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Areas with vulnerable ecological environments often breed many geological
disasters, especially landslides, which pose a severe threat to the safety of
people’s lives and property in these areas. To aid in landslide prevention and
mitigation, an approach combining the coefficient of determination method (CF)
and a deep neural network (DNN) were proposed in this study for landslide
susceptibility evaluation. The deep neural network can excavate the deep
features of samples and improve the accuracy of the susceptibility model. In
addition, the logistic regression model (LRM) and support vector machine (SVM)
were selected to create landslide susceptibility maps for comparison, which also
involved the coefficient of determination method (CF). Based on landslide remote
sensing interpretation and field investigations, a spatial database of mudstone
landslides in the Xining area was established. Eight different conditional factors,
including the elevation, slope, slope aspect, undulation, curvature, watershed,
distance from a fault, and distance from a road, in the study area were selected
as the evaluation factors to evaluate the susceptibility. The results revealed that four
factors (i.e., the ground elevation, curvature, distance from a fault, and distance from
a road) had relatively significant influences on the landslide susceptibility in the study
area. Finally, the confusion matrix was used to evaluate the accuracy of the results
obtained using the three methods, and the optimal result was selected to evaluate
the landslide susceptibility in the study area. It was found that the combined CF-DNN
method was more suitable for evaluating the landslide susceptibility in this area.
Landslide susceptibility zoning was conducted to divide the study area into four
sensitivity levels: low (32.65%), medium (35.12%), high (22.44%), and extremely high
(9.79%) susceptibility. The high-risk areas were primarily distributed in the high-
elevation areas along the eastern edge of the Huangshui Basin.
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1 Introduction

The term “landslide” refers to the phenomenon in which the soil
and rock mass constituting the slope disintegrates and slips and/or
collapses under the action of gravity Landslides are regarded as one of
the most common types of geological disasters in mountainous areas
(Confuorto et al., 2019). They are characterized by wide distribution,
high frequency of occurrence, strong concealment, and a large degree
of destruction, and thus, they often have catastrophic consequences
and pose a huge threat to people’s lives and property, as well as social
and economic development (Lin et al., 2008; Wang et al., 2018). Since
the middle of the 20th century, with the increasing population and the
increasing scope of human engineering activities, more and more
landslides have been induced, especially in the Xining area in Qinghai
Province. Xining City is one of the areas with the most vulnerable
ecological environment in China, located in the transition zone
between the western side of the Loess Plateau and the Qinghai-
Tibet Plateau. The geological environment in this region is very
complex, consisting of undulating terrain, multi-periodic tectonic
movements, complex geological structures, weak formation
lithology, strong river erosion, leading to a high risk of landslides.
With the continuous development of economic construction in
Xining, human engineering activities have intensified.
Consequently, more and more geological disasters have been
induced, especially landslides, seriously threatening people’s lives
and property in this area. For example, the Zhangjiawan Brick
Factory landslide in 1960 (Bai et al., 2021; Peng et al., 2021), which
had a volume of about 2.2 × 107 m3, the Beishansi landslide in 2001
(Yao et al., 2014), which had a volume of about 1.38 × 106 m3, and the
Hanzhuang community landslide in 2011, which had a volume of
about 7.326 × 106 m3, were larger mudstone landslides that have
occurred in this area. According to a geological survey conducted
by the staff of the Qinghai Provincial Geological Environment
Monitoring Station, mudstone landslides accounted for 78% of the
total number of landslides investigated in the study area. The
occurrence of landslides in this area is greatly related to the poor
permeability of the mudstone, that is, when water collects in the slope
is affected by the water resistance of the mudstone, eventually forming
a soft slip zone. The deformation mechanisms and formation
mechanisms of mudstone landslides in Xining have been
investigated in previous studies (Xin et al., 2015). However, the
distribution characteristics of mudstone landslides in Xining City
have rarely been studied. Assessing the susceptibility of the study
area to mudstone landslides is beneficial to providing strong support
for the prediction and control of mudstone landslides.

Landslide susceptibility assessment is the basis of landslide risk
assessment, which refers to the possibility of landslide occurrence
caused by a combination of multiple influencing factors in a specific
area (Brabb, 1984). In earlier studies, scholars mainly relied on
empirical methods to qualitatively determine landslide
susceptibility, such as the analytic hierarchy process (AHP), and
fuzzy mathematics (Al-Harbi, 2001; Rozos et al., 2011; Giovanni
et al., 2016). For small areas, the method of synthesizing the
descriptions provided by experts has a certain reference value for
landslide susceptibility rating; however, for large areas, such methods
are subjective due to manual determination, which leads to the
possibility of large errors in the results. In later studies, scholars
began to use statistical methods to analyze and assess landslide
susceptibility, such as the information model (IM), certainty

