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Spatially distributed meteorological information at the slope scale is relevant for many
processes in complex terrain, yet information at this sub-km spatial resolution is difficult to
obtain. While downscaling to kilometer resolutions is well described in literature, moving
beyond the kilometer scale is not. In this work, we present a methodical comparison of
three downscaling methods of varying complexity, that are used to downscale data from
the Numerical Weather Prediction model COSMO-1 at 1.1 km horizontal resolution to 250
and 50m over a domain of highly complex terrain in the Swiss Alps. We compare WRF, a
dynamical atmospheric model; ICAR, a model of intermediate complexity; and
TopoSCALE, an efficient topography-based downscaling scheme. Point-scale
comparisons show similar results amongst all three models w.r.t. mean-error statistics,
but underlying dynamics are different. Ridge-flow interactions show reasonable agreement
between WRF and ICAR at 250m model resolution. However, at 50 m resolution WRF is
able to simulate complex flow patterns that ICAR cannot. Validation against Lidar data
suggests that only WRF is able to capture preferential deposition of snow. Based on these
findings and the significant reduction in computational costs, ICAR is a cost efficient
alternative to WRF at the 250 m resolution. TopoScale performs very well in point-scale
comparisons, but it is unclear if this can be attributed to the model itself or to the forcing
data and the observations assimilated therein. Further study is required to quantify this
effect.
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1 INTRODUCTION

Interactions between the atmosphere and orography in alpine environments can threaten
downstream communities with avalanching, flooding, or mass movement events (Petley, 2012),
or support their livelihood with water resources (Sturm et al., 2017). Recent mass movement events
on Piz Cengalo in Switzerland and in Chamoli (Shugar et al., 2021), India exemplify the
humanitarian and economic cost of such events. Understanding how the frequency and
distribution of these processes will change in the future is thus an area of focused research
(Gariano and Guzzetti, 2016). These processes involve complex interactions between
meteorological variables and terrain properties such as permafrost degradation (Seneviratne
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et al., 2012; Phillips et al., 2017), freeze-thaw action on rock
fractures (Crozier, 2010), or precipitation infiltration into the
subsurface pore space (Selby, 1988). Indeed, extreme
precipitation has been found to coincide with mass movement
events (Kirschbaum et al., 2012). Forecasting meteorological
conditions in complex terrain, and precipitation in particular,
remains challenging due to the interplay between local terrain-
induced flows, microphysics, and atmospheric state (Mott et al.,
2014; Gerber et al., 2017; Gerber et al., 2018). Orographic
enhancement of precipitation (Houze, 2012), preferential
deposition of snow (Lehning et al., 2008; Mott et al., 2018),
and cold air pooling and thermal inversions are a few examples of
processes that give rise to strongly heterogeneous spatial patterns
(Zhong et al., 2001). Properly resolving such processes requires
high spatial and temporal resolutions (Hearman and Hinz, 2007;
Coulthard and Skinner, 2016). Prior studies have shown that
running atmospheric models at spatial resolutions as high as
1.3 km (Garvert et al., 2007), 50 m (Gerber et al., 2019), 25 m
(Raderschall et al., 2008) or 20 m (Mott et al., 2019) may be
required to resolve the dynamics which give rise to these specific
phenomena.

The temporal and spatial variability of snow accumulation can
be associated with wind-driven processes ranging from
orographic precipitation at large scale to preferential
deposition of snowfall and wind-induced redistribution of
snow at smaller scales (Mott et al., 2018). Following Mott
et al. (2018) it is useful to distinguish between the mountain
ridge scale (hundred to thousands of meters, or O (102–103 m)
and the slope scale (several to hundreds of meters, or O
(1–102 m). Gerber et al. (2019) recently demonstrated that the
effect of terrain-flow-precipitation interactions may increase
snow accumulation on the leeward side of the mountain ridge
by about 30% with respect to the windward side. Wang and
Huang (2017) showed how the deposition maxima shift from the
windward side of a mountain under weak advection, to the
leeward side with stronger winds. The ability of models to
capture the change in snow accumulation due to terrain-
induced wind effects was shown by multiple studies to be
strongly dependent on the representation of the terrain-
induced flow field (Vionnet et al., 2017; Gerber, 2018; Roth
et al., 2018; Gerber et al., 2019). Furthermore, a model study
performed by Comola et al. (2019) applying Large eddy
simulations showed that ridge-scale deposition patterns
strongly depend on the governing processes inertia, flow
advection and gravity.

The technique of running physically based models to
downscale coarser model output, referred to as dynamic
downscaling, can be computationally costly over large domains
or long time periods. As an alternative, downscaling of coarse
model output using empirical relationships and existing spatial
patterns is often done through a process known as statistical
downscaling (Fowler et al., 2007; Schomburg et al., 2012). The
major drawbacks of using such statistical downscaling
approaches are their decreased accuracy and agreement when
predicting extreme events. Importantly, these extreme events
often trigger the dynamic land-atmosphere processes
mentioned above (Caine, 1980). Furthermore, statistical

methods are generally unable to account for dynamical inter-
variable dependencies (Themeßl et al., 2012; Gutiérrez et al.,
2013; Sunyer et al., 2015), although methods exist to include
statistical inter-variable dependencies (Li and Babovic, 2019).

It is difficult to evaluate the accuracy of downscaling schemes
at resolving spatial patterns of variables at high resolutions, since
distributed observations at these resolutions are rare or non-
existent. Thus, evaluations of dynamic and statistical downscaling
focus on point-scale comparisons, comparison with spatially-
interpolated point observations, or qualitative comparisons
between dynamic and statistical downscaling schemes. As
discussed in Flaounas et al. (2013), comparison with spatially-
interpolated point observations introduces biases due to the
interpolation technique used, and point-based evaluations may
favor statistical techniques that train on data from the same
locations used in evaluation, even if separate training and
evaluation time periods are used. In light of this, in this study
we will not rely on spatially interpolated products. Results from
intercomparison studies rarely observe identical spatial patterns
between statistical and dynamic downscaling in general
(Flaounas et al., 2013; Gutmann et al., 2016; Tang et al.,
2016). Other studies have noted both strong seasonality to the
predictive accuracy of dynamic and statistical downscaling
schemes, with higher predictive skill in winter than summer,
and overall higher predictive skill for precipitation frequency than
extremes (Haylock et al., 2006; Schmidli et al., 2007). Schmidli
et al. (2007) noted that despite this seasonal variability, dynamic
downscaling schemes had more agreement among themselves
than statistical downscaling schemes over all seasons. Due to the
aforementioned dearth of spatially extensive direct observations,
it is challenging to judge which approach will yield a more
“correct” pattern. Still, the discrepancy in observed spatial
patterns can sometimes be attributed to physical properties
captured by dynamic downscaling schemes (Gutmann et al.,
2012). Due to this, conclusions of these intercomparison
studies often focus on the agreement between ensembles of
downscaling schemes, particularly concerning future trends or
large-scale spatial patterns. For a more thorough review of the
literature on statistical and dynamic downscaling schemes, the
reader is referred to Vaittinada Ayar et al. (2016).

