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Paraconularia ediacara n. sp., the oldest documented conulariid cnidarian, is described
based on a compressed thin specimen from the terminal Ediacaran Tamengo Formation
near Corumba, Mato Grosso do Sul State, Brazil. The conulariid was collected from a
laminated silty shale bed also containing Corumbella werneri and vendotaenid algae. The
specimen consists of four partial faces, two of which are mostly covered, and one exposed
corner sulcus. The two exposed faces exhibit 32 bell-curve-shaped, nodose transverse
ribs, with some nodes preserving a short, adaperturally directed interspace ridge (spine).
The transverse ribs bend adapertureward on the shoulders of the corner sulcus, within
which the ribs terminate, with the end portions of the ribs from one face alternating with and
slightly overlapping those from the adjoining face. This is the first Ediacaran body fossil
showing compelling evidence of homology with a particular conulariid genus. However,
unlike the periderm of Phanerozoic conulariids, the periderm of P. ediacara lacks calcium
phosphate, a difference which may be original or an artifact of diagenesis or weathering.
The discovery of P. ediacara in the Tamengo Formation corroborates the hypothesis,
based in part on molecular clock studies, that cnidarians originated during mid-late
Proterozoic times, and serves as a new internal calibration point, dating the split
between scyphozoan and cubozoan cnidarians at no later than 542 Ma. Furthermore,
P. ediacara reinforces the argument that the final phase of Ediacaran biotic evolution
featured the advent of large-bodied eumetazoans, including, possibly, predators.
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INTRODUCTION

One of the fundamental problems in the study of the history of life is the timing of the origins of the
major groups of metazoans. Molecular clock studies (Runnegar, 1982; Hedges et al., 2004; Peterson
etal., 1979; Erwin et al., 2011; dos Reis et al., 2015; Dohrmann and Wérheide, 2017) have placed the
origins of the metazoan phyla within the Tonian (max.) to Ediacaran (min.) interval, dating key
branching events, including the protostome-deuterostome split and the split between cnidarians and
other eumetazoans, at various points within this broad time span. Standing in contrast to the results
of molecular clock studies is present understanding of the Neoproterozoic fossil record. Specifically,
Ediacaran body fossils currently interpreted as skeletonized or soft-bodied eumetazoans, for example
Cloudina, Corumbella, and Kimberella (Fedonkin and Waggoner, 1997; Fedonkin et al., 2007;
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Bobrovskiy et al., 2018; Dunn et al,, 2021), are less than 600
million years old, and thus at present there is a substantial gap
between the ages of the apparent first appearances of
eumetazoans in the body fossil record and the oldest
molecular clock estimates of their times of origin.

Described in this article is the first documented
Neoproterozoic conulariid, Paraconularia ediacara n. sp.
from the terminal Ediacaran Tamengo Formation (upper
Corumbd Group) of west-central Brazil. This conulariid,
currently represented by a flattened partial periderm
preserving such anatomical features as transverse ribs,
nodes, and microlamellae, was originally identified (Van
Iten et al., 2014a; Van Iten et al., 2016) as Paraconularia sp.
Previously, the oldest known occurrences of Paraconularia
were in strata of Middle Devonian age (Hergarten, 1985;
Babcock and Feldmann, 1986), and therefore the presence
of this genus in the topmost part of the Ediacaran System is
truly noteworthy.

Conulariids in general are an extinct order (Conulariida) of
marine cnidarians, last occurring in the topmost Triassic
(Norian) Stage (Lucas, 2012; Barth et al., 2013), that may have
been most closely related to scyphozoan cnidarians of the extant
order Coronata (Van Iten et al., 2006a). Conulariids and
coronates are united by the possession of a prominent, sessile
polyp stage that produced/produces a multi-lamellar, steeply
pyramidal or conical periderm bearing (in some species)
internal projections along the perradii and interradii (Werner,
1966; Van Iten et al., 1996). Conulariids also exhibit similarities to
staurozoans, including tetramerous radial symmetry and
prominent gastric septa (Van Iten, 1992; Jerre, 1994; Marques
and Collins, 2004; Van Iten et al., 2006a), and thus the hypothesis
of a sister group relationship between conulariids and
staurozoans (Marques and Collins, 2004) may merit further
investigation. The oldest previously known conulariids are
Baccaconularia meyeri and B. robinsoni from the Furongian
(late Cambrian) Saint Lawrence Formation of southwestern
Wisconsin and southeastern Minnesota, United States (Hughes
et al., 2000; Van Iten et al., 2006b). Two other Ediacaran fossils,
Vendoconularia triradiata (late Ediacaran, White Sea Coast,
Russia) (Ivantsov and Fedonkin, 2002; Van Iten et al., 2005;
Ivantsov et al, 2019), preserved as molds and casts, and
conulariid-like carbonaceous compression fossils from the
early Ediacaran Lantian Formation of South China (Yuan
et al, 2011; Van Iten et al, 2013), have been interpreted as
conulariids or have been compared with this group (Ivantsov and
Fedonkin, 2000; Van Iten et al., 2005; Ivantsov et al., 2019).
However, hypotheses of homology between these Ediacaran
fossils and conulariids have been challenged (Grazhdankin,
2014; Wan et al, 2016; Dzik et al, 2017). In contrast,
conulariids exhibit detailed similarities in gross morphology to
carinachitiids and hexangulaconulariids, two families of small
shelly fossils (SSFs) from the basal (Fortunian) stage of the
Cambrian System (Morris and Menge, 1992), and at present
there seems to be no better candidate for the nearest relatives of
these SSF taxa than conulariids (Guo et al., 2020a; Guo et al.,
2020b; Guo et al., 2021). Importantly, the possible presence of
Cambrian conulariids or closely related forms immediately above
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the Ediacaran-Cambrian boundary itself suggests that conulariids
may have originated during Neoproterozoic times.