coefficient method (CF), frequency ratio model (FR), and weight of
evidence method (WEM) (Pradhan and Lee, 2010; Liu et al., 2014;
Pourghasemi et al., 2014; Xu et al., 2016; Dai et al., 2017). Statistical
methods have become one of several methods that are commonly used
at present. Although the use of such quantitative methods avoids the
disadvantages of the subjective judgment of the previous empirical
experts, there are still great limitations in the prediction and evaluation
of regional landslides using many evaluation indicators and the
statistics of a large dataset. Therefore, with the continuous
development of machine learning methods, more and more
scholars have begun to use machine learning methods to assess
landslide susceptibility, such as the logistic regression model
(LRM), decision tree model (DTM), random forest model (RFM),
support vector machine (SVM), naive bayes model (NBM), artificial
neural networks (ANNs), and other methods (Bui et al., 2016; Hong
et al., 2016; Wang et al., 2016; Chen et al., 2017; Le et al., 2017; Shirzadi
et al., 2017; Chen et al., 2018; Sahin et al., 2018; Dou et al., 2019; Hong
et al., 2019; Shariati et al., 2019; Nhu et al., 2020). However, the above
models all belong to the category of shallow neural networks. When
the landslide susceptibility assessment process involves diverse and
interrelated evaluation factors, it is often impossible to explore the
relationship between the factors to achieve more accurate results
(Wang et al., 2019). Therefore, in recent years, the use of deep
learning methods to extract landslide factors and characteristic
information about landslides has become one of the important
directions in landslide disaster research (Zheng, 2019). The
structure of the deep neural network model (DNN) has more
layers, leading to stronger learning ability and a stronger ability to
express the characteristics of objects. When faced with a large amount
of data, it has a higher recognition and evaluation accuracy. For
example, training a large number of geological disaster data samples
through a deep neural network model (DNN) improves the accuracy
of geological disaster risk prediction and early warning (Li et al., 2018).
In this study, the unified sample is compared with different models to
prove that the deep neural network can still improve the accuracy in
small samples.

Therefore, in this study, the DNN model was introduced into
the susceptibility modeling of mudstone landslides in Xining City.
In addition, based on the quantification of the sensitive factors and
their correlations with the occurrence of landslides, scholars have
often used two methods or even multiple methods and models
coupled to reflect the characteristics of the study area. For example,
Fan et al. (2017) used a combination of deterministic factors (CF)
and the analytic hierarchy process (AHP) (Fan et al., 2017), Li et al.
(2018) used the coefficient of determination (CF) method coupled
with support vector machines (SVMs) (Luo et al., 2021), and Luo
et al. (2021) coupled the CF and logistic regression model (LRM)
with geographic information system (GIS) support (Akgun, 2012).
All of the above studies proved that the evaluation results of
coupled models are more reasonable than those of a single
model. Among them, the deterministic coefficient method, as a
bivariate statistical method, can be used to determine the weight of
each conditional factor of the landslide to analyze the correlation
between each factor and the occurrence of the landslide. Therefore,
in this study, a coupled CF-DNN method was developed to analyze
the mudstone landslides in Xining City. Given that the accuracy
and reliability of logistic regression models and support vector
machine models have been verified in previous studies (Akgun,
2012; Li et al., 2018; Luo et al., 2021), in this study, the LRM and
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SVM were reasonably used as the reference models of the DNN,
which was combined with the deterministic coefficient
method (CF).

In this study, 1) a landslide database was constructed based on
original landslide-related data obtained from landslide remote sensing
interpretation and field investigations; 2) based on eight condition
factors, a landslide inventory map was created and combined with the
deterministic factor results to analyze the main impacts of the
landslides factors; 3) a mudstone landslide susceptibility map of
Xining was created using the ArcGIS software platform; and 4) the
confusion matrix was used to evaluate the accuracy of the CF-DNN
model.

2 Study area and data

In this study, Xining City, Qinghai Province, China, was taken as
the study area (101°33′45″–101°56′15″E, 28°49′–29°31′N; Figure 1A).
The Xining Basin is located in the northeastern part of the Qinghai-
Tibet Plateau. Under the superposition of multi-stage tectonic
movements, fold and fault structures have formed. The fold
structure is mainly dominated by the regional Huangshui anticline
(Figure 2). The fault structure is generally characterized by superficial
tension. The formation and evolution of the regional landscape
pattern are strictly controlled by the dominant NW-NWW
trending tectonic system. Under the coupling of multi-factor
mechanisms, the study area was finally shaped into the current
erosion structure, with low hills and an erosion deposit valley plain
(Figure 1B). The low hills of the erosion structure are distributed above
the third-level terraces at the edges of the valleys of the Huangshui
River and its tributaries. The hilly area covers 218.76 m2, accounting
for 54.63% of the total area. Due to the strong erosion of the gullies, the
terrain is very fragmented. The elevation of the hilly area is
2,450–3,500 m, and the relative height difference is 100–500 m. On

FIGURE 1
Outline of the geomorphic types in the study area.

FIGURE 2
Fault distribution map of Xining Basin.
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the front edge of low mountains and hills, there are high and steep
terrace (grades III to VII) slopes with heights of 100–300 m, and
landslides are relatively more developed on these slopes. The erosion
deposit valley plain is the urban area of Xining, with an area of
181.65 m2, accounting for 45.37% of the study area. The terrain of the
river valley area is relatively broad and is distributed in bands along the
river. The terrain is high in the west and low in the east, and the terrace
surface is slightly inclined toward the riverbed. The elevation is
2,200–2,450 m.