Intercomparison studies of downscaling techniques often
focus on scale lengths greater than the sub-kilometer scale,
meaning that they have not yet evaluated model accuracy
within the context of slope scale processes. Advances in
atmospheric modeling over the past decades have recently
allowed atmospheric models to rival the predictive skill of
high-resolution statistical interpolation techniques used to
validate them (Lundquist et al., 2019). This advance is
particularly useful when forecasting extreme events, as
atmospheric models rely on physical principles for prediction
instead of empirical relationships dependent on prior
observations of extreme events. Similar to this, statistical
downscaling techniques that propagate prior patterns into a
future climate may incorrectly assume that spatial patterns are
invariant to changes in the climate (Vrac et al., 2007; Gutmann
et al., 2012). In addition to improvements in the accuracy of
atmospheric models, the development of more computationally
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efficient algorithms (Fuhrer et al., 2014) and investments in
research computing resources have allowed these models to be
run at high spatial resolutions down to 50 m over single basins
(Gerber et al., 2019) or 1 km over a mountain range
(Pontoppidan et al., 2017), and in experimental settings, even
the globe (Fuhrer et al., 2018). At these scales the topographic
heterogeneity of complex terrain and the resulting meteorological
heterogeneity can be better resolved.

With a variety of options for downscaling meteorological
variables in complex terrain, each downscaling approach
should be examined for its representation of physical processes
and the horizontal and temporal resolution that can be simulated
given available computational resources. This tradeoff between
model resolution, computational efficiency, and physical
accuracy is the focus of this intercomparison study. Here, the
ability of three downscaling schemes to downscale meteorological
variables to high resolution grids (< � 250 m) in complex terrain
is examined. This scale regime is chosen based on the studies
discussed above, which showed such resolutions are necessary to
resolve spatial heterogeneity of precipitation and winds
(Raderschall et al., 2008; Gerber et al., 2019). An important
goal of this work is to provide an overview of the strengths
and weaknesses of these models, not only in terms of absolute
performance but also in relation to their computational costs.
This will inform future users on the right downscaling tool for
their purposes, as downscaling e.g. an ensemble of climate change
projections will require a different approach than the
downscaling of a single meteorological event. We therefore
analyzed computational costs of the models and their
limitations regarding model domains and time frames.

The models featured in this comparison are the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2008a), the Intermediate Complexity Atmospheric Research
(ICAR) model (Gutmann et al., 2016), and TopoSCALE
(Fiddes and Gruber, 2014), a computationally efficient
topography-based downscaling scheme. These models are
further described in Section 2. In Section 3.1, modeled
variables are compared to observations from a network of
meteorological sensors. In Section 3.2, spatial patterns of
precipitation are then compared between the models, and
modeled spatial patterns of snow deposition for particular
storm events are compared to LiDAR observations of snow
depth. The computational demands of these individual
downscaling schemes are then contrasted in Section 3.3,
followed by a discussion of their strengths and weaknesses in
Section 4. To improve readability, in this text, resolution will refer
to horizontal spatial resolution unless otherwise indicated.

2 METHODOLOGY

This study comprises one efficient topography based approach
(TopoSCALE) and two dynamic meteorological models of
different complexity (WRF, ICAR). As these approaches differ
with regards to forcing data, downscaling methodology and
computational costs, we will quantitatively and qualitatively
compare the strengths and limitations of the models and their

performance at different spatial and temporal resolutions with a
particular focus on the very high resolutions (slope scale, i.e.
hundreds of meters and below). The time periods, model domains
and spatial and temporal resolutions that themodels were run for,
are specified in Table 1. In order to run each model in its optimal
configuration we allow the models to use different physical
schemes based on model requirements (see details below).
However, to be able to have a direct comparison of the
atmospheric models with respect to precipitation patterns and
the influence of the boundary layer flow on the ridge-scale
precipitation patterns the same microphysical scheme is used
by ICAR and WRF. All models are driven by COSMO-1 analysis.
For all models (both forcing and downscaling), the output
consists of hourly instantaneous values. As we are particularly
interested in downscaling meteorological fields to very high
spatial resolutions, all models are run for a target model
domain at 250 m spatial resolution (Figure 1, D1), that covers
the region of Davos and Prättigau (Figure 1), with a size of 37.5
and 45 km in west-east and north-south direction, respectively.
We introduce a smaller target domain (D2) for 50 m resolution
runs to allow us to highlight the benefits of fully dynamical
models and models resolving non-linear effects such as WRF.
This is a dedicated test for model runs focused on intense
precipitation events. All models are run at 50 m resolution for
target area D2 (Figure 1) to reflect the impact of ultra-high
resolution terrain on the downscaling of meteorological variables.
We include two considerable storm events on our analysis, which
occurred in spring 2017 and winter 2019 (Table 1). All models are
tested in their ability to reproduce the spatial and temporal
variability of slope-scale processes during strong precipitation
events. For model evaluation at the point scale, we use the root-
mean-square error (RMSE) and mean bias error (MBE)
defined as

RMSE �
���������������∑T

t�1 ymod − yobs( )2
T

√
and

MBE � 1
T
∑T
t�1

ymod − yobs( ) (1)

where t � 1, . . . , T are individual observations, ymod is the
modeled parameter, and yobs the observed parameter.

ICAR and TopoSCALE are additionally analyzed for season-
long simulations. For this purpose, these two models are run for
two 8 months-long periods fromOctober throughMay (run4 and
run5, see Table 1 for details). Due to the very high computational
costs of WRF, the analysis of WRF is restricted to the shorter
simulations of run1, run2 and run3.

2.1 Forcing Data: COSMO-1
All downscaling models are driven by analysis data from the
COSMO-1 model1, operated by the Swiss weather service
MeteoSwiss2. This analysis dataset consists of the first 3 h of

1Model documentation available at www.cosmo-model.org
2https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/
warning-and-forecasting-systems/cosmo-forecasting-system.html
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each operational run, which is initialized 8 times per day. The
model uses a sophisticated data assimilation scheme described in
Schraff et al. (2016). Some of the meteorological stations used for
the validation of the downscaling methods are included in this

assimilation scheme, which is discussed in Section 2.3. The
COSMO-1 model has a spatial resolution of 0.01°, which
roughly equates to 1.1 km. The COSMO-1 model is driven by
boundary conditions from the IFS ENS global ensemble system,

TABLE 1 | Overview of model runs.

Model runs Start date End date dx, dy
[m]

Domains Models

Run1 31-03-2017 17-05-2017 250 D1 All
Run2 12-03-2019 27-03-2019 250 D1 All
Run3 12-03-2019 16-03-2019 50 D2 All
Run4 1-10-2016 31-05-2017 250 D1 TopoSCALE, ICAR
Run5 1-10-2018 21-05-2019 250 D1 TopoSCALE, ICAR

FIGURE 1 | Domains D1 and D2. IMIS and SMN stations are shown. The purple NW-SE line in the center of D2 indicates the transect for the cross section shown in
Figures 8, 9. Map data from Swisstopo, copyright Bundesbehörden der Schweizerischen Eidgenossenschaft.

TABLE 2 | Overview of main components/modules for the downscaling models.

