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Diverse microbes have been revealed to live in glaciers worldwide, but only a few biological
studies were dedicated to glaciers in tropical Africa. These glaciers are shrinking rapidly
and are expected to disappear shortly. In this study, we carried out biological and
glaciological field observations on Stanley Glacier, the largest remaining glacier in the
Rwenzori Mountains, Uganda, Africa. Microbial aggregates ranging from micrometer to
centimeter in size were found on the glacier surface and contained moss and various types
of Chlorophyta, among which a new endemic species of green alga. Concentrations of
total impurities on the glacier surface, including microbial aggregates, varied spatially and
decreased as altitude increased. The large microbial aggregates (larger than 4 cm in
diameter) were found only at the glacier surface near the terminus and side margins, where
the surface was less frequently covered with snow. It is also shown that the total organic
matter on the glacier surface is determined by the timing of snow cover, which affects the
quantity of solar radiation reaching the glacier ice surface. Furthermore, the total impurity
content was negatively correlated with surface reflectivity, revealing their potential role in
albedo reduction at the glacier surface through positive feedback between enhanced
meltwater and increased biological growth.
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INTRODUCTION

Glaciers and ice sheets are biological habitats hosting various forms of life (Boetius et al., 2015).
Microbial communities on glaciers and ice sheets play essential roles in carbon (e.g., carbon fixation,
carbon degradation) and nitrogen cycles (e.g., nitrogen fixation, nitrification, and denitrification)
(Anesio et al., 2009; Telling et al., 2011), which are important for the activity not only of supra- or
intra-glacier biota but also of downstream terrestrial and marine ecosystems (Lawson et al., 2014).

Due to climate change, African glaciers are shrinking very rapidly (Nicholson et al., 2013; Prinz
et al., 2016) and are expected to disappear shortly (Taylor et al., 2006; Thompson et al., 2009). In the
Rwenzori Mountains, located at the border between Uganda and the Democratic Republic of Congo
in Eastern Africa, glacier wastage is thought to result from the combined effects of climate warming
(Taylor et al., 2006) and changes in atmospheric moisture (i.e., decreased humidity and reduced
cloudiness) (Mölg et al., 2006).
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Snow and ice albedo constitutes another important factor
controlling glacier volume evolution (Takeuchi, 2009;
Takeuchi et al., 2015). Glacial micro-organisms have been
recognized as important in this regard due to the darkening
of their intracellular pigment at the snow or glacier surface
(Lutz et al., 2016b; Tanaka et al., 2016; Yallop et al., 2012).
Also, submillimeter to millimeter-sized biological aggregates
known as “cryoconite granules” have similar effects, thereby
reducing surface reflectivity (Cook et al., 2015). These granules
are bound together through an extracellular polymeric

substance produced by filamentous cyanobacteria (Langford
et al., 2010; Uetake et al., 2019), forming a layered structure of
microorganisms with complex biofilm (Smith et al., 2016;
Takeuchi et al., 2010). The growth of cryoconite granules
and subsequent reduction of glacier surface reflectivity and
glacier melting has been reported in the Himalayas (Takeuchi
et al., 2001a), Eastern Asia (Takeuchi et al., 2015), and
Greenland (Takeuchi et al., 2018). The large-scale effect of
these granules on water cycling in the Arctic has also been
reported (Musilova et al., 2016).

FIGURE 1 | (A) Map of the Rwenzori region (bold dotted contours) with national borders between Uganda and D.R. Congo (thick grey line); (B) DEM (SRTM) of
Stanley Plateau area, with 50 m contour lines; (C) satellite image (Worldview) of Stanley Plateau area, with the same extent and scale as in (B).
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Although glacier shrinkage significantly impacts glacier
ecosystems and periglacial downstream environments, only
very few biological studies have been carried out in African
glacierized regions: in Mt. Kilimanjaro (Vimercati et al., 2019),
Mt. Kenya (Kuja et al., 2018) and Rwenzori Mountains (Uetake
et al., 2014; Zawierucha et al., 2018). For example, on Stanley
Glacier located in the Rwenzori Mountains at the border between
Uganda and the Democratic Republic of Congo (DRC) (Uetake
et al., 2014) described for the first time the existence of unique and
relatively large (from micrometers to centimeters in size)
biological aggregates made of moss. These aggregates were
called “glacial moss gemmae aggregates” (GMGA), the term
“gemma” referring to the cell components resulting from
asexual reproduction. On the same glacier, Zawierucha et al.
(2018) recently found new tardigrade species (Adropion
afroglacialis sp. nov.), revealing unexpected biodiversity and
activity in this poorly studied region of the world.