The terminal Ediacaran genus Corumbella, currently known
from localities in North and South America and Iran (Pacheco
et al,, 2015; Walde et al,, 2015; Vaziri et al.,, 2018; Walde et al,,
2019; Amorim et al, 2020), has also been interpreted as a
polypoid scyphozoan closely related to conulariids (Van Iten
et al.,, 2014a; Van Iten et al., 20165 Pacheco et al., 2015). It should
be noted, however, that Walde et al. (2019, p. 335) hypothesized
that Corumbella was a worm-like bilaterian.

The discovery of Paraconularia in strata of latest Ediacaran
age not only demonstrates that conulariids crossed the crucial
Ediacaran-Cambrian boundary, but it also corroborates the
hypothesis that phylum Cnidaria originated during the
Neoproterozoic. Additionally, the existence of this ancient
scyphozoan, extant species of which engage in predation
(Pearse et al., 1987), may provide additional support for
the hypothesis (e.g., Hua et al., 2003; Schiffbauer et al,
2016) that the origin of predation and complex food webs
predated the beginning of the Phanerozoic Eon and the
Cambrian Explosion.

GEOLOGICAL SETTING

The late Ediacaran to earliest Cambrian (ca. 565-539 Ma; see
Linnemann et al., 2019) Corumbd Group, named after the city
of Corumb4 in Mato Grosso do Sul State (west-central Brazil),
crops out at the junction of the Amazon Craton, the northern
Rio Apa Block, and the folded southern Paraguay Belt
(Amorim et al., 2020) (Figure 1). It was initially deposited
in an elongate rift basin that evolved into a passive continental
margin hosting shallow to deep marine environments. The
basin was deformed during the Brazilian Orogeny, which
resulted in the formation of the southern part of the
Paraguay Belt in southwestern Brazil (Almeida, 1968;
Gaucher et al., 2003; Alvarenga et al.,, 2009; Boggiani et al.,
2010; Warren et al., 2014; Amorim et al., 2020). The Corumbé
Group exhibits a maximum thickness of about 400 m and is
subdivided into five formations (Figure 2). The lowermost, or
Cadiueus Formation, consists of conglomerate, sandstone, and
shale, while the overlying Cerradinho Formation is composed
of sandstone, shale, and carbonates (limestone and dolostone).
Above this unit, the Bocaina Formation, composed of dolomite
and subordinate shale, directly underlies the Tamengo
Formation, which ranges from 80 to 100m thick and
consists predominantly of dark gray carbonaceous limestone
and subordinate silty shale (Amorim et al, 2020). Both
lithologies yield macroscopic body fossils, the most
conspicuous of which are the skeletonized eumetazoans
Cloudina lucianoi (in limestone) and Corumbella werneri
(in silty shale). The Corumba Group terminates with the
Guaicurus Formation, a thick package of uniform shale
which has yielded trace fossils of meiofaunal bilaterians
(Parry et al., 2017).

High-precision dating of two volcanic tuffs situated a few
meters below the top of the Tamengo Formation yielded mean
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FIGURE 1 | Geological map of the Paraguay Belt in South America, showing the location of the Corumba (Brazil) area, the Ladério-Corumba section (red star), and
the geology of the Corumbé Group.
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U-Pb ages of 541.85 + 0.75 Ma and 542.27 + 0.38 Ma, respectively
(Parry etal., 2017). Combined with an age of 555.18 + 0.30 Ma for
a tuff bed near the top of the underlying Bocaina Formation
(Parry et al, 2017), these two dates indicate that the entire
Tamengo Formation is latest Ediacaran in age. This
conclusion is corroborated by the presence throughout the
Tamengo Formation of Cloudina (Figure 2), a likely index
fossil for the latest Ediacaran (Xiao et al., 2016). Importantly,
Paraconularia ediacara occurred at a level situated well below the
top of the Tamengo Formation, and therefore its age may be
several million years older than 542 Ma, the approximate age of
the second oldest tuff layer mentioned above.