TopoSCALE ICAR WRF

Wind 3D interpolation through pressure levels 3D interpolation to high-resolution terrain plus Wind
solver accounting for divergence; Simple Local
boundary Layer Scheme (Hong and Pan, 1996)

Navier-Stokes equations; Shin-Hong
scale–aware boundary layer scheme (Shin
and Hong, 2015)

Precipitation 2D interpolation, Simple lapse rate (Liston and Elder,
2006), partitioning rain/snow, reduction of
precipitation on steep slopes (snow accumulation)

Microphysics scheme: Thompson and Eidhammer
(2014)

Microphysics scheme: Thompson and
Eidhammer (2014)

Radiation Topographic correction: cosine correction, SVF
reduction, parameterised horizon

Shortwave radiation (Reiff et al., 1984); longwave at
the surface (Idso and Jackson, 1969)

Long- and shortwave RRTMG radiation
schemes (Iacono et al., 2008)

Land-surface
model

FSM (Essery, 2015): snow/surface temperature Noah (Chen and Dudhia, 2001) NoahMP (Niu et al., 2011; Yang et al., 2011)
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and uses a rotated grid to minimize numerical errors. It has 80
vertical levels with thickness ranging from 23 m at the surface to
800 m at the model top, which is around 22 km above sea level.
The model uses the Smooth LEvel VErtical (SLEVE) coordinate
(Schär et al., 2002; Leuenberger et al., 2010), a vertical coordinate
scheme specifically developed for the complex terrain of the Alps,
that is aimed at minimizing numerical errors due to vertical grid
distortion.

2.2 Model Description and Settings
2.2.1 TopoSCALE
TopoSCALE (Fiddes and Gruber, 2014) can be described as an
efficient physically-based downscaling scheme which formulates
physical principles to account for the effect of a high-resolution
topography on boundary layer meteorology. Its main purpose is
to generate high resolution output that account for the main
consequences of surface variability and enable efficient
simulations up to large (regional) scales. TopoSCALE
performs a 3D interpolation of atmospheric fields available on
pressure levels to account for time varying lapse rates and a
topographic correction of radiative fluxes. These include a cosine
correction of incident direct shortwave radiation on a slope,
adjustment of diffuse shortwave and longwave by the sky view
factor and elevation correction of both longwave and direct
shortwave. These radiation correction schemes have recently
been shown to have limited accuracy (von Rütte et al., 2021)
but are computationally efficient and consistent with the general
complexity of TopoSCALE. Additionally, a simple lapse rate is
implemented to allow orographic enhancement of precipitation
to be considered (Liston and Elder, 2006). In practice, variability
in snow accumulation and depletion is controlled mainly by the
energy balance (wind redistribution is not considered).
TopoSCALE is coupled to the snow model FSM (Essery, 2015)
to simulate snow parameters and surface temperature. It has been
well tested in various geographical regions and applications, e.g.,
Permafrost in the European Alps (Fiddes et al., 2015), Northern
hemisphere permafrost (Westermann et al., 2015), Antarctic
permafrost (Obu et al., 2020), Arctic snow-cover (Aalstad
et al., 2018), Alpine snow cover (Fiddes et al., 2019). Typically,
TopoSCALE has been driven by reanalysis from ECMWF (ERA-
Interim, ERA5). In this study the scheme is adapted for a
COSMO-1 forcing, with topography based on the SRTM30
dataset3, resampled to 50 and 250 m. For more details on
TopoSCALE the reader is referred to Fiddes and Gruber (2014).

2.2.2 ICAR
ICAR (Gutmann et al., 2016) is a simplified three-dimensional
atmospheric model. The input requirements for ICAR are the
same as those of a regional climate model (RCM): three-
dimensional time-varying temperature, pressure, humidity, and
wind fields. However, unlike a traditional RCM, ICAR uses the
three-dimensional fields of pressure and wind from the driving
low-resolution model throughout the domain, while temperature
and humidity are only applied at the boundaries of the model as

in a traditional RCM. ICAR advects heat and moisture based on a
transient three-dimensional wind field. This wind field is
calculated from the forcing dataset and interpolated onto the
high-resolution topography. This forms the primary
simplification in ICAR; it permits ICAR to avoid directly
solving the Navier–Stokes equations of motion, which form
the numerical core of a traditional atmospheric model. ICAR
uses microphysics scheme(s) similar to other atmospheric models
to calculate precipitation and other hydrometeorological and
thermodynamic tendencies.

Low-resolution fields are linearly interpolated to the ICAR
high-resolution grid, and pressure is adjusted for the change in
elevation between the interpolated input grid and the ICAR grid.
The model version used for the work described here makes use of
a Smooth Level Vertical (SLEVE) coordinate as described in
Schär et al. (2002); Leuenberger et al. (2010), where different
decay rates for small scale and large scale topography can be set.
This allows for better advection and smaller numerical errors.
The boundary layer scheme is a simple local scheme based on
Hong and Pan (1996). The microphysics scheme used is
described in Thompson and Eidhammer (2014). The surface
scheme is the Noah scheme described in Chen and Dudhia
(2001). Radiation is dealt with by a simple scheme based on
Finch and Best (2004). No convection parameterization is used
and the advection is handled by the simple scheme as described in
Gutmann et al. (2016) (Eq. 10), with the exception that density is
not taken into account in the advection equation. The model’s
internal time step is adaptive, and is calculated each forcing time
step based on the maximum wind speed and spatial resolution.
ICAR simulations are run at a horizontal resolution of 250 and
50 m, with 60 vertical layers that increase in thickness from 9.7 m
at the bottom to 975 m at the model top, which is at 10.200 m
above the surface. ICAR’s vertical coordinate is height-based but
under standard atmospheric pressure the model top would
roughly equate to 250 hPa. The domain corresponds to D1 in
Figure 1 with an additional km around the borders.

Topography and land use information are based on the Aster
1 s digital elevation model (DAAC, 2019) and the Coordination
of Information on the Environment (Corine) dataset (European
Environmental Agency, 2006), respectively. The static data are
prepared using WRF’s preprocessing scheme as described in
(Gerber and Sharma, 2018). To avoid pressure gradient errors
caused by steep slopes (de Wekker, 2002), the 1-2-1 smoothing
option of WRF (Gerber and Sharma, 2018) is applied to keep all
slopes in domain D1 and D2 below 45°.

The most notable changes in ICAR with regards to the
description in Gutmann et al. (2016) are: 1) The addition of a
SLEVE vertical coordinate (Schär et al., 2002; Leuenberger et al.,
2010) described earlier in this section; and 2)We do not use linear
mountain wave theory to calculate the disturbances to the
windfield. Given the high spatial resolution and the
complexity of the topography, it highly debatable whether the
atmosphere can be assumed to be in a steady state—a crucial
assumption for mountain wave theory to apply. Therefore, a new
wind solver has been developed, whose working can be
summarized as follows: First, the grid-relative vertical velocity
is calculated using the direct-differencing method to balance out3icesat.gsfc.nasa.gov/icesat/tools/SRTM30_Documentation.html.
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any existing divergence in the horizontal wind field. This step
follows the same procedure that is in the original ICAR model
(Gutmann et al., 2016). Testing showed that this method can
produce large vertical velocities near the model top. To remedy
this, the grid-relative vertical velocity at the model top is
subtracted from the vertical profile of grid-relative vertical
velocity, weighted by height above ground:

wadj � w − wtop
z

ztop
(2)

where z is the elevation above ground, ztop is the height of the
model top, wtop is the grid-relative vertical velocity at the model
top for a given column, and w is the grid-relative vertical velocity
obtained from the direct-differencing step. This step introduces
divergence into the 3D wind field by unbalancing the horizontal
and vertical velocities. To re-balance the 3D wind field while
maintaining the new grid-relative vertical velocity, the divergence
reduction approach outlined in Goodin et al. (1980) is used to
adjust the horizontal vectors to balance the prescribed grid-
relative vertical velocity profile.