In order to shed light on African glacier biodiversity and
characterize the effect of supraglacial impurities on surface
reflectivity, we sampled and analyzed the biological content of
surface impurities from 17 sites across Stanley Glacier in the
Rwenzori Mountains and described their spatial distribution and
surface reflectivity. We first discuss here the factors affecting the
growth of organisms on the glacier and, second, the effect of
supraglacial impurities on the reflectivity of the glacier surface.

MATERIALS AND METHODS

Glacier Characteristics and Sampling Site
Stanley Glacier represents the largest glacier in the Rwenzori
Mountains, flowing on the flank of Mount Stanley’s second
highest peak, Alexandra Peak (Figures 1, 2). The area of the
glacier was estimated to be 0.248 km2 in February 2012 based on
Worldview satellite imagery. The glacier flows southwards from

4,960 m to 4,770 m a.s.l. forming a plateau glacier called Stanley
(or Elena) Glacier. According to a recent report, the glacier’s area
has now declined to less than 30% of its early 20th century area
and is confined to the summit part of Mt Stanley (Samyn et al.,
2017). We conducted field campaigns during the February month
of four consecutive years between 2012 and 2015, during which
snow and ice were collected at various sites on the glacier surface.
In February 2012, surface ice and snow samples (10 × 10 × 5 cm)
were collected for microscopic observation at three sites (2012
ST1 to 2012 ST3 in Figure 3A). In February 2015, surface ice and
snow samples (10 × 10 × 5 cm) were collected for biological
analysis at 17 sites selected 70–80 m apart across the glacier area.
The samples were collected using an electric chainsaw
(MUC250D, Makita, Japan) without any lubricants for ice and
a stainless scoop for snow (Figure 4). Ice and snow samples were
stored in the field into non-contaminating plastic bags until
complete melting. These plastic bags were then hung in the
camp, and supraglacial impurities settled at the bottom were
carefully transferred into 100 or 5 ml plastic bottles for respective
analyses. All 100 ml bottle samples were fixed using
approximately 3% (final concentration) of 37% formaldehyde
solution and transferred to the laboratory in Japan at
environmental temperature for further size measurements. In
contrast, the 5 ml bottle samples were kept cool during fieldwork
and transportation, with plenty of ice in a large insulated
container, for further morphological analysis in the laboratory.

Biogenic Material Size Sorting and
Weighing
To characterize the impurities collected on the glacier surface, the
100 ml samples were sieved using stainless steel meshes and
sorted into the following classes: Class 4,000 (with longest axis
larger than 4,000 µm), Class 1,000 (1,000–3,999 µm), Class 250
(250–999 µm) and Class U250 (smaller than 250 µm). After size

FIGURE 2 | General view of Stanley Glacier, Rwenzori mountains, looking southeastwards, from the 2012-ST3 sampling site (Figure 3). The image was taken in
February 2012, 1 month after the Worldview satellite image shown in Figures 1, 3. The position and direction of the photo are plotted on the same satellite image
(Figure 3).
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sorting, the total impurity content (organic matter + inorganic
matter) of each sample was measured before homogenization and
combusted at 850°C in the furnace of the NC analyzer
(Sumigraph NC-22A, Sumika Ltd., Japan). Ignition loss (%)
was calculated from the weight before and after combustion
(Takeuchi et al., 2005a; Edwards et al., 2014). The amount of
organic matter was estimated bymultiplying the impurity content
lost during combustion to the total impurity content. Both total
impurity and organic matter contents were subsequently
converted to weight per unit area (g m−2). The weight per unit
area threshold for accurate measurement was 0.056 g m−2, and all
samples with an ignition loss lower than this value were discarded
from further analysis.