MATERIALS AND METHODS

The Tamengo Formation conulariid, formally diagnosed and
described below, was collected from an outcrop designated as
ELC (Ladéario/Corumba Escarpment) IV (Amorim et al., 2020)
and located on the south bank of the Paraguay River near the
village of Laddrio (Figures 1, 2). The conulariid occurred
within a 1.5-m-thick, non-bioturbated, finely laminated silty
shale bed, at a level approximately 45 m below the top of the
Tamengo Formation (Figure 2). The same bed, including the
bedding plane on which the conulariid occurred, also yields
Corumbella, vendotaenids, and macroalgae. The conulariid
was revealed by splitting a hand-sized slab into two pieces,
one bearing the part and the other the counterpart. Both are
housed in the paleontological collections of the Department of
Sedimentary and Environmental Geology of the Geosciences
Institute of the University of Sdo Paulo, under collection
number 1T/2301a, b.

Assignment of the conulariid to a new species of
Paraconularia is based on two lines of evidence: (1)
recognition of a set of gross morphological features
uniquely exhibited by conulariids in general (e.g., Hughes
et al, 2000; Van Iten et al, 2008); and (2) comparisons
with illustrations and reposited specimens of previously
described Paraconularia from Devonian through Triassic
rocks in North and South America (Driscoll, 1963; Babcock
and Feldmann, 1986; Babcock et al., 1987; Babcock, 1993;
Leme et al., 2004; Escalante-Ruiz et al., 2014), Africa (Van Iten
et al., 2008), Europe (de Koninck, 1883; Slater, 1907;
Hergarten, 1985; Barth et al., 2013; LukSevi¢s, 2020), Asia
(Xu and Li, 1979; Zhu, 1985; Swami et al., 2017; Min et al.,
2021), and Australia/New Zealand/Tasmania (Thomas, 1969;
Waterhouse, 1979; Parfrey, 1982; Waterhouse, 1986). Imaging
and Raman compositional analysis of the new conulariid were
carried out in the Department of Sedimentary and
Environmental Geology of the Geosciences Institute of the
University of Siao Paulo, Sao Paulo State, Brazil. Low
magnification optical examination and light photography
were conducted using an OLYMPUS DSX stereomicroscope
under low angle illumination. A small fragment of the
periderm was coated with gold and examined using a LEO
440 scanning electron microscope (SEM).
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SYSTEMATIC PALEONTOLOGY

Phylum Cnidaria Verrill, 1865
Subphylum Medusozoa Peterson, 1979
Class Scyphozoa Goétte, 1887
Order Conulariida Miller and Gurley, 1896
Genus Paraconularia Sinclair, 1940
Type species: Conularia inaequicostata de Koninck, 1883, p. 223, pl. L1V, figs. 9-11.
Paraconularia ediacara n. sp.

(Plate I)
Paraconularia sp. Van Iten, Marques, Leme, and Simdes, 2014a, p. 683, fig. 3c.d.
P.sp. Van Iten, Leme, Pacheco, Simdes, Fairchild, Rodrigues, Galante,

Boggiani, and Marques, 2016, p. 34-37, fig. 3.3.

Diagnosis: Large Paraconularia with circular nodes that are
moderately coarse, widely spaced (10-11 per 5mm), and
extended adapertureward as a short, adaperturally tapered
interspace ridge. Faces approximately equal in width.
Transverse ribs in the apertural/upper middle region of the
periderm low bell-curve-shaped and uninterrupted at the facial
midline, numbering 10-11 per 10mm. Apical angle
approximately 10°. Corner sulcus subangular; corners and
facial midline without internal thickening or carina.

Description: Part and counterpart of a thin (~ 0.2-0.5 mm),
strongly compressed (transversely) fragment of a steeply
pyramidal, four-sided periderm measuring approximately 34 mm
long and 24 mm wide and lying parallel to bedding. Exposed portion
of the periderm consists primarily of two mutually adjacent, very
gently tapered partial faces and the corner sulcus between them
(Plate I, Figures 1, 2). Faces originally about equal in width. Nearly
smooth inner surface of small portions of the two mostly covered
faces visible at the broken apical end of the part (Plate I, Figure 1).
Apical region entirely missing. Apertural margin may be partially
preserved. Apical angles ~10°. Length of the complete periderm
exceeded 100 mm (as indicated by adapical extension of the
truncated facial midlines). External surface of the two exposed
faces exhibits 32 trochoidal, thickened, node-bearing transverse
ribs separated by broad interspaces and numbering 10-11 per
10 mm. Transverse ribs adaperturally arcuate, approximately bell-
curve-shaped (inflected circular curve geometry; Babcock and
Feldmann, 1986), crossing both faces without interruption or
diminution at the facial midline (Plate I, Figures 1, 2, 5, 7).
Transverse ribs bent adapertureward on the shoulders of the
subangular corner sulcus, within which they terminate, with the
end portions of the transverse ribs from one face alternating with and
slightly overlapping those from the adjoining face (Plate I, Figures 1,
3-6). Nodes moderately coarse, separated from each other by a gap
that measures approximately 0.5-1.5 (rarely 2.0) node diameters in
length, numbering from 10 to 11 per 5 mm (Plate I, Figures 5, 8).
Many nodes extended adapertureward as a short, spine-like
interspace ridge (adapertural spine; Babcock and Feldmann,
1986) (Plate I, Figure 5). Nodes of every other transverse rib
form rectilinear files that are nearly parallel to the facial midline
or the nearest corner. Corners and facial midlines without internal
thickening or carina. Schott (apical wall) absent. Periderm very finely
lamellar (Plate I, Figures 9, 10), apparently organic, though possibly
with originally phosphatic microlamellae lost secondarily.