These new features are featured as optional settings in version
2 (v2) of the model linked to in Section 6.

2.2.3 WRF
The non-hydrostatic and fully compressible Weather Research
and Forecasting (WRF) model (Skamarock et al., 2008b) is one of
the most widely used atmospheric models. In this study, we use
version 4.1.5. Simulations for run1 and run 2 are run with a
nested approach with 2 domains. The parent domain D0 covers a
domain of about 184 km in west-east direction and 221 km in
south-north direction with a horizontal resolution of 1.25 km
centered over the region of Davos (not shown in Figure 1).
Domain D1 is nested into this domain with a resolution of 250 m,
and is shown in Figure 1. Both simulation domains are run with
60 vertical levels, with the model top at 150 hPa. The simulation
timesteps are 5 and 1 s for domains D0 and D1, respectively.
Simulation run3 is run with an additional nest (domain D2) with
a horizontal resolution of 50 m and 90 vertical levels. The
simulation setup is similar to the setup by Gerber et al.
(2018), with some adaptations. The boundary layer is
parameterized using the Shin-Hong scale–aware scheme (Shin
and Hong, 2015). Mixing terms are evaluated in physical space
and the subgrid scale turbulence is solved by the horizontal
Smagorinsky first order closure while the vertical diffusion is
taken care of by the boundary layer scheme (Shin and Hong,
2015).

To be able to better asses how the dynamics affect results, in
both ICAR and WRF microphysics are parameterized by the
Thompson and Eidhammer scheme (Thompson and
Eidhammer, 2014). The land surface is taken care of by the
Noah land surface model with multiparameterization options
(Niu et al., 2011; Yang et al., 2011), which is not available in ICAR.
The link between the surface and the atmosphere is
parameterized by the Monin-Obukhov surface layer
parameterization (Dyer and Hicks, 1970; Paulson, 1970; Webb,
1970; Zhang and Anthes, 1982; Beljaars, 1995). Noah-MP is run
in default mode, except from the partitioning of rain and snow,

which is snowfall if Tair < Tfrz + 2.2oK (Niu et al., 2011). The long-
and shortwave RRTMG radiation schemes (Iacono et al., 2008)
are called every 5 min. Table 2 lists the main differences in model
set-ups and parameterizations.

Topography and land use information are based on the Aster
1 s digital elevation model (DAAC, 2019) and the Coordination
of Information on the Environment (Corine) dataset (European
Environmental Agency, 2006), respectively. The static data was
prepared as WRF input based on Gerber and Sharma (2018). To
avoid pressure gradient errors caused by steep slopes (deWekker,
2002), one smoothing cycle using the 1-2-1 smoothing option of
WRF (Gerber and Sharma, 2018) is applied to keep all slopes in
domain D1 below 45° in simulations run1 and run2. Four
smoothing cycles were applied to keep all slopes in domain
D2 below 45° in simulation run3. For consistency between the
domains within one simulation run the same smoothing is
applied for all domains. Additionally, the roughness length of
snow is set to 0.2 m to take missing roughness elements into
account (Gerber et al., 2018). These procedures are the same for
the WRF and ICAR simulations.

2.3 Validation Data
2.3.1 Station Data: IMIS and SMN Station Data
For the point validation 4 SMN (SwissMetNet) and 10 IMIS
(Intercantonal Measurement and Information System)
stations located in domain D1 are used. The recorded time
series of hourly and daily wind speeds, air temperature and
snow depths are used to compare the models’ output to. The
IMIS network (Lehning et al., 1999) was developed to assist in
avalanche warning, and therefore has stations predominantly
located in the mountainous area of the country. IMIS stations
are located at either exposed or sheltered locations, and are
classified as such. This allows us to asses the performance of
the models in both types of terrain. For wind speed and
direction, we therefor only use the IMIS stations, so that we
can separately assess model performance in exposed vs.
sheltered locations.

The SMN network was developed to aid in weather forecasting,
and has more stations at middle and low elevations compared to
the IMIS network. There are various differences w.r.t.
instrumentation between the stations from these two networks,
the most relevant for the current study are discussed here briefly.
Temperature sensors at the SMN stations are ventilated, which
minimizes the effects of radiation on the temperature
measurements. The IMIS stations do not have ventilated
temperature measurements (Huwald et al., 2009). IMIS station
measure the snow depth by means of SR50 sonic ranger, whereas
SMN stations only measure precipitation. This is however done
with heated precipitation gauges. Although some IMIS stations also
feature simple precipitation gauges, since these are not heated or
shielded the errors are significant (Yang et al., 1999) and we
therefor exclude them in this study. Wind measurements at
IMIS stations are conducted at 6.8 m above the (snow free)
surface by means of Young wind sensors, whereas SMN stations
measure wind speed at 10m above the (snow free) surface. For
both station types, wind speeds, wind direction, 2 m temperature
and humidity are hourly averaged values, whereas snow height
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shows an instantaneous (current) value, and precipitation is the
hourly sum.

2.3.2 Snow Depth Distribution
Snow depth data from Airborne Laser Scanning (ALS) is used for
a subset of domain D1. Data was acquired on 3 days during 2017

(20 March, 31 March and 17 May) providing important
information of snow accumulation and ablation patterns. The
snow-off flight was conducted on August 29, 2017 to yield the
summer digital elevation model. The measurement setup
included a Riegl Q -1560 ALS scanning at a 800 kHz pulse
rate with a 60° scan angle (Mazzotti et al., 2019). The

FIGURE 2 | Panel pairs of average Root-Mean-Square (RMSE) and Mean Bias Errors (MBE) for point-scale comparison of (A)wind speed (Wind_spd), (B)Wind direction
(Wind_dir), (C) 2 mair temperature (T2m), (D) dailymaximum2 mair temperature (T2m_max), (E) dailyminimum2 mair temperature (T2m_min), (F) relative 2 mhumidity (RH2m),
(G) total precipitation (PrecTot) and (H) snow depth (HS). These results are based on run1 and run2, and are averaged over the stations used for each parameter’s analysis.
Annotated in each panel pair is the number of stations from each network that the calculations are based on. Error bars indicate standard deviations.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 7893327

Kruyt et al. A Downscaling Intercomparison

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


ALS-derived data set from 20 March in 1 m resolution was
validated against data from snow probing within the forest.
This resulted in a RMSE of 13 cm and a bias of −5 cm (Helbig
et al., 2021). The ALS data set used in this study covers an area of
about 260 km2 in 3 m resolution. The high-resolution snow depth

data is aggregated to 50 m resolution and 250 m resolution grids.
The time period between 20 and 31 March was mainly governed
by snow ablation. Contrary, snow depth changes between March
and May suggest a strong influence of preferential deposition of
precipitation during this time period of 7 weeks covering several

FIGURE 3 | Panel pairs of average Root-Mean-Square (RMSE) and Mean Bias Errors (MBE) for point-scale comparison of (A) wind speed (Wind_spd), (B) Wind
direction (Wind_dir), (C) 2 m air temperature (T2m), (D) daily maximum 2 m air temperature (T2m_max), (E) daily minimum 2 m air temperature (T2m_min), (F) relative
2 m humidity (RH2m), (G) total precipitation (PrecTot) and (H) snow depth (HS). These results are based on run4 and run5 (i.e., 2 full winter seasons), and are averaged
over the stations used for each parameter’s analysis. This number of stations is annotated in each panel pair specified per network and type. Error bars indicate
standard deviations.
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precipitation events. The data set is therefore used to test model
performances in reproducing solid precipitation amounts per
elevation bands and in capturing leeward slope loading by
preferential deposition of snowfall.