Microscopic Observations
Immediately after our samples arrived in the laboratory, the 5 ml
bottle samples collected for morphological observation were
analyzed using an optical microscope (FV1000: Olympus,
Tokyo, Japan), focusing on the morphology of microbial cells,

especially green algae and moss gemmae. In order to quantify
their cell concentrations, the samples were diluted 12 to 60-fold
with Milli-Q water and filtrated using a membrane filter
(JGWP01300, Millipore) before the number of cells in the
entire field of view were counted on each filter.

Surface Reflectivity and Snow
Measurements
The glacier surface light spectrum (in the 344–1,051 nm range)
was measured at all sites except ST1 and ST5 in February 2015
(Figure 3B) using a hand-held spectrometer (MS-720, EKO
instruments, Japan) with a 25° field of view adapter from
10 cm above the measured surface (corresponding to about
15 cm2 of measured surface area). The white reference for the
spectrometer calibration was always kept horizontal against the
glacier surface before each measurement. Surface reflectivity was
calculated from the mean value of the measured spectrum (with a
nominal wavelength ranging from 353 to 1,008 nm). In addition,

FIGURE 3 | Satellite image (Worldview) of sampling sites on Stanley Glacier in 22 January 2012 and spatial distribution of reflectivity and total impurities and organic
matters. An overview picture of the corresponding sampling area is given in Figure 3. (A) Altitude of sampling sites in 2015 (circles), and site locations of snow depth
measurements in 2013 (blue diamonds) and of phototroph collection in 2012 (teal green cross). The red dashed line indicates glacier terminus andmargins on 22 January
2012; (B) reflectivity (spectral range: 353–1,008 nm); (C) total impurity content; (D) organic matter content. Point values (circles) are displayed through their
respective color and size. Green triangle shows the position and angle of view used in Figure 2.
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snow depth was measured using an avalanche probe and a ruler
on 10 February 2013, when most of the glacier surface was
covered with temporary snow (Supplementary Figure S1).

Images of the Glacier
The satellite image (panchromatic band) used for glacio-
biological mapping and shown in Figures 1, 3 was acquired
by WorldView-1 (DigitalGlobe, United States) on 22 January
2012, and distributed to the authors by the Japan Space Imaging
Corporation (http://www.spaceimaging.co.jp/en/, image ID:
1020010019691400). An overview picture was taken from the
studied glacier area on 7 February 2012, from the upper part of
Stanley Glacier (2012_ST3) and shown in Figure 3.

RESULTS

Microorganisms and Supraglacial
Impurities on the Glacier
Optical microscopy revealed that the supraglacial impurities
collected from all sites on Stanley Glacier contained mainly
three major phototrophs, including moss gemmae of
Celatodon purpureus, Cylindrocystis brebissonii and an
unknown phototrophic organism (Figure 5). Three types of
green algae were also observed, including red-pigmented green
algae (Figure 5). The total cell concentration of the three most
abundant taxa (C. purpureus, unidentified green alga, and C.
brebissonii) shows a more significant value near the glacier
terminus (2012-ST1: 450-5100, 1500-13350 and 2400-6600
cells/ml, respectively) and a lower value at the highest glacier

site (2012-ST3: not detectable, 0-2.52 and 0.72-3.96 cells/ml)
(Figure 6; Supplementary Table S1).