The exposed strata in the study area are relatively complex,
including pre-Quaternary strata and Quaternary strata. The pre-
Quaternary strata include the Changcheng system, Cretaceous

strata, and Tertiary strata, among which the Tertiary strata are the
most exposed and are mainly composed of mudstone. Most of the
exposed mudstone has a low strength, high degree of weathering, and
poor permeability. When the water collects on the slope surface, the
slope material becomes saturated due to its own water-blocking
properties, making it easy for a weak sliding zone to form. A
mudstone with a high degree of weathering can easily become the
source of potential landslides. Thus, in this paper, the mudstone area
in Xining was selected as the target research area. In terms of
meteorology and hydrology, the study area has a plateau semi-arid
continental climate, with a long winter and short summer, a large
temperature difference, sparse but concentrated rainfall, and strong

FIGURE 3
Workflow of the landslide susceptibility assessment conducted in this study.

Frontiers in Earth Science frontiersin.org04

Ma et al. 10.3389/feart.2022.1091560

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1091560


evaporation. The Huangshui Basin is the main river basin in the study
area. The Huangshui River is a first-class tributary of the Yellow River,
which flows through the urban area from west to east. The river length
in the study area is 35 km. The annual average flow at Xining
Hydrological Station is 32.8 m3/s, the annual average minimum
flow is 4.58 m3/s, and the maximum flow is 698 m3/s.

The unique tectonic, landform, lithology, meteorology, and
hydrology of this area have resulted in the occurrence of a variety
of disasters, and various adverse geological phenomena induced by
external dynamic geological action are very prominent. Currently,
according to the field investigation results reported by the staff of the
Qinghai Provincial Geological Environmental Monitoring Station, a
total of 294 landslide hidden danger points have been investigated,
including 184 mudstone landslides, accounting for 62.58% of the total
landslide hidden danger points investigated. Based on a GIS platform,
five terrain factors (i.e., the elevation, slope, land relief, aspect, and
curvature) and three geological factors (distance from a road, distance
from a fault, and distance from a river) were selected. Topographic
factors can be extracted from DEM data which is derived from the
open geospatial data cloud platform. Geological factors are derived
from the geological map provided by Qinghai Provincial Geological
Environment Monitoring Station.

3 Methods

The basic workflow of the landslide susceptibility assessment
conducted in this study is presented in Figure 3.

In this section, we mainly describe the methods involved in the
landslide susceptibility assessment process. In this study, three
different machine learning models (i.e., a logistic regression model,
support vector machine, and deep neural network) were coupled with
the certainty coefficient method. The data for the eight conditional
factors were processed using a GIS platform. The certainty coefficient
(CF) was calculated from the processed data. Then, the certainty factor
was used to analyze the correlation between each condition factor and
landslide. This information was then plotted on the landslide
inventory map, which was convenient for the subsequent modeling
of the landslide susceptibility model using Python.

3.1 Preparation of the dataset for modeling

The mudstone landslide-related data for Xining City were
collected from historical data, field investigation data, and remote
sensing interpretation data. A total of 184 mudstone landslides have
been identified in the study area. According to the coordinates of the
study area, these landslides were marked as points on the 1:
10,000terrain map of the area, and these points are considered to
be the location of the geometric center of the slide. Based on the
landslide data and 30 m DEM data, a preliminary landslide inventory
map containing 184 landslides was generated, these landslides are all
mudstone landslides. In addition, using a GIS platform, eight graded
maps of the landslide condition factors were compiled in a grid format.
The number of pixels of all of the factors for each classification in the
reclassified grid data was counted. After conversion to vector data,
each classification was connected to the space to count the number of
landslides within the classification. The CF value was calculated using
the number of statistical pixels and the number of landslides. The

obtained CF values were assigned in the vector layers of each factor.
Before the modeling, based on the statistics of landslide scale in the
study area, a circular buffer was built on the landslide point with a
radius of 300 m, and non-landslide points were randomly generated
outside the buffer to generate non-landslide samples equal to the
number of landslide samples. The landslide and non-landslide sample
points were coded as one and zero. After merging, a total of
368 samples were generated, which were randomly divided into
training samples (70%) and validation samples (30%). The final
dataset included a landslide inventory map, a hierarchical map of
the landslide condition factors with CF values, and landslide and non-
landslide samples.

3.2 Model

3.2.1 Logistic regression model
The logistic regression model (LRM) is a commonly used machine

learning model for the binary classification of a dependent variable. In
this paper, the relationship between the occurrence of landslides (the
dependent variable) and multiple hazard factors is described (Menard,
1995; Atkinson and Massari, 1998). The independent variable in this
model can be continuous or discrete, and it does not need to satisfy a
normal frequency distribution (Bai et al., 2015; Wang et al., 2015). The
expression of the logistic regression core function is

P � 1/ 1 + e α+β1x1 +...+ βixi( )[ ] (1)

where P is the probability of landslide occurrence (0–1); α is a constant
calculated via logistic regression; β is the regression coefficient
calculated via logistic regression; and i is the number of evaluation
factor types. By taking the natural logarithm of both sides of Eq. 1,
In(p/(1 − p)) as the dependent variable, and the impact factor x(i �
1, 2, ....n) as the independent variable, we obtain.