3 RESULTS

3.1 Model Performance at the Point Scale
Figures 2, 3 show the error statistics of modeled wind, air
temperature, relative humidity and precipitation at the IMIS
and SMN stations. In order to characterize the effect of
topographic exposure to wind, the IMIS stations are grouped
by sheltered and exposed locations according to IMIS standards.
For the point-scale comparison Root-Mean-Square error (RMSE)
and Mean Bias Error (MBE) statistics are calculated over the
hourly values of run1 and run2 (Figure 2), and of run4 and run5
(Figure 3). The number and type of stations that the statistics are
calculated over are indicated in the plot. It is worth reiterating
that data from the SMN stations are assimilated into the
COSMO-1 model. This will reduce the error for the COSMO-
1 model. Neither of the downscaling methods assimilates any
observational data, which allows them to deviate from the forcing
in varying degrees: For ICAR and WRF most forcing is only
applied at the domain boundaries, although interpolated forcing
for wind and pressure are applied throughout the domain for
ICAR. TopoSCALE has less freedom to deviate from the forcing
data as it operates on 1D samples of the forcing data.

3.1.1 Wind
Figure 2A Shows the average root-mean-square error and
average mean bias error of modeled wind velocity at the first
grid level compared to the IMIS stations in the domain. For this
parameter, we choose to distinguish between the exposed and
sheltered IMIS locations, and exclude the SMN stations, because
the SMN stations cannot be easily categorized as exposed or
sheltered, and it is insightful to look at these to categories
separately.

All four models, including COSMO-1, tend to overestimate
wind velocities, as can be seen from the positive bias ranging
between 1 m/s (COSMO) and 3 m/s (WRF). The performance of
the models is very similar for the event-based simulations (runs 1
and 2, Figure 2) and the seasonal simulations (Runs 4 and 5,
Figure 3). Comparing the downscaling methods, the
performance of wind speed is slightly better for ICAR. All
models tend to particularly overestimate wind speeds at
sheltered locations, indicating that the 250 m model resolution
is still not capable of resolving sheltered locations in mountainous
terrain. This finding is in agreement with Gerber et al. (2018),
who showed that locally sheltered locations of meteorological
stations are not well represented in models, even at a scale of
hundreds of meters. TopoSCALE performs similar to ICAR for
the exposed locations (Figure 3), or even slightly better
(Figure 2), whereas its performance in sheltered locations is
the poorest of all 3 downscaling methods. The overall high biases
in wind speed for all models might be explained by two reasons.
First, a considerable positive bias is already present in the forcing

data (COSMO-1). With increasing model resolutions ICAR and
WRF predict terrain-induced flow acceleration at high elevations,
whichmight explain the increase in the positive bias shown by the
higher resolution models. The wind stations in domain D1 are all
located at mid to high elevations, where such terrain-induced
speed up effects are to be expected. A domain featuring more low-
elevation stations might therefore display a lower bias. We can
plot the bias against the station elevations (Figure 4) to confirm
this hypothesis. For COSMO-1, ICAR and TopoSCALE, there is
virtually no bias below 2000 m.a.s.l. Above this elevation, bias
(and spread) increase, especially for sheltered IMIS stations
(indicated with a “+” in Figure 4). We can also see that
WRF’s positive bias occurs over all elevations. This is in line
with several studies noting a positive bias in WRF’s wind speeds
(Gómez-Navarro et al., 2015; Gerber et al., 2018). Secondly, the
strong positive bias is to some degree a result of the difference
between model level and actual measurement height [mean
height of lowest mass level: 4.7 m (ICAR), 22.5 m (WRF), and
9.5 m (COSMO-1)]. We have chosen not to use a log law to
correct for height due to strong uncertainties associated with the
choice of the roughness length (for further discussion see Section
4). Since ICAR has smaller model layers close to the surface than
WRF or COSMO-1, the difference between measurement height
and first model level is smallest for ICAR and might thus affect
the results.

The comparison of modeled and measured wind directions
(Figure 2B) looks somewhat different than for wind speed. Both
the downscaling methods as well as the forcing data show
significant deviations in wind direction with biases ranging
between 40 and 80°. For the downscaling methods, ICAR
shows the largest errors, both in absolute (RMSE) and bias
terms. ICAR exhibits the same bias as COSMO-1, since no
deflection or directional modification of the wind field is done
in the model. WRF and Toposcale perform slightly better. Similar
to wind speed, the bias in wind direction is larger for sheltered
locations as these topographic features are not well represented in
the models. For the full winter season simulations (Figures
3A,B), the results look very similar, albeit the magnitude of
the RMSE is slightly larger.

3.1.2 Air Temperature and Relative Humidity
Figure 2C shows the RMSE andMBE of modeled air temperature
compared to three SMN stations for the event-based simulations.
The same statistics are shown for the seasonal scale in Figure 3C.
The analysis was limited to the SMN stations, as these are the only
ones with ventilated temperature sensors, which means they are
not affected by heating due to radiation. COSMO, WRF and
TopoSCALE all under-predict air temperatures at the SMN
stations. For both the event- (Figure 2) and seasonal
simulations (Figure 3), the forcing data (COSMO) already
shows a negative bias of approx. 1°C at these 3 stations. ICAR
converts this to a positive bias in both the event-based (0.3°C) and
season-long simulations (1°C), whereas WRF and TopoScale
maintain a negative bias with the same magnitude as the
forcing data. If we look closer to how these errors relate to
the station’s elevation (left panel of Figure 4), we can see
that COSMO-1 and TopoSCALE have negative biases at lower
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(< 2000 m) elevations, that tend to 0 or slightly positive with
increasing elevation. ICAR on the other hand has a significant
positive bias at low elevations, that however tends to 0 with
increasing elevation. WRF has an overall negative bias, that is
most pronounced in the 2,000–2,700 m.a.s.l. range, which is
where all models show the strongest negative bias. However,
the IMIS stations in this plot are not ventilated, which means that
on clear days with low wind speeds a negative model bias is to be
expected due to the radiative heating of the sensors. When basing
the same analysis solely on the ventilated SMN stations, the
conclusions are the same, although the low number of
measurement points (3) does not yield high confidence.

We also compare the models’ abilities to simulate the daily
maximum and minimum temperatures at 2 m above the
surface (Figures 2D, 3D and Figures 2E, 3E, respectively),
which reflects the ability of the models to capture diurnal
dynamics. This analysis shows that except for ICAR, all models
underestimate the daily temperature maximum, with WRF
displaying the lowest RMSE. The temperature minima are
overestimated by ICAR, whereas WRF underestimates the
daily minima. TopoSCALE performs the best in
downscaling daily minimum temperatures, with a bias close
to 0. These results emphasize the tendency of WRF to show
strong diurnal cycles of air temperatures. Contrarily, ICAR
tends to increase the overall air temperatures with rather small
diurnal cycles.