Derivation of name: ediacara, from Ediacaran, the age of the
conulariid occurrence.
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Type material: The holotype, reposited in the palacontological
collections of the Department of Sedimentary and Environmental
Geology, University of Sdo Paulo, Séo Paulo State, Brazil (1T/
2301 a, b).

Occurrence: Thick silty shale bed in the middle part of the
Tamengo Formation (upper Corumbd Group) at Locality
ELC (Ladario/Corumba Escarpment) IV (Amorim et al,
2020) on the south bank of the Paraguay River near the
village of Laddrio in Mato Grosso do Sul State,
southwestern Brazil.

Age and horizon: Latest Ediacaran (no younger than 542 Ma),
approximately 45 m below the top of the Tamengo Formation
(upper Corumbd Group) (Parry et al., 2017).

Remarks and comparisons: Together with previously published
anatomical data and illustrations (e.g., Babcock and Feldmann,
1986), the photographic illustrations here presented (Plate I,
Figures 1, 2, 4, 5, 8-10; Figure 3) show that P. ediacara exhibits a
complex suite of gross anatomical features that is shared only
with Devonian-Triassic conulariids that have been placed in the
genus Paraconularia. To be sure, there has been some divergence
of opinion regarding the diagnostic characters of Paraconularia
(e.g., Babcock and Feldmann, 1986; Van Iten et al., 2008; Min
et al,, 2021), and there is also some uncertainty surrounding the
diagnostic characters and taxonomic composition of Conulariida
itself (e.g., Hughes et al., 2000). Be that as it may, in recent years it
has generally been assumed (e.g., Van Iten et al., 2006b; 2014b)
that Paraconularia and similar genera such as Conularia are
members of a single, monophyletic group that excludes
medusozoan taxa lacking a finely lamellar, steeply pyramidal,
organo-phosphatic or (possibly) organic periderm with (usually)
sulcate corners bounding four faces bearing regularly arrayed
small nodes and/or transverse ribs. Among previously known
genera from the terminal Ediacaran and basal Cambrian, only
Corumbella (terminal Ediacaran) and Carinachites (basal
Cambrian, ca. 535Ma, Han et al, 2017) are similar to P.
ediacara and many other conulariids in having an originally
quadrate skeleton showing regular corrugation of the gently
tapered sides or faces. Absent in these two genera, however,
are the fine details and pattern of arrangement of the transverse
ribs of Paraconularia. As discussed in part by Van Iten et al
(2016), the faces of Paraconularia, including the type species, are
crossed by adaperturally arcuate or angulated, generally node-
bearing transverse ribs which terminate within the corner sulcus.
There, the end portions of the transverse ribs trend obliquely
adapertureward, with the end portions of the transverse ribs from
one face alternating with and partially overlapping those from the
adjoining face. Adapertural bending of the transverse ribs on the
shoulders of the corner sulcus can be subtle, and it has been
reported (Min et al., 2021) that in some species such bending is
absent. Along the facial midline, the transverse ribs may be
interrupted, with the ends of the ribs on one half face
arranged in alternation with those on the other half face, or
they may be continuous, as in both P. ediacara and the type
species (see de Koninck, 1883, pl. LIV, Figure 9). As in most
conulariids having trochoidal (longitudinally) transverse ribs, the
periderm thickens from the center line of the interspaces to the axial
plane of the fold-like transverse ribs, in such a way as to reduce the
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relief of the transverse ribs on the inner surface of the periderm (see
for example Ford et al., 2016, Figure 3E). In many of the species
bearing nodes, including P. ediacara, the adapertural half of each
node is developed into a short, spine-like ridge (adapertural spine;
Babcock and Feldmann, 1986) that extends part way across the
interspaces. Finally, the pattern of arrangement of the nodes on the
faces is such that the nodes of every other transverse rib are collinear,
forming longitudinal series that are approximately parallel to the
facial midline or nearest corner.

In addition to being far older geologically than other
described species in Paraconularia, P. ediacara is also
distinguishable ~ from  them  morphologically, being
characterized by the following unique set of gross anatomical
features: (1) transverse ribs in the apertural/upper middle region
low bell-curve-shaped (angulated circular curve geometry;
Babcock and Feldmann, 1986), continuous across the facial
midline, numbering from 10 to 11 per 10 mm; and (2) rib
nodes moderately large, clearly separated from each other and
developed adaperturally into a short, spine-like interspace ridge.
It is perhaps the second item that is most important, though, as
in nearly all other known species the transverse ribs are either
smooth (nodes are absent) or the nodes are very small and
mutually contiguous or nearly so (Figure 3; see also illustrations
in Babcock and Feldmann, 1986). Further grounds for assigning
the Tamengo Formation Paraconularia to a new species are
provided by the fact that the difference in absolute age between
it and Devonian Paraconularia is roughly 130 million years,
which is about an order of magnitude greater than the estimated life
spans of the longest-lived invertebrate/cnidarian species (Valentine,
1970; Raup, 1978, 1991; Sepkoski, 1992; Lawton and May, 1995).