The same spatial pattern as for the total cell concentration was
observed across the glacier in terms of total impurity content,
which reflects the concentration of aggregates made up of the
most abundant phototrophs, other microorganisms such as
bacteria, and mineral dust. The mean total impurity content
ranged from 0.06 to 801.0 gm−2 (mean SD: 143.8 ± 211.8 gm−2),
with the greatest and smallest concentrations occurring at the
lowest site (669 ± 166 gm−2 at ST1) and the highest site (0.35 ±
0.33 gm−2 at ST17), respectively (Supplementary Table S2). The
corresponding mean loss on ignition amounted to 33.2 ± 4.8%,
whereas the mean total organic matter of impurities was of 46.3 ±
81.8 gm−2 (Supplementary Figure S3; Supplementary Tables
S3, S4). Our measurements of the four different size fractions of
impurities show that both total impurity and organic matter
contents of Class 4,000 were the largest (total impurities: mean
65.93 gm−2; organic matter: mean 22.34 gm−2), followed by the
smallest size class (Class U250) (total impurities: mean
35.40 gm−2; organic matter: mean 10.53 gm−2). The following
ranking classes in terms of weight were Class 250 (total
impurities: mean 32.56 gm−2; organic matter: mean
10.21 gm−2) and Class 1,000 (total impurities: mean 9.90 gm−2;
organic matter: mean 3.26 gm−2) (Supplementary Figure S3).

Glacier Reflectivity
The surface reflectivity ranged from 0.10 to 0.73 (mean + -SD:
0.28 ± 0.16 gm-2), with the lowest value at the terminus: ST6 and
the highest at the snow-covered ST17 (Figure 3B,
Supplementary Table S5). A correlation table and matrix

FIGURE 4 | Surface condition at each sampling site on Stanley Glacier. Measured reflectivity (R) is indicated with standard deviation at the bottom of each image (no
reflectivity measurements were conducted at ST1 and ST5). All images were taken in February 2015.
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between the altitude, reflectivity, organic matter and total
impurity content are shown in Table 1 and Supplementary
Figure S2. The concentration of total impurities
(Impurity_Total) was negatively correlated (r = −0.52) with
the reflectivity of the glacier surface (p = 0.05), whereas no
significant correlation was found between the concentration of
total organic matter (Organic_Total) and the glacier reflectivity
(p = 0.11). In addition, the concentration of Class 4,000, which is
the most abundant impurity fraction (45.9 and 48.2% of the total
impurity and organic matter contents respectively), was not
significantly correlated with reflectivity. However, the
correlation coefficient between size fraction (for both total
impurity and the organic matter contents) and reflectivity
increased with decreasing size (Table 1).

DISCUSSION

A Unique Phototrophs Biodiversity
The unknown phototrophic organism shown in Figure 5 presents
novel taxonomic characteristics regarding its morphology. Due to
logistical constrains, DNA-level identification of this type of
organism was not possible within the context of the present
work. However, some criteria, including cell size and the presence

of chloroplast, suggest a strong likelihood to the green algae
taxon. Since, first, the only occurrence of C. purpureus on a glacier
has been reported from Stanley Glacier (Uetake et al., 2014), and,
second, our unidentified filamentous alga has never been reported
in any other region globally, these two phototrophic species can
reasonably be considered as endemic of Rwenzori glacial
environments in current knowledge. Two other types of green
algae found on Stanley Glacier, including Cylindrocystis
brebissonii and a red-pigmented alga, present similar
morphological features as other algae commonly distributed
on other glaciers worldwide (North America Hoham, 1975;
Himalayas Yoshimura et al., 2000; Mueller and Pollard, 2004;
Uetake et al., 2010; Yallop et al., 2012).

Factors Affecting the Biomass of
Phototrophs
The concentration of these algal cells on Stanley Glacier surface
decreases with elevation. Altitudinal variations of glacier
microbes are commonly found in mountain glaciers (Segawa
et al., 2010; Takeuchi, 2013; Takeuchi et al., 2005b, 2019; Uetake
et al., 2010; Yoshimura et al., 1997). As air temperature decreases
linearly with increasing elevation, seasonal snow cover melts
faster at lower glacier elevation as a result of larger cumulated

FIGURE 5 | Phototrophs (moss gemma and Chlorophyta) on Stanley Glacier surface: (A) Celatodon purpureus, (B) unidentified green algae, (C) snow red algae,
(D) unidentified round, green algae, (E) Cylindrocystis brebissonii.
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solar radiation on the glacier ice surface, thereby inducing more
optimum conditions for algal growth (Yoshimura et al., 1997). In
February 2013, when most of the glacier surface was covered with
snow despite the typically dry season period, snow depth
gradually increased (from 0 to 0.8 m) with altitude
(Supplementary Figure S1). Although the snow depth survey
was conducted in limited areas and therefore only reflects a
limited temporal pattern (blue diamond in Figure 3A), it is
reasonable to consider that this altitudinal gradient of snow
depth is likely to occur in other years.