Figures 2F, 3F show the comparison of relative humidity for
the stations. Results for all three models are very similar with
ICAR showing slightly higher errors and negative bias. This could
be a result of the slight temperature overestimation (positive bias)
in subplots C through E, since higher temperatures result in a
lower relative humidity given the same water vapor
concentration.

If we compare the findings for the event-based (Figures 2C–F)
to the seasonal simulations (Figures 3C–F) we see very similar
trends both in terms of air temperature and relative humidity
biases.

3.1.3 Temperature Inversions
Figure 5 shows the air temperature time series at a valley station
(DAV, 1594 m.a.s.l., top plot), a nearby mountain station (WFJ,
2691 m.a.s.l., middle plot) as well as the lapse rate between these

two stations (bottom plot). Both stations feature ventilated
temperature sensors and are part of the SMN network. Shown
are 6 days during run2 where a temperature inversion could be
observed in the measurement data. This inversion is the result of a
strong diurnal cycle of daytime warming and nighttime cooling at
the valley station DAV, whereas the higher station WFJ registers
very little to no diurnal cycle. As a result the lapse rate becomes
positive during the nighttime/early morning. We can see that
none of the models are able to capture the strong atmospheric
stability reflected by the two stations. The driving model
COSMO-1 only shows a weak diurnal cycle of air temperature
but still shows a negative lapse rate during night time, not
capturing the temperature inversions. This can probably be
explained by the inadequate representation of the valley floor
in the coarser resolution COSMO-1 model, which results in a
smaller difference in elevation between the two stations. WRF is
able to capture the dynamics of the diurnal cycle at the valley
(DAV) better than any other model. However, WRF also
overestimates the diurnal cycle at the mountain station and as
a result simulates no temperature inversion. ICAR severely
overestimates the temperature in the valley, although it
performs rather well at high elevation. As a result no inversion
is simulated. TopoSCALE follows COSMO’s forcing data very
closely in the valley, where it shows a weak diurnal cycle. At the
mountain station TopoSCALE’s temperature is slighly higher,
which results in a weak inversion on two of the four
inversion days.

3.1.4 Solid and Liquid Precipitation
Precipitation comparisons with the SMN stations are shown in
Figure 2G, and Figure 3G. COSMO, ICAR and TopoSCALE
show very similar point-scale predictions of total precipitation.
The bias for point-scale precipitation is smallest for ICAR over
the event-based simulations in Figure 2G, whereas over the
season-long simulations ICAR shows a stronger negative bias
(Figure 3G). WRF shows a tendency to overestimate total
precipitation amounts. It should be noted that during the
short winter simulations in Figure 2G, very little liquid
precipitation was recorded.

Figures 2H, 3H show the average root-mean-square error
and average mean bias error of modeled daily snow depth
compared to IMIS stations. All models show a similar

FIGURE 4 |Mean Bias Error (MBE) vs. station elevation, for hourly temperature (left) and wind speed (right) measurements. Included are all IMIS stations [classified
as exposed (triangle) or sheltered (plus)] and the SMN stations (dot), which is more than the analysis in Figure 2. Plot is based on the event simulations in run1 and run2.
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negative bias w.r.t. modeled snow depth for sheltered locations.
Over the event-based simulations, ICAR shows almost no bias for
exposed locations, something that is not upheld in the season-
long simulations however. This underestimation might be partly
explained by the very sheltered location of IMIS snow stations
and tendency of those stations to measure above-average snow
amounts (Grünewald et al., 2014), which is also reflected by a
significantly smaller RMSE and bias for exposed locations.
Overall, ICAR has slightly smaller bias and lower RMSE
compared to WRF, although the difference is small. It should
be further noted that since snow depth, rather than snowfall
amounts are measured at the stations, effects of settling and snow
melt have a significant impact on themodeled snow depth. Ideally
we would validate against snow water equivalent (SWE)
measurements as this would remove uncertainty due to simple
densification and settling schemes in the snow models. More
sophisticated snow cover models, such as available in CRYOWRF
(Sharma et al., 2021) would improve the model representation of
snow depth. The aforementioned warm bias in ICAR leads to
increased melt rates, which contribute to the error and negative
bias in snow depth. To illustrate this behavior, snow depth is
plotted for the IMIS station SLFPAR in Figure 6. Both ICAR and
TopoSCALE miss the precipitation event in November
(potentially due to a higher 0° limit; higher elevation stations
do capture this event). During the entire season the decline in
snow height after each snowfall is steeper for ICAR than the other

models or measurements. This behavior is observed consistently
throughout all the individual stations’ time series (not depicted
here for brevity’s sake).

Comparing the downscaling methods to the forcing data in the
season-long simulations, one might be tempted to conclude these
models perform worse than the lower resolution forcing model. It is
therefore important to note that the snow height in COSMO-1 is
calibrated once per day based on (interpolated) point
measurements and satellite data4. This observational nudging
produces a snow cover simulation that cannot deviate far from
the observed snow cover. All downscaling methods calculate snow
depths from precipitation data, and use no nudging. This allows
these downscaling models more freedom to deviate from
observation.

3.2 Model Performance at the Spatial Scale:
Evaluation of Near-Surface
Terrain-Flow-Precipitation Interaction
In this section we will analyze the interaction between flow field
and precipitation, in particular the ability of models to capture
preferential deposition of snowfall. An important question is
whether better representation of small-scale terrain can improve

FIGURE 5 | Temperature time series (top two plots) and resulting lapse rate between the valley station DAV, and mountain station WFJ. Positive lapse rate values
during night indicate situations with temperature inversions.

4Source: Personal communication with MeteoSwiss.
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model simulations of small-scale processes such as preferential
deposition of snowfall.

3.2.1 The Spatial Distribution of Precipitation at Larger
Scale
Herewe compare the spatial precipitation patterns from the different
models in a qualitative manner and discuss their differences.
Figure 7 shows the total precipitation (liquid and solid) for run1

and run2. WRF shows more precipitation overall compared to both
COSMO-1 and the other two downscaling models. This holds
especially true for the 2017 event (run1), and to a smaller degree
for the 2019 event (run2). Based on the 4 point-scale comparisons
within the domain (Figure 2G), we can cautiously conclude that
WRF overestimates precipitation amounts.

We can see that ICAR produces slightly less precipitation than
the other models at lower (1,400–1,900 m.a.s.l.) elevations, but

FIGURE 6 | Time series of snow depth for the IMIS station SLFPAR. The effect of the positive temperature bias in ICAR on the snow depth can clearly be seen, and
is representative of the behavior observed at other stations. COSMO-1 is nudged to spatially interpolated snow depth observations every 24 h.