In P/ 1 − P( )( ) � α + β1x1 + β2x2... + βnxn � α + βx (2)

3.2.2 Support vector machine model
The support vector machine is a binary classification prediction

model developed based on statistical principles (Vapnik, 1998; Abe,
2010), which is similar to a neural network but differs in that the SVM
usesmathematical methods and optimization techniques. SVMs include
linear support vectormachines and non-linear support vectormachines.
In the case of linear separability, an optimal classification function is
obtained by transforming a constrained extreme value problem into a
dual problem. The binary classification prediction problem of landslide
susceptibility zoning is often non-linear; thus, it is necessary to map the
original data to a high-dimensional feature space and make it linearly
separable to identify the optimal classification plane (Brenning, 2005).
That is, the optimal classification plane is the plane that maximizes the
separation of the data points belonging to two different classes. The core
principle of identifying this plane is to introduce the corresponding
kernel function after transforming it into a dual problem (Yao et al.,
2008), which solves the problem of the increased complexity caused by
mapping to a high-dimensional space. At present, the most commonly
used kernel functions include the linear kernel function, polynomial
function, radial basis function (RBF), and Sigmoid function. However,
there is a certain error in the sample after the kernel function is
determined. For outliers that do not meet the constraints, the slack
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variable εi and penalty factor c are introduced for optimization. The εi
value actually represents the outlier distance of the corresponding point.
The larger the value is, the farther away the point is, and εi is equal to
zero for non-outlier points. The penalty factor refers to the tolerance of
the error, which must be determined in advance. The larger the value is,
the greater the loss of the objective function, which easily leads to
overfitting. Conversely, the smaller the value is, the easier it is for
underfitting to occur.

The calculation process of SVM is based on a set of linearly
inseparable landslide data xi ( xi ∈ Rd ), where i is the number of
samples, d is the dimension, yi is the corresponding output data, and
yi ∈ −1, 1{ } , which means the output results represent landslide and
non-landslide points. The original data are mapped to a certain feature
space through non-linear mapping φ(x) and distinguishing landslide
categories using the maximum interval ‖ω‖2/2 in the hyperplane
equation ω · φ(x) + b � 0 . That is, ‖ω‖2 needs to be the minimum
value, and the following constraints must be satisfied:

yi ω · xi + b( )≥ 1 − εi εi ≥ 0( ) (3)
While solving the hyperplane, the slack variables should be as

small as possible, so the problem is transformed into a quadratic
programming problem of finding the minimum value of ‖ω‖2/2 +
c(∑

i�1 εi) under the constraints. The kernel function K(xi, yi) is
introduced to obtain the classification function by solving.

f x( ) � sgn ∑n

i�1aiyi · K xi, yi( ) + b{ } (4)

3.2.3 Deep neural network mode
A complete neural network consists of an input layer, a hidden layer,

and an output layer. Each layer is built on multiple neurons. Each neuron
can be regarded as a simple linear function, and the neurons on adjacent
layers are combined in a densely connectedmanner. The difference is that a
deep neural network hasmultiple hidden layers, and there is no connection
within the same layer (between hidden layers). The propagation process of
the DNN is divided into forward propagation composed of an input layer-
hidden layer-output layer and backward propagation composed of a loss
function optimizer. A schematic diagram of the DNN is shown in Figure 4.

Forward propagation refers to the calculation and recognition
process of the original data starting from the input layer, through the

hidden layer calculation, finally reaching the output layer, and
outputting the result from the output layer. When sample X is
input, the DNN automatically assigns the initial value to the
weight matrix W, and it continues the calculations in the hidden
layer according to Eqs 5–7 until the result y can be output in the output
layer.

Z i( ) � W i( )X + b i( ) (5)
a i( ) � f Z i( )( ) (6)

y � W i( )a i−1( ) + b i( ) (7)
where X is the input sample, denoted as (x1, x2, ..., xn) , and n is
characterized number. Z is the output result, denoted as
(Z(i)

1 ,Z(i)
2 , ...,Z(i)

m ) , where i is the number of hidden layers, and m is
the number of neurons in the next layer. W is the weight matrix; b is a
constant term; and a is the input value of the next layer of the network, that
is, substitute it into X in Eq. 5 and continue to calculate forward. f is the
activation function, the purpose of which is to convert linear to non-linear
after each layer of network calculation is completed to improve the
recognition rate, and the Sigmoid function, Tanh function, and rectified
linear unit (ReLu) function are commonly used.