Preservation and taphonomy: The holotype and only known
specimen of P. ediacara n. sp. is a fragment of an elongate
pyramidal periderm, the faces of which lie parallel to bedding
and probably measured at least 100 mm long when complete. It
consists of a combination of skeletal material, possibly altered,
and external molds of the same. The periderm does not react with
dilute HCI and therefore is not calcareous, as expected given that
the periderm of Phanerozoic conulariids is organo-phosphatic
(Ford et al., 2016). It should be noted here that Van Iten et al.
(2016) incorrectly reported the length of the fragment as 26 mm,
which is close to its maximum width. The incompleteness of the
fossil, which lacks the apical third and probably part of the middle
region, is not an artifact of collecting, as the margins of the
specimen are fully bordered by silty shale, and the specimen itself
was revealed by splitting the host rock slab. The present distorted
state of the specimen, with the two exposed faces and corner
sulcus nearly touching the relatively smooth, mostly hidden facial
pair/corner beneath them (Plate I, Figure 1), is typical of thin-
walled conulariids preserved parallel to bedding in shale (see for
example Babcock and Feldmann, 1986, figures. 18.5 and 26.4).
The smoothness of the hidden faces, the broken edges of which
are nevertheless sharp, also is typical of conulariids and reflects
inward thickening and consequent diminution of the relief of the
transverse ribs on the inner surface of the periderm. Owing
possibly to having been restricted to the exteriormost levels in
the periderm, which can undergo exfoliation during splitting of
the host rock, the short interspace ridges are not evident at all
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FIGURE 3 | Paraconularia sp. (Mississippian, Kentucky, United States; GP-1E 11672). (A) compressed partial specimen displaying two faces and the corner
sulcus between them (photograph oriented with the apertural end of the fossil at the top). Yellow open rectangles highlight stretches of the corner sulcus (C) in which
adapertural bending and alternation of the ends of the transverse ribs, which alternate as well along the facial midline (ML), are best displayed. (B) detail of the right face
just below the apertural end of the fossil. Yellow arrows immediately to the right of the facial midline highlight some of the minute nodes. Scale bar: 10 mm.

places on the fossil and are easiest to discern on external molds.
Finally, the presence of imbricated fragments of Corumbella in
the same silty shale bed that yielded P. ediacara (Rodrigues et al.,
2003; Amorim et al, 2020) suggests that the specimen was
transported and fragmented prior to final burial.

The high magnification SEM images (Plate I, Figures 9, 10) reveal
that the periderm of P. ediacara is composed of extremely thin (<
5um), mutually parallel microlamellae. This is the basic
microstructure of Phanerozoic conulariids preserving the periderm,
which is a bi-composite material consisting of apatitic and organic
microlamellae arranged in alternation (Ford et al, 2016). Color
images (Plate I, Figures 1, 2, 4, 5) of P. ediacara show that it is
variegated, with irregularly bounded areas of pale tan-brown
periderm occurring alongside patches of darker-colored periderm.
Similar color variation is exhibited by the host silty shale and may
reflect post-burial diagenesis and/or chemical weathering. In other
words, the original periderm probably was uniform in color, as is the
periderm of Phanerozoic conulariids, which however may bear
pigmented lines or bands corresponding to internal carinae at the
corners and/or facial midlines (Van Iten, 1992). Lastly, and as
reported previously by Van Iten et al. (2016), Raman analysis of
portions of the periderm failed to yield any lines diagnostic of
phosphorous, one of the elemental constituents of apatite; instead,
it appears that the periderm is now, and may originally have been,
entirely or predominantly organic in composition. This hypothesis
can potentially be tested by imaging broken edges of the periderm at
very high magnifications. If in fact originally apatitic microlamellae
have been lost secondarily, then there might still be an extremely
narrow gap between the preserved, organic microlamellae. Otherwise,
all microlamellae should be in direct contact with each other. Our
photomicrographs (Plate I, Figures 9, 10) show no clear evidence of
microscopic gaps, and thus, at this point, we are inclined to think that
originally apatitic microlamellae were not present.

DISCUSSION

Significance

The discovery of Paraconularia in strata of terminal Ediacaran age is
significant for several reasons. First, the new conulariid expands the list
of skeletonized or tubular Ediacaran genera, including Cloudina,
Namacalathus, Namapoikia, and Sinotubulites, which are generally
regarded as eumetazoans (e.g, Fedonkin, 1992; Fedonkin and
Waggoner, 1997; Grazhdankin, 2014; Grazhdankin, 2016; Becker-
Kerber et al., 2017).

Second, and as noted above, conulariids were scyphozoan
cnidarians or close medusozoan relatives of this group. Moreover,
even though other Ediacaran taxa, most notably Corumbella and
Vendoconularia, have been interpreted as scyphopolyps, the
hypothesis of a scyphozoan affinity for P. ediacara enjoys a
substantially stronger basis in comparative anatomy. It should be
noted here that Bjarmia cycloplerusa, described by Grazhdankin,
(2016) from the late Ediacaran Erga Formation (southeastern White
Sea area, Russia), was classified by this author as a coronate
scyphomedusa (jellyfish). However, this occurrence was not
included by Young and Hagadorn, (2020, p. 185) among their
“thirteen confirmed medusa-bearing deposits”, the oldest of which
(the Chengjiang Lagerstitte) is early Cambrian (Stage 3) in age. Thus,
either singly or together with certain other body fossils, P. ediacara
now constitutes the strongest paleontological evidence of the presence
of scyphozoans or any cnidarians during Neoproterozoic times.

Third, Paraconularia is now one of the longest lived eumetazoan
genera, ranging downward from the Upper Triassic into the topmost
Ediacaran, or through about 340 million years of geological time.
Conulariids and Paraconularia are established (respectively) as a
eumetazoan order and genus that survived the end-Ediacaran
extinction event, a status currently shared with the agglutinated
foraminiferan Platysolenites (Kontorovich et al, 2009), certain
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PLATE 1 | Paraconularia ediacara n. sp. (terminal Ediacaran, middle Tamengo Formation, upper Corumbéa Group, Mato Grosso do Sul, Brazil; specimen GP-IT
2301, Geosciences Institute, University of S&o Paulo). 1, 2, color light photographs (both oriented with the apertural end of the fossil at the top); 1, the part, showing the
two exposed partial faces and corner sulcus (indicated by the arrow labelled C) between them. The truncated apical ends of the two mostly covered faces project slightly
from underneath the truncated apical ends of the two exposed faces (bottom arrow). Open yellow rectangle outlines the area from which the small fragment of
periderm for SEM imaging (Figures 8-10 below) was extracted; 2, the counterpart (again with the corner indicated by an arrow labelled C, and with one of the facial
midlines indicated by an arrow labelled ML); 3, schematic drawing of the part, highlighting the alternation of the nodose transverse ribs in the corner sulcus (C) and the
continuation of the transverse ribs across the facial midline (ML). 4, 5, color light photographs (both oriented with the apertural end of the fossil at the top); 4, detail of the
exposed corner sulcus of the counterpart. Note the pronounced adapertural deflection and alternation of the end portions of the transverse ribs within the corner sulcus
(yellow arrows); 5, detail of the lower (apical) portion of the two exposed faces of the part, showing the widely spaced nodes. Upper rectangle highlights several nodes
preserving the short interspace ridges in positive relief, while the lower rectangle highlights several nodes showing much shorter interspace ridges; 6, schematic drawing
of a portion of the corner sulcus (C) shown in 5; 7, schematic drawing of the facial area with rectangles shown in 5; 8-10, SEM photomicrographs (secondary electron
mode) of a small fragment of the periderm; 8, exterior surface of the periderm, showing several transverse ribs, widely spaced nodes, and very short, spine-like interspace
ridges (pointing toward the apertural end of the periderm, yellow arrows); 9, detail of the fragment shown in 8, with canyon-like fractures exposing the edges of several
microlamellae (yellow arrows); 10, detail of one of the fractures shown in 9 and exposing microlamellae (yellow arrows). Scale bar: 5 to 8 mm (Figures 1-3, 5); 7 mm
(Figure 4); 5 mm (Figures 6, 7); 3 mm (Figure 8); 40 um (Figure 9); 5 um (Figure 10).
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microfossils (Anderson et al.,, 2017; Grazhdankin et al., 2020), and
three skeletonized metazoan genera, namely Anabarites,
Cambrotubulus, and Cloudina (Zhu et al, 2017). Furthermore,
cladistic analyses of phylogenetic relationships among genera
within Conulariida (De Moraes Leme et al., 2008; Van Iten et al.,
2014b) suggest that Paraconularia is a relatively apical branch, thus
pushing the origin of conulariids even farther into the deep past.

Fourth, conulariids are now known from a level below that of the
first occurrence of most SFFs (Zhu et al., 2017), in other words before
the putative onset of the Cambrian Explosion of eumetazoan (mainly
bilaterian) diversity. If in fact there was such an event (Blair and
Hedges, 2005; Wood et al., 2019), then conulariids were around well
before it started, and they were an order of magnitude larger than
early Cambrian small shelly fossils. Put another way, the discovery of
conulariids in the Tamengo Formation adds to a growing body of
evidence (e.g,, Darroch et al,, 2015; Darroch et al., 2016; Zhu et al,,
2017; Darroch et al, 2018b) of some degree of phylogenetic and
ecological continuity across the Ediacaran-Cambrian boundary.

Fifth, the apparent organic composition of the Tamengo
Formation periderm raises the intriguing possibility that the
earliest conulariids were non-mineralizing, with production of
phosphatic micro-lamellae within the clade having originated after
the end of the Ediacaran but before the end of the Cambrian, as
indicated by the presence of mineralized Baccaconularia in the
Furongian of the north-central United States (Hughes et al., 2000;
Van Iten et al., 2005). Conulariids in certain Phanerozoic strata, for
example Anaconularia anomala from the Upper Ordovician Letnd
and Zahotany formations of Bohemia (Bruthansova and Van Iten,
2020), are known only from molds and casts, and thus post-mortem
loss of the entire periderm has occurred in some cases, though the
causes of this phenomenon in conulariids have yet to be determined.
In the present case, the hypothesis of complete or partial loss of an
apatitic skeletal component can potentially be tested through the
discovery and microstructural analysis of additional conulariid
specimens from the Tamengo and other Ediacaran formations.

Sixth, by analogy with extant scyphozoans, P. ediacara was a
predator. Using elongate tentacles armed with nematocysts, modern
scyphozoans prey primarily on meso-zooplankton (Grazhdankin,
2016). To date, no such soft-part structures have been detected in
conulariids. Nevertheless, if P. ediacara was a predator, it seems likely
that its prey were microscopic, possibly single-celled organisms living in
the water column or even on the seafloor (see also discussions in the
sections below). Again, by analogy with modern scyphozoans, P.
ediacara may also have had the ability to assimilate dissolved
organic matter (Arai, 1997).

Finally, the presence of conulariids in latest Ediacaran strata
implies that Cnidaria has an even deeper Proterozoic evolutionary
history. According to a previous cladistic analysis of the phylogenetic
relationships among major groups within the phylum (Van Iten et al,,
2006a; 2014a), conulariids (Conulariida) originated after Scyphozoa
and Cubozoa split from each other, and after the most recent
common ancestor of these two classes split from its most recent
common ancestor with Hydrozoa. Still earlier, medusozoans
(Scyphozoa, Cubozoa, Hydrozoa, and Staurozoa) split from their
most recent common ancestor with Anthozoa. It should be noted,
however, that certain more recent studies of cnidarian phylogeny
(e.g, Zhao et al, 2019) have concluded that Scyphozoa is
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paraphyletic. Be that is it may, the origin of Conulariida, now
placed on the basis of body fossil evidence within the
Neoproterozoic, was preceded by multiple branching events in the
evolutionary history of Cnidaria. Moreover, and in accordance with
the phylogenetic trees of Van Iten et al. (2006a) and Van Iten et al.
(2014a), Cubozoa and Scyphozoa diverged from their most recent
common ancestor no later than 542 Ma, the minimum absolute age
of P. ediacara, which may therefore serve as a new internal calibration
point for molecular clock studies of the evolution of Cnidaria.

Ediacaran Marine Paleoecology

Together with the presence of the putative cnidarian polyps
Corumbella and Cloudina in late Ediacaran rocks in Africa and
North and South America (e.g, Kouchinsky et al,, 2012; Pacheco
et al, 2015; see however Yang et al, 2020 for a discussion of the
possible annelid affinities of Cloudina), the presence of P. ediacara in
the Tamengo Formation of Brazil may lend additional weight to the
hypothesis (e.g., Hua et al., 2003; Schiffbauer et al., 2016) that the
feeding strategy of predation, exhibited by extant medusozoans in
general (Arai, 1997), originated before the close of the
Neoproterozoic. Additionally, the existence of other late Ediacaran
organisms capable of skeletogenesis or tube construction, including
Namacalathus, Namapoikia, and Sinotubulites (e.g., Fedonkin, 1992;
Fedonkin and Waggoner, 1997; Grotzinger et al., 2000; Hofmann and
Mountjoy, 2001; Wood et al., 2002; Hua et al.,, 2003; Grazhdankin,
2014; Grazhdankin, 2016), further signals an increase in ecological
complexity near the end of the Proterozoic. Indeed, some authors
(e.g, Narbonne, 2005) have argued that terminal Ediacaran marine
communities were comparable in productivity and trophic structure
to modern marine ecosystems, and it is becoming increasingly likely
that terminal Ediacaran ecosystems featured complex food chains
composed of herbivores, filter feeders, and predators (Vermeij, 1989;
Lipps and Culver, 2002; Babcock et al., 2005; Xiao and Laflamme,
2009; Laflamme et al., 2013; Droser and Gehling, 2015; Schiffbauer,
et al,, 2016; Gibson et al., 2019; Muscente et al., 2019; Wood, et al,
2019; Cracknell et al,, 2021). Animals in these ecosystems developed a
variety of foraging strategies based on microorganisms (picoplankton,
microplankton, and microbial mats) as the primary producers (Vidal
and Moczydtowska-Vidal, 1997; Gehling, 1999; Seilacher, 1999; Lipps
and Culver, 2002; Darroch et al., 2016; Darroch et al., 2018a; Darroch
et al, 2018b; Darroch et al, 2020), though with certain modern
elements such as bioturbating infauna also present. In short, then, the
occurrence of P. ediacara and other, possible predators (Corumbella
and Cloudina) in the latest Ediacaran Tamengo Formation lends
additional plausibility to the hypothesis of increasing complexity of
ecosystems just prior to the beginning of the Phanerozoic.

Taphonomy and Epifaunal Tiering of the
Tamengo Formation Biota

Paraconularia ediacara, Corumbella, and Cloudina in the Tamengo
Formation were components of a marine macrobenthic ecosystem
developed in a mixed carbonate-siliciclastic ramp setting (Amorim
et al, 2020). Together with vendotaenids (Vendotaenia sp.),
macroalgae, and the ichnofossil Multina minima (Parry et al,
2017), P. ediacara and Corumbella occur on bedding planes in
silty shales deposited in the outer to distal mid-ramp facies (Amorim
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et al,, 2020). Both taxa are represented by comminuted, flattened,
loosely packed remains that are randomly arranged in the
sedimentary matrix. Therefore, these fossils probably are
parautochthonous to allochthonous elements that settled from
suspension on a deep (below storm wave base), low-energy fine-
grained bottom. Shallower, more proximal parts of the ramp were
frequently affected by storms, and the skeletons of P. ediacara and
Corumbella may have been transported basinward over hundreds of
meters, a taphonomic condition well exemplified by Devonian
conulariids preserved in distal shale facies (Rodrigues et al,
2003). The occurrence of Corumbella as imbricated bioclasts at
the base of lens-shaped deposits of very fine sand (Amorim et al,
2020) suggests further that these skeletons were sturdy enough to
survive tractive transport. Importantly, in situ (i.e., preserved in life
position) occurrences of P. ediacara and Corumbella have not been
found in the Tamengo Formation. However, dense accumulations of
in situ Cloudina shells are known from the shallow water,
microbially-induced carbonates making up the bulk of the
formation. Although single bedding planes bearing in situ
associations of all three benthic invertebrates are unknown, their
frequent co-occurrence (particularly Corumbella and Cloudina) in
polytypical assemblages suggest that they may have colonized the
same bottoms or at least mutually adjacent ones. Indeed, in situ
Cloudina-Corumbella-Namacalathus associations are known from
inner ramp carbonate deposits of the Ediacaran Itapucumi Group in
Paraguay (Warren et al,, 2012; Warren et al., 2017).

The three macrobenthic invertebrate taxa present in the
Tamengo Formation seem to have been sessile epifaunal
members of a low-to high-density, tiered community that
flourished in a ramp setting subjected to intermittent burial
events. The occurrence of these fossils together with meiofaunal
ichnofossils (Parry et al., 2017) suggests a relatively complex tiering
structure with distinct epifaunal guilds and even a shallow
infaunal one. Based on estimates of the maximum original
height of the best-preserved fossil specimens, at least two
and possibly three nonoverlapping tiers extended from 0 to
10 cm above the seafloor. The lowest level from 0 to 1 cm was
dominated by Cloudina, which grew at a subhorizontal to
oblique (occasionally vertical) attitude relative to the seafloor
(Becker-Kerber et al., 2017). This animal was largely prone,
having only one or two of its nested funnel-like segments
oriented slightly oblique to bedding (Becker-Kerber et al,
2017) to benefit from bottom currents. Corumbella werneri
had a resistant but flexible carapace (Pacheco et al., 2015)
which grew to an estimated 80 mm in length (Babcock et al.,
2005). This species lived with the apical end embedded in
muddy sediment (Pacheco et al., 2011; Pacheco et al, 2015),
a condition also observed in specimens from the Ediacaran
Itapucumi Group of Paraguay (Warren et al., 2012; Warren
et al., 2017). Thus, C. werneri occupied a substantially higher
tiering level than that of Cloudina, while P. ediacara, which
appears to have been somewhat longer than C. werneri, may
have occupied an even higher tiering level. As was the case for
other Ediacaran assemblages (see Clapham and Narbonne,
2002, p. 630), the biomass of the Tamengo Formation
community was concentrated in the basal 10 cm above the
seafloor. The tiering structure of this community appears to
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have been controlled both by constructional differences
between taxa and by feeding behavior, possibly with
Cloudina being a passive filter feeder (Becker-Kerber et al,
2017) and both C. werneri and P. ediacara engaging, possibly, in
active predation.

CONCLUDING STATEMENT

The first known Ediacaran conulariid, Paraconularia ediacara n.
sp., is diagnosed and described based on an incomplete but
otherwise well-preserved specimen from the terminal
Ediacaran Tamengo Formation of southern Brazil. The
discovery of this body fossil has important implications for
studies of the origins of the major groups of animal phyla and
the early evolution of marine ecosystems. It is hoped that further
collecting at the Ladario localities near Corumba (Mato Grosso
do Sul State) will yield additional material of this conulariid,
which provides further support for the hypothesis of a relatively
deep Neoproterozoic origin for phylum Cnidaria and therefore,
possibly, of predation as well.
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