FIGURE 7 | Comparison of modeled precipitation at 250 m resolution for run1 (2017 event, top) and run2 (2019 event, bottom).
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from 2,000 m.a.s.l. and upward, COSMO, TopoSCALE and ICAR
produce similar precipitation. For 2019 these effects are less
pronounced. The slightly dryer interior of the ICAR domain
also is of lower elevation. Based on Figure 2 in Section 3.1 we
concluded that ICAR has a positive temperature bias, that is more
pronounced at lower elevations (Figure 5). However, ICAR also
has a first order advection scheme, whereas both other dynamical
models (COSMO, WRF) have more sophisticated advection
schemes that may behave better over the steep gradients in
this domain. The drier interior domain may therefore be
explained by either the higher air temperature (and
consequent increased ability of the air to contain moisture).
But it may also be that ICAR’s advection scheme plays a role here.

TopoSCALE shows distinctly sharper gradients in its
precipitation patterns than all the other models, which can be
explained by the model working on 1D samples. This does not
allow for lateral dynamical effects, such as the influence of
upwind orography, to be incorporated on the smaller scale.

3.2.2 The Ridge-Scale Flow and Associated Snow
Deposition Fields
In this section we analyze the representation of ridge-scale flow
patterns and their effect on snow deposition patterns. Terrain-
induced flow features include speed-up effects at the ridge crest,
flowdeceleration at leeward slopes, leeward recirculation zones and
flow blocking on leeward slopes. We analyze the representation of
those flow features by different models and the changes following
an increase inmodel resolution from 250 to 50m. In the analysis of

three-dimensional flow dynamics we only compare the model
outputs from COSMO-1, ICAR and WRF as TOPOSCALE
does not provide three-dimensional information of the flow
field. In Figure 8 a cross section of wind velocity and wind
vectors crossing the Casanna ridge (Davos region) are shown
for a north-westerly situation. Flow fields are shown for two
different situations (2019-03-13 23:00 and 2019-03-14 01:00)
characterized by prevailing north-westerly winds of different
strengths. We choose to depict the fallen snow rather than the
snow depth, in order to minimize the effect of the different land
cover schemes through densification of the snowpack and snow
melt on the results. The strong difference in the representation of
the topography between the coarser resolution model COSMO-1
and the higher-resolution models WRF and ICAR is striking.
While in the 250 m the Casanna peak becomes much more
pronounced, the 50m representation of the topography shows a
pronounced ridge with a secondary ridge in 500 m distance.
Contrary, COSMO’s coarser topography shows a stretched hill,
which obviously has a significantly smaller effect on the flow field
dynamics. As a result, COSMO-1 predicts a smooth flow field at
the ridge area with an increase in wind velocity with height. Wind
velocities strongly increase at approximately 2,600 m and do not
show any clear signature of the topography, such as speed-up
effects or significant up- and downdrafts. On the other hand, for
ICAR and especially for WRF, the topography has a pronounced
impact on the near-surface flow field.

When downscaling COSMO-1 data to 250 m, ICAR shows
lower wind velocities in the valley than COSMO-1 and a slight

FIGURE 8 | A cross section displaying the wind field along a ridge for ICAR andWRF simulations at 250 and 50 m horizontal resolutions. The bottom row shows the
accumulated snowfall through time since the beginning of the simulation at 2019-03-13 00:00. WRF is spun up starting at 2019-03-12 00:00, this spin up period is not
depicted. Arrows in the wind plot are not representative of grid spacing, but for illustrational purposes only.
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speed-up of the flow on the windward slopes of the ridge crest
accompanied with an updraft area. On the leeward slope, a
downdraft zone with slightly smaller wind velocities is visible
but without a significant flow deceleration. Thus, the
modification of the flow by the terrain is minor. Those effects
become more pronounced when downscaling the flow field to a
resolution of 50 m. As ICAR uses a simple interpolation scheme
of wind to the local topography, the change in topography has a
direct effect on the magnitude of wind speed in the ridge crest
area. Changes in wind speed affect the up- and downdrafts in
ICAR, as these are calculated from the flow divergence.
Comparing ICAR to WRF highlights the differences in the
calculation of flow field dynamics. While ICAR does not
develop any turbulence due to its linear dynamics, WRF
clearly shows nonlinear effects on the leeward side of the
ridge, in particular when increasing the model resolution.
WRF shows much stronger dynamics in the flow field,
reflecting the ability of the model to better resolve turbulent
structures and thus the modification of the near-surface flow by
the terrain. Contrary to ICAR, WRF shows strong differences in
the flow dynamics for the two different resolutions. At 250 m,
WRF predicts much higher wind speeds in ridge crest areas
compared to COSMO-1 and ICAR as well as downdrafts on the
leeward slopes. The downscaled flow field at 50 m shows much
more spatial dynamics of near-surface flow patterns at the ridge
crest areas. The flow field close to the ridge crest is characterized
by a strong speed-up in the first 100 m above the surface and a
decrease in wind velocities aloft. On the leeward slope a shallow
air layer with a flow deceleration is visible with a strong
downdraft of the flow at layers above. These results show that
horizontal grid spacing of 50 m is required to resolve flow
patterns such as flow separation on the leeward slopes. These
changes in flow behavior when changing the model resolution
from 250 to 50 m also strongly affect the snow deposition patterns
along the ridge crest area. At 250 m resolution, peak snow
deposition is close to the ridge crest with stronger snow
accumulation at the leeward slopes induced by the up- and
downdrafts and stronger horizontal advection of snow
particles in downwind direction of the ridge crest. At 50 m
resolution, the more pronounced speed up effect at the ridge
crest induces a stronger depletion of falling snow particles at the
upwind area. Flow separation on the leeward zone and associated
flow deceleration result in enhanced snow deposition on the
leeward slope. We can thus clearly see the increase in preferential
deposition with the non-linear dynamics of the WRF model.
However, a model resolution of 50 m is required to adequately
resolve lee-side flow separation, and thereby preferential
deposition. These findings are in agreement with finding from
Gerber et al. (2019).

A more complex initial situation is reflected in Figure 9.
COSMO-1 predicts a large-scale northerly flow at higher
atmospheric levels and a near-surface southerly flow up to a
height of 200 m above ground. The two flow systems appear to be
disconnected. In both WRF and ICAR, the two flow systems start
to interact with eddies developing at the southerly exposed slopes
of Casanna ridge. WRF predicts a flow separation at the southerly
exposed slopes and a pronounced downdraft flow over the

northerly exposed slopes. Contrary, ICAR simulates a very
strong updraft at the northerly Casanna slopes.

3.2.3 Validation of the Spatial Distribution of Solid
Precipitation at the Ridge Scale
Figure 10 shows measured snow depths at March 31, 2017 and
May 17, 2017 as well as the snow depth changes for this period
(run1). The bottom plot of Figure 10 further displays the
measured and modeled change in snow depth grouped per
elevation band. Since model runs are started in the middle of
the snow season, both WRF and ICAR are initialized with snow
depth from the COSMO-1 model. The coarser resolution of this
model does not allow for narrow valleys to be resolved. Since
these narrow valleys are accurately resolved during the
simulation, the difference over the simulation shows some
artefacts; e.g., that in both models the main valley is snow free
at March 31 (not shown), whereas in the lidar data shows there is
still snow (Figure 10). These constraints due to the initialization
do not allow for a proper comparison at low elevations.