The output result y is the predicted value, and there is a
significant difference between it and the real value Y. Obtaining
the correct W and b is the key factor affecting the output result.
The essence of backpropagation is to calculate the difference
between the predicted value and the true value according to
the loss function to reversely adjust the parameters W and b
and select a suitable optimizer to update the parameters. The
essence of the neural network is to obtain values of the parameters
W and b with higher accuracy through multiple forward and
reverse circular training to obtain the final optimized model. For
the classification problem of landslide susceptibility zoning, the
loss function adopted is generally the cross entropy function, and
optimizer methods such as the gradient descent and Adam
method can be used.

3.2.4 Certainty coefficient method
The certainty coefficient method, proposed by Shortliff (1975),

was used in this study to analyze the correlation between each

FIGURE 4
Schematic diagram of the DNN.
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condition factor and the occurrence of landslides (Shortliffe and
Buchanan, 1975). Although the evaluation process of the certainty
coefficient model is relatively simple, the accuracy is high. The premise
of the high accuracy is that the geological disasters that have occurred
and the disasters that occur in the future occur under the same
geological conditions. The calculation formula is as follows:

CF �
PPa − PPs

PPa 1 − PPs( ),PPa ≥PPs

PPa − PPs

PPs 1 − PPa( ),PPa <PPs

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(8)

where PPa is the conditional probability of landslides in impact factor
classification a, which is expressed as the ratio of the landslide points in
classification a to the classification area; and PPs is the probability of
historical landslides in the entire study area, which is expressed as the
ratio of historical landslide points to the total area of the study area.

TheCF ranges from −1 to 1.When theCF values are between zero
and 1, landslides are prone to occur in this geological environment.
The closer the CF value is to 1, the more sensitive the unit is to
landslides. In contrast, when the CF value is between −1 and zero,
landslides are unlikely to occur in this geological environment.

The data mentioned in the formula are all derived from the data in
the conditional factor grading diagram, including the number of
landslides included in each grading, the number of landslide pixels,
the total number of landslides and the total number of grids. cf values
calculated according to the formula will be assigned to the attribute
table of each conditional factor grading diagram.

3.3 Factor multicollinearity diagnostics

Multicollinearity refers to the linear correlation between independent
variables. If multicollinearity exists, the matrix is irreversible when
calculating the partial regression coefficient of the independent
variable. The results of variance analysis of the whole model are
inconsistent with the test results of regression coefficients of each
independent variable. In this study, a variety of different models were
used for sensitivity analysis. Here, the variance inflation factor diagnostic
method and tolerance value method were combined to determine
whether the selected factors could be fully incorporated into the model.

Variance inflation factor (VIF) is a measure of the severity of
multicollinearity in a multiple linear regression model. It represents the
ratio of the variance of the estimator of the regression coefficient to the
variance when the independent variables are assumed to be not linearly
correlated. When VIF is large, it indicates that there is multicollinearity
between the independent variables. This diagnostic method also has the
problem that the threshold value is not easy to determine, so it needs to be
considered in combination with the tolerance value method. The tolerance
value is actually the inverse of VIF. Its value ranges from 0 to 1. The closer
Tol is to 1, the weaker the collinearity between independent variables is,
indicating that the factor can be completely entered into themodel through
multiple collinearity diagnosis.

3.4 Accuracy evaluation method

There are various methods for evaluating the accuracy of landslide
susceptibility results. In this study, the confusion matrix was chosen as

the method for evaluating the model’s accuracy. The confusion matrix
is an effective tool in machine learning for evaluating the accuracy of
each iteration of the model, that is, it can be used to evaluate the
performance of a classification model based on a set of test data with
known true values. For a binary classification problem such as
landslide versus non-landslide, when judging samples, zero is used
to represent landslide, and one is used to represent non-landslide. In
the early stage, we know which data are landslide and non-landslide
data in the real situation through sample collection, and thus, we know
the predicted value of the data through the results of the sample data
output by the classificationmodel. Therefore, four first-level indicators
TP, TN, FP, and FN are formed according to the combination of the
actual values of one and zero and the predicted values of one and zero
(Figure 5).

For a predictive scoring model, the higher the TP and TN values
are, and the lower the FP and FN values are, the higher the model
accuracy is. When using a large amount of data, it is difficult to
measure the reliability based only on the first-level basic indicators.
Therefore, four indicators (ACC, PPV, TPR, and TNR) are added to
the results of the basic statistical data of the confusion matrix. These
indicators are calculated as follows:

ACC � TP + TN
TP + TN + FP + FN

(9)

PPV � TP
TP + FP

(10)

TPR � TP
TP + FN

(11)

TNR � TN
TN + FP

(12)

whereACC is the accuracy rate, which refers to the proportion of all of
the results that are judged to be correct by the classification model
compared to the total observations; PPV is the positive predictive

FIGURE 5
Diagram of the confusion matrix.
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value, which refers to the proportion of all of the results with a
predicted value of landslide that the model predicts correctly; TPR is
the true positive rate, which refers to the proportion of all of the result
with a true value of landslide that the model predicts correctly; and

TNR is the true negative rate, which refers to the proportion of all of
the result with a true value of non-landslide that the model predicts
correctly. The larger the values of these four secondary indicators are,
the better the results of the model are.

FIGURE 6
Grading maps of the evaluation factors for landslide susceptibility assessment in Xining City:(A) Elevation; (B) Slope; (C) Land relief; (D) Aspect; (E)
Curvature; (F) Distance from a river; (G) Distance from a fault; and (H) Distance from a road.
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TABLE 1 Grading of factors and CF values.

Evaluation factor Elevation (m)

Grading 2,110–2,242 2,242–2,301 2,301–2,361 2,361–2,427 2,427–2,499 2,499–2,576 2,576–2,659 2,659–2,812

Landslide proportion 10.32 19.02 10.32 15.21 23.91 7.07 8.15 5.98

Grading area ratio 11.54 20.29 16.29 15.67 12.59 10.03 8.98 4.60

CF -0.1053 -0.0627 -0.3662 -0.0292 0.4737 -0.2955 -0.0921 0.2299

Evaluation factor Slope (°)

Grading Flat North Northeast East Southeast South Southwest West Northwest North

Landslide proportion 0 2.17 14.67 11.96 8.70 13.59 12.50 20.65 8.70 5.98

Grading area ratio 0.17 6.77 14.80 15.03 13.00 12.67 11.73 11.19 9.77 4.87

CF -1 -0.6752 0.0021 -0.1959 -0.3239 0.0780 0.0718 0.4641 -0.1001 0.1951

Evaluation factor Land relief (m)

Grading 0–18 18–34 34–50 50–66 66–83 83–102 102–130 130–195

Landslide proportion 18.48 15.22 11.96 11.41 16.3 11.96 9.78 4.89

Grading area ratio 30.89 19.11 14.25 13.77 10.33 6.77 3.79 1.1

CF -0.675 -0.5672 -0.5442 -0.5496 -0.1657 -0.0412 0.2871 0.5866

Evaluation factor Aspect (°)

Grading 0–4.21 4.21–8.68 8.68–13.39 13.39–18.10 18.10–22.81 22.81–28.01 28.01–34.71 34.71–63.2

Landslide pproportion 21.20 13.59 10.87 9.78 16.30 13.04 10.87 3.26

Grading area ratio 27.36 23.59 15.63 12.96 9.63 6.27 3.42 1.14

CF -0.5743 -0.6836 -0.618 -0.5856 -0.0756 0.1253 0.4283 0.3645

Evaluation factor Curvature

Grading -6.67–-2.04 2.04–-1.01 -1.01–-0.45 -0.45–-0.14 -0.14–0.17 0.17–0.53 0.53–1.20 1.20–6.45

Landslide proportion 1.09 1.63 8.7 23.37 32.07 23.37 7.61 2.17

Grading area ratio 0.13 1.25 7.28 21.55 39.46 21.36 8.09 0.89

CF 0.7872 -0.4078 -0.5392 -0.6972 -0.5584 -0.6823 -0.4888 0.2477

Evaluation factor Distance from a river (m)

Grading 0–200 200–400 400–600 600–800 800–1,000 1,000–1,200 1,200–1,400 1,400–6,390

Landslide proportion 1.09 1.09 4.89 10.87 10.33 13.59 7.61 50.54

Grading area ratio 6.29 7.62 6.22 6.52 6.13 5.2 4.9 57.12

CF -0.8279 -0.8580 0.2144 0.4022 0.4086 0.6203 0.3585 -0.1157

Evaluation factor Distance from a fault (m)

Grading 0–1,000 1,000–2000 2000–3,000 3,000–4,000 4,000–5,000 5,000–6,000 6,000–7,000 7,000–1

Landslide proportion 45.65 17.39 14.13 9.24 7.07 3.26 1.09 2.17

Grading area ratio 25.02 20.9 17.53 14.62 8.9 5.33 3.17 4.54

CF 0.4544 0.1686 0.1948 0.3694 0.2067 0.3889 -1.923 0.5227

Evaluation factor Distance from a road (m)

Grading 0–500 500–1,000 1,000–1,500 1,500–2000 2000–2,500 2,500–3,000 3,000–3,500 3,500–

Landslide proportion 34.24 40.76 13.04 6.52 2.72 2.17 0.54 0

Grading area ratio 55.52 16.05 9.37 7.39 5.11 3.28 1.88 1.4

CF 0.3846 0.6095 0.2833 -0.1178 -0.4696 -0.3388 -0.7125 -1
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4 Results and discussion

4.1 Impact factor analysis

Based on the original landslide-related data obtained from
landslide remote sensing interpretation and field investigations,
eight condition factors, including elevation, slope, land relief,
aspect, curvature, distance from a river, distance from a fault, and
distance from a road, were determined. Using a GIS platform, the data
for these eight conditional factors were used to create a graded map of
landslide susceptibility evaluation factors (Figure 6), which was
combined with the deterministic factor results (Table 1) to analyze
the influence of each factor on the occurrence of landslides. All of these
eight factors have passed the multicollinearity diagnosis and can be
completely entered into different models. See Table 2 for details.