Additionally, the area near the glacier terminus, including our
lowest altitude sample (2012-ST1), was always free of snow cover
during each of our February visits from 2012 to 2015, as exemplified
on the 2012 satellite image in Figure 3. The presence of snow on the

ice surface can significantly reduce light penetration through the
snowpack (e.g., irradiance is reduced by one third under 5 cm
snowpack, as shown by Pomeroy and Brun (2001), from which
we assume as a corollary that the frequency of snowfall can
constitute another factor leading to altitudinal changes in the
distribution of phototrophs.

As a result of the snow depth altitudinal gradient, the solar
radiation at the ice surface is likely to be strongest in the lowest
area of the glacier, which is likely to promote the growth of
phototrophs. Although the growth conditions of moss gemmae
on glaciers have not yet been fully appraised, nutrient availability
can be considered a limiting factor for phototrophs (Jones, 1991).
Comparison of multiple glacier environments with varying
geological settings also showed that the metabolic growth of

FIGURE 6 | Spatial variation of the cell concentration (cell count/ml) of phototrophs on Stanley Glacier: (A)Celatodon purpureus, (B)Cylindrocystis brebissonii, and
(C) unidentified green algae).
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green algae is promoted by the presence of nitrogen in sufficient
concentration (Lutz et al., 2016a). For logistical reasons, nutrient
concentration could not be measured in this study, however,
previous glacier studies reported nutrient concentration as a
secondary factor for growth compared to altitudinal change
(Hodson et al., 2005; Yoshimura et al., 1997).

Effect of Impurities on the Reflectivity of
Glacier Surface
Most of Stanley Glacier surface impurities consisted of aggregates
of organic and inorganic material, including phototrophic and
heterotrophic microorganisms together with mineral dust. The
total impurity content on Stanley Glacier (143 ± 188 gm−2) was
significantly more extensive than those reported on glaciers in the
Arctic (Takeuchi et al., 2014: 18.8 ± 21.6 gm−2), in Russia
(Takeuchi et al., 2015: 45.2 ± 12.0 gm−2), in Patagonia
(Takeuchi et al., 2001b: 38 gm−2 on average), in Alaska
(Takeuchi, 2002: 23 gm−2 on average), and Caucasus
Mountains (Kutuzov et al., 2021: 36 ± 38 gm−2). However, it
was lower than on Central Asian glaciers, where the greatest
concentration of supraglacial impurity has been reported globally
(Takeuchi et al., 2005: 292 ± 196 gm−2; Takeuchi and Li, 2008:
335 ± 211 gm−2). In terms of organic matter content, Stanley
Glacier exhibited significantly larger values (46.3 ± 68.6 gm−2)
than Central Asian glaciers (Takeuchi et al., 2005: 25.4 ±
16.5 gm−2 and 8.6 ± 1.9%, Takeuchi and Li, 2008: 30.2 ±
15.6 gm−2 and 9.4 ± 1.6%) or any other glacier described in
the literature [see, e.g., Edwards et al. (2014)]. Our results,
therefore, point to relatively high impurity content and
exceptionally high organic content at the surface of Stanley
Glacier compared to other regions of the world.

The total impurity and organic matter contents were spatially
variable (Figure 3, Supplementary Figure S3). In particular, both
the total impurity and organic matter contents of the smallest size
fraction significantly decreased with altitude (Supplementary
Figure S2), except at the “high altitude” glacier marginal sites
(including ST9, ST10, ST14, and ST15) where total impurity and
organic matter contents were relatively larger than elsewhere on the
glacier. In the vicinity of the glacier terminus (ST1, ST2, ST3, ST5), at
the side margins (ST4) and at high altitude glacier marginal sites
(ST9, ST10, ST14, ST15), the total organic matter content was
especially large and to our knowledge larger than any other
record values [e.g., 30.2 gm−2 Takeuchi and Li (2008)]. This can
be attributed to the presence of GMGAs in high concentrations since
the fraction of Class 4,000 to the total organic matter content is also
generally high at these sites (except ST5, ST9, and ST 14)
(Supplementary Figure S3B). Most of the high GMGA
concentration sites (ST1, ST2, ST3, ST4, ST10, ST15) were

located in the darker ice area identified on the satellite image
acquired in January 2012 (Figure 3) and on the field picture
taken 1month later (Figure 2). The snow cover at these sites is
less frequent throughout the year, thereby favoring the growth of
phototrophs compared to other areas.

As can be seen from Figures 3, 4, the impurity content as well as
their size distribution vary from site to site across the glacier surface.
Although the impurity content on the glacier surface was well
recognized as an important factor leading to the reduction of
glacier reflectivity, both the total amount of impurities and their
size distribution should also be considered in that regard, owing to
the negative correlation observed between size fraction of impurities
and glacier reflectivity. It is interesting to note that the largest size
fraction (Class 4,000), which was associated with the largest
measured impurity content due to the presence of moss
aggregates, did not correlate well with ice surface reflectivity.
Conversely, the correlation coefficients between the finer size
fractions (i.e. Class 250 and Class U250) and reflectivity were
relatively large (Table 1; Supplementary Figure S2). These
findings support the fact that, despite their low ratio in organic
matter, small and homogeneously spread impurities (e.g., ST9 in
Figure 4) were probablymore effective in reducing albedo than large
and scattered GMGAs (e.g., ST2, ST3, and ST4 in Figure 4). These
finer size fractions are likely to provide vital ground for the
development process of the larger aggregates.

CONCLUSION

Based on its taxonomic characteristics, a new species of green algae,
endemic of Rwenzori glacial environments in Africa, was discovered
within the present work. Together with another endemic species of
moss previously reported by the authors, more ubiquitous green alga
taxa were also observed, suggesting a high degree of microbial
diversity. Our measurements of total impurity concentration at
the surface of Stanley Glacier point to exceptionally high organic
content compared to other regions of the world. An inverse
relationship was found between the surface reflectivity and the
total impurity content. Our work supports previous findings
suggesting that supraglacial impurities, including microbial
aggregates, effectively reduce albedo and are likely to promote
snow and ice melting at the glacier surface. In turn, albedo
reduction possibly has a positive feedback effect on glacial
microbial communities due to enhanced meltwater availability and
increased solar radiation absorption. A size effect was also observed
on glacier reflectivity by microbial impurities, with finely distributed
granules having a stronger impact on surface albedo reduction than
largermoss aggregates. In the framework of further investigations, we
suggest focusing on moss generation processes such as the growth of

TABLE 1 | The Pearson correlation matrix between altitude, reflectivity, total impurity content and organic matter content. Each significance level (p-value) is associated to a
symbol: <0.001: “***”; <0.01: “**”; <0.05: “*”.

Organic_Total Organic_4,000 Organic_1,000 Organic_250 Organic_U250 Impurities_Total Impurities_4,000 Impurities_1,000 Impurities_250 Impurities_U250

Altitude −0.47 −0.44 −0.33 −0.25 −0.49* −0.53* −0.46 −0.35 −0.32 −0.48

Reflectivity −0.43 −0.2 −0.48 −0.5 −0.63* −0.52* −0.24 −0.51* −0.59* −0.71**
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phototrophs and their subsequent detachment/aggregating
mechanisms in order to better understand the spatial distribution
evolution of the various impurity size fractions and their respective
impact on glacier reflectivity.
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