WRF and ICAR simulate a similar snow line after the
precipitation event, which is reflected by the elevation band of
zero-accumulation during the respective period (2,300–2,400
m.a.s.l.). The snow line is a result of the snowfall line during the
different precipitation events and snow melt. The snow line is
approx. 200m lower than observed by the LiDAR data.
Contrarily, TopoSCALE predicts an even lower snowfall line at
1,900–2,000 m.a.s.l., which is approx. 600m below the measured
snow line. Furthermore, all models tend to overestimate the increase
in snow depth at higher elevations, with TopoSCALE showing the
largest overestimation up to an elevation of 2,900m. The
overestimation at the mid to high elevation ranges (2,300–2,700
m.a.s.l.) might partly be an effect of weaker settling rates in the
models. ICAR strongly overestimates snow depths at the ridge crest
area (i.e., above 2,800m.a.s.l.). At those high elevations WRF
captures snow accumulation very well. TopoSCALE shows snow
depths similar to WRF. At lower elevations, where measurements
show snow depletion, both dynamic models behave very similarly.
At mid-elevations (2,300–1,700 m.a.s.l.), the decrease in snow depth
is rather well captured by both dynamic models. Contrary,
TopoSCALE shows snow accumulation above 2000 m.a.s.l. and
too little snow depletion at elevations below. The elevations below
1700 m.a.s.l. were already snow free at the start of the simulations,
which does not allow for an accurate simulation of snow melt.

In order to analyze the ability of the models to capture spatial
snow accumulation patterns at the slope scale, Figure 11 shows
snow depths and snow depth changes for the mountain ridge area
which was mainly dominated by snow accumulation throughout the
period. The dominant wind direction during the precipitation event
was from the south, and we can see that the difference in snow depth
(right column) shows preferential deposition on the north side of the
ridge in the Lidar data. ICAR is not able to replicate this pattern very
well and mainly shows snow accumulation at the ridge tops. This
indicates that the flow field and advection scheme in ICAR do not
allow for sufficient advection of snow particles towards the leeward
slopes. In absence of any advection calculations TopoSCALE
predicts precipitation with strong elevation gradients. WRF on
the other hand does show stronger snow accumulation on the
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leeward slopes (Figure 11I). This significant difference in snow
accumulation representation by the models can be explained by the
near-surface flow field adaptation to the local terrain. In WRF the
local flow field shows more pronounced near-ridge speed-up effects,
allowing stronger advection across the ridge crests and deposition on
the leeward slopes (see Section 3.2.2).

3.3 Computational Demands
Table 3 shows the computational demands for the different models
and simulations. WRF and ICAR were run on the CSCS
supercomputer piz Daint. WRF has roughly 26 to 60 times the
computational requirements of ICAR for a similar domain. It should
be emphasized however that WRF was run with an additional

domain at 1 km resolution to allow for turbulence and
hydrometeors to develop properly. It is our hypothesis that with
further tuning and improvements of the coupling to the forcing data,
this additional domain could possibly be excluded. However, this
exclusion will reduce computational demands by 15% for the 250m
domain and significantly less for the 50m domain (based on a back-
of-the-envelope calculation of grid points and time steps). Thus,
even in the case we were to exclude the additional domain in WRF,
the difference in computational demands would be in the order of a
factor 20 to 50.

TopoSCALE was run on the WSL cluster Hyperion using 8
cores in all simulations and at a cost of 0.11–0.16 cpu hours per
simulated day, depending on resolution. There is thus no debate

FIGURE 9 | A cross section displaying the wind speeds along a ridge for ICAR and WRF simulations at 250 and 50 m horizontal resolution.

FIGURE 10 | Lidar snow depth measurements on the 31 March 2017 and 17 May 2017 (top left and middle, respectively). (top right) Measured snow depth
differences between the 17 May 2017 and 31 March 2017. (bottom) Mean measured and modeled changes in snow depth over the 2017 (run1) period per 100m
elevation band for Lidar measurements (blue), ICAR (brown) WRF (mint) and TopoSCALE (green). Error bars indicate standard deviations.
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as to which model is computationally more efficient, as
TopoSCALE wins this comparison by a very large margin.

4 DISCUSSION

In this study we present a comparison of various downscaling
methods of different numeric complexity. The ways of comparing
are not unambiguous, and certain choices are made that affect the
results. Furthermore, the models are generally not applied to the
settings they were developed for. In this section we will discuss the

most significant choices in the model settings, the reasons behind
them, as well as limitations of the study.

2ptThis study is undertaken for the complex terrain of the Swiss
Alps, for which there is high resolution forcing data available from a
fully dynamical model that was developed specifically for this
complex alpine domain. This model, COSMO-1, due to its high
resolution and specific application, already capturesmany dynamical
effects specific to complex mountainous terrain (Schär et al., 2002;
Leuenberger et al., 2010; Leutert et al., 2015; Goger et al., 2016; Kruyt
et al., 2018) and is nudged to observations via an advanced data
assimilation scheme (Schraff et al., 2016). Where many downscaling

FIGURE 11 | The snow depth distribution at 31 March 2017 (A), 17 May 2017 (B) and difference (C) for Lidar measurement (A–C), ICAR (D–F), WRF (G–I) and
TopoSCALE (J–L). All model output is at 250 m resolution. The white and purple lines in the model plots (F,I,L) indicate the borders of the lidar measurement.
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techniques, including TopoSCALE and ICAR, have been developed
to downscale forcing data from the 20–100 km scale to kilometer-
scale resolutions, we have chosen to apply these techniques to forcing
data with a 1.1 km horizontal resolution. In doing so, we are the first
to undertake a systematic comparison of downscaling techniques of
varying complexity at very high resolutions in alpine terrain. It
remains to be seen if a comparison with significantly coarser forcing
data would yield similar results: Many dynamical effects at the
kilometer scale, such as convection or turbulence (Weusthoff et al.,
2010; Ban, 2015; Chow et al., 2019), require dynamical models to be
accurately represented, and thus one can argue that the scales, which
the downscaling techniques aim to bridge, are relevant for the choice
of the downscaling model. For dynamical modes, it is known that
certain numerical artefacts may be produced when running at
resolutions in the so-called “grey zone”, which according to
Chow et al. (2019) is “the range of grid resolutions where
particular features are neither subgrid nor fully resolved, but
rather are partially resolved. The definition of a gray zone
depends strongly on the feature being represented and its
relationship to the model resolution.” On the other hand, non-
dynamical models may lack inter-variable dependence and are
unable to capture non-linear effects or terrain induced dynamics.

It is especially important when interpreting the results of this
work to keep in mind that the forcing data from the COSMO-1
model are nudged to observations through a data-assimilation
scheme based on interpolated data from measurement stations,
soundings, and satellite data (Schraff et al., 2016). This has several
effects. For one, it may appear that the downscaling schemes are
unable to improve significantly upon the forcing (Figures 2, 3). It
should however be considered that models that are only forced at
the boundaries (WRF, ICAR) have far greater freedom to deviate
from these observations than COSMO-1. The goal of this study is
therefore not to assess the improvement these models are able to
make upon the forcing data, but to assess their individual differences.
Secondly, since TopoSCALE is not forced at the domain boundaries
like WRF and ICAR, but at each grid point, TopoSCALE has far less
freedom to deviate from the forcing, and thus from the observations
the forcing is nudged to. This will have a non-trivial effect on the
results, and should be considered in their interpretation, although the
effect is hard to quantify. Future comparisons, where forcