutional
neural network model can be used to invert the RE2O3 content in
the sampling area.

c) Based on GF-2 image data, the established convolutional neural
network model was used to quantitatively invert the content
distribution map of ion-adsorbed rare earth ore in the study area.
It was found that there were two main high anomaly areas in the
study area. The high anomaly area I is a known mining area, and
the high anomaly area II is distributed in the magmatic acid rock
strata of the Beisi Formation, and there are faults nearby, which
can be delineated as a prospective area for ion adsorption rare
earth ore. Comparing the distribution map of the inversion
results of RE2O3 content with the high-definition images in
the study area, it is found that the distribution characteristics
of the inversion results are basically in line with the actual
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situation, indicating that the CNN model-based quantitative
inversion method for ion adsorption rare earth deposits is
feasible.

d) The multi-spectral band range of GF-2 remote sensing images only
covers 450–890 nm, the spectral range is narrow, and some
characteristic absorption band information of rare earth
elements is lost, and the spectral information of some ground
objects in this band range is close and cannot be clearly
distinguished. Therefore, the accuracy of remote sensing
quantitative inversion is reduced to a certain extent. In future
research, remote sensing images with high spectral resolution
should be selected as research data as much as possible.
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