4.1.1 Elevation
The elevation reflects the land changes to a certain extent and is an

important factor affecting the stress value of the slope. Based on the
DEM data, in this study, the natural discontinuity method was used to
divide the elevation. The natural break method considers variation in
groups of LSI values by calculating the minimum sum of variance of
different groups for the optimal classification of LSI values and can be
conveniently applied in ArcGIS software. In this method, statistical
principle is considered to avoid subjectivity in obtaining susceptibility
zonation. Combined with the chart, we can see that the terrain of the
Xining urban area is relatively flat and broad and distributed in a band
along the valley. The terrain is high in the west and low in the east. The
terrace surface slopes slightly towards the riverbed. The altitude is
higher farther away from the urban area, and this is also the main
distribution area of landslides.

4.1.2 Slope
The slope represents the steepness of the surface. The size of the

slope not only affects the stress distribution inside the slope but also
controls the surface runoff, groundwater recharge, and rainfall
infiltration. In this study, based on the DEM data, the slope
analysis function in ArcGIS based on the gridded surface was used
to analyze the slope in the study area. Combined with the chart, we can
see that the landslides are mainly distributed in the slope range of
28.01°–63.2°. The greater the slope is, the greater the probability of
landslide occurrence when the slope is affected by adverse external
environmental factors.

4.1.3 Land relief
The land relief factor represents the difference between the highest

point and the lowest point in a certain area. The greater the land relief
is, the greater the possibility of landslide occurrence. Based on the
DEM data, in this study, the block statistics and raster calculator
functions in ArcGIS were used to analyze the land relief in the study
area Combined with the chart, we can see that the area most prone to
landslides is mainly distributed in the land relief range of 102–195 m,
and the area with this land relief range accounts for 4.89% of the total
area of the study area, including 14.67% of the landslide area. The CF
value becomes closer to one as the land relief increases, which is
consistent with the principle that landslides are prone to occur in areas
with a large land relief.

4.1.4 Aspect
Different slopes receive different sunshine hours and solar

radiation intensity. This leads to differences in the soil moisture
content and weathering degree on the slope, which ultimately
affects the stability of the slope. Based on the DEM data, in this
study, the aspect analysis function of the grid surface in ArcGIS was
used to analyze the slope aspect in the area. Combined with the chart,
we can see that the slopes most prone to landslides mainly had due
west aspects (247.5°–292.5°), accounting for 11.19% of the study area,
including 20.65% of the landslide area. As can be seen from the CF
values, in the study area, the slopes with aspects ranging from the
south to west (sunny slope) were more susceptible to landslides. This is
related to the higher degree of weathering of the rock and soil mass due
to prolonged exposure to sunlight.

4.1.5 Curvature
The curvature represents the degree of deformation of a point on

the surface of the slope. A positive value indicates a convex slope, a
negative value indicates a concave slope, and a value of zero or close to
zero indicates a relatively flat slope. Based on the DEM data, in this
study, the curvature analysis function of the ArcGIS grid surface was
used to analyze the curvature of the area. Combined with the chart, we
can see that the areas most prone to landslides mainly have curvatures
of −6.67 to −2.04 and 1.2–6.45 m−1, and the area with this curvature
accounts for 1.02% of the study area, including 3.26% of the landslide
area. The closer the curvature is to zero, the closer the CF value is to −1,
indicating that the greater the curvature of the slope is, the greater the
probability of landslide occurrence.

4.1.6 Distance from a river
Different degrees of scouring and erosion on both sides of the river

lead to instability of the slope foot, which eventually induces
landslides. Based on the geological map data, in this study, the
Euclidean distance function in ArcGIS was used to analyze the

TABLE 2 The factor multicollinearity diagnostics.

Variable TOL VIF

Elevation 0.919,236 1.087859

Slope 0.955,998 1.046027

Land relief 0.482,606 2.072085

Aspect 0.903,503 1.106,803

Curvature 0.435,019 2.298,749

Distance from a river 0.943,796 1.059551

Distance from a fault 0.895,788 1.116,335

Distance from a road 0.952,347 1.050038

TABLE 3 Secondary index values of each model in the confusion matrix.

LRM SVM DNN Best result

ACC 0.7368 0.7456 0.7719 DNN

PPV 0.8245 0.7719 0.8701 DNN

TPR 0.7014 0.7333 0.7541 DNN

TNR 0.7872 0.7592 0.7924 DNN
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water system in the study area, and the distance from a river was
divided into eight grades with 200 m intervals (Table 3). Combined
with the chart, we can see that the areas most prone to landslides are
mainly distributed in the range of 1,000–1,200 m. The area within this
range accounts for 5.2% of the total area of the study area, including
13.59% of the landslide area. Based on the CF values, the 400–1,400 m
area is prone to the occurrence of landslides.

4.1.7 Distance from a fault
The regional fault structure plays a controlling role in the

development of joints and fissures in the geological bodies. Based
on the geological map data, in this study, the Euclidean distance
function in ArcGIS was used to perform fault analysis in the study
area, and the distance from a fault was divided into eight grades with
1,000 m intervals (Table 1). Combined with the chart, we can see that
the areas most prone to landslides are mainly distributed in the range
of up to 1,000 m. The area within this range accounts for 25.02% of the
total area of the study area, including 45.65% of the landslides. It can
be seen that the fault factor has a great influence on landslide
susceptibility. As the distance from a fault increased, the
proportion of landslides and the CF value gradually decrease,
indicating that the more fragmented the rock mass is, the more
prone to landslides it is.

4.1.8 Distance from a road
The large-scale cutting and excavation of roads in urban areas has

changed the stress state of the cut slopes and aggravated the
occurrence of landslides. Based on the geological map data, in this

study, the Euclidean distance function in ArcGIS was used to analyze
the roads in the study area, and the distance from a road was divided
into eight grades with 500 m intervals (Table 1). Combined with the
chart, we can see that the areas most prone to landslides are mainly
distributed in the range of 500–1,000 m. The area within this range
accounts for 16.05% of the total area of the study area, including
40.76% of the landslide area. As the distance from a road increases, the
landslide proportion and CF value gradually decrease, indicating that
human activities such as road construction have a certain impact on
the development of landslides.

4.2 Model accuracy evaluation and
verification

After grading and quantifying each evaluation factor and using
the certainty coefficient model to calculate the CF value of each
grading index, the logistic regression model (LR), the support
vector machine model (SVM), and the deep neural network
model (DNN) were used for the coupled calculations. The
evaluation results are presented in Figure 7. In the verification,
70% of the 368 landslide and non-landslide samples were used as
training samples for the model calculation, and 30% were used as
test samples. The confusion matrix was used to compare the results
of the above three models, and the reliability was verified. The
results are presented in Table 2.

It can be seen from the comprehensive results presented in Table 2
that the ACC, PPV,TPR, and TNR of the deep neural network are

FIGURE 7
The results of the susceptibility evaluation of the coupled model: (A) Support vector machine model susceptibility zoning; (B)the logistic regression
model susceptibility zoning; (C) Deep learning susceptibility zoning.
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greater than those of the other two models, so it is the optimal model
among the three models. This study proves that the model accuracy of
deep neural network in small samples is still improved. Of course, for
small samples, the improved accuracy is smaller than that of large
samples.

4.3 Sensitivity analysis

The principles of the three models were outlined in Section 3,
and their algorithms can all be implemented using Python. First, the
model was constructed using the training dataset, and then, the
prediction ability of the trained model was tested using the validation
dataset. In addition, the trained model was applied to calculate the
landslide sensitivity index (LMI) for each raster layer in the study
area. Theoretically, the LSI ranges from zero to 1, reflecting the
probability of landslide occurrence. In this case, the LSI values
calculated using the three models did not reach the breakpoint
value. The LSI values calculated using the SVM model ranged
from zero to 0.993, the LSI values calculated using the LR model
ranged from zero to 0.595, and the LSI values calculated using the
DNN model ranged from 0.146 to 0.853. To avoid subjectivity in
obtaining the sensitivity partitions, the most widely used Jenks
natural discontinuity method was used in this study to classify
the landslide sensitivity categories as extremely high, high,
medium, and low (Figure 7).

The results presented in Section 4.2 show that the DNN
produced the optimal results for this study area, so the
sensitivity analysis was carried out based on the evaluation
results of this model. According to the landslide sensitivity
zoning map obtained using the CF-DNN (Figure 7C), 32.1% of
the study area had an extremely high and high landslide
susceptibility, with 124 landslides in these areas. The extremely
high and high susceptibility areas were mainly distributed in the
higher elevation areas along the eastern edge of the Huangshui
watershed, which is in good agreement with the landslide

distribution observed in the field. In addition, the areas with
moderate susceptibility accounted for about 35.1% of the study
area and included 25% of the landslide area. The low susceptibility
area accounted for 32.6% of the study area and 8.7% of the
landslide area. The low and medium sensitivity zones
accounted for a large proportion of the area and were mainly
distributed within the urban area of Xining City. Figure 8 presents
a comparison of the model results.

5 Conclusion

In this study, based on remote sensing interpretation and field
investigations, eight evaluation factors were selected: elevation,
slope, land relief, aspect, curvature, distance from a river, distance
from a fault, and distance from a road. According to the landslide
susceptibility assessment factor classification map of these eight
condition factors and the certainty factor results, the influence of
each factor on the occurrence of landslides in the study area was
analyzed. The results showed that four factors—elevation,
curvature, distance from a fault, and distance from a road—had
relatively significant influences on the landslide susceptibility in the
study area.

The certainty coefficient method was used to couple the logistic
regression, support vector machine, and deep neural network models,
and the confusion matrix was used to evaluate the accuracy of these
three models. The results indicated that the combined CF-DNN
method was the most suitable for evaluating the landslide
susceptibility in the study area.

According to the evaluation results obtained using the coupled
CF and deep neural network model, the study area was divided into
four landslide susceptibility zones: low (32.65%), medium (35.12%),
high (22.44%), and extremely high (9.79%). The low and medium
susceptibility areas accounted for the largest proportions and were
distributed in the urban area of Xining; while the extremely high
susceptibility areas were distributed in the high-elevation areas along
the eastern edge of the Huangshui Basin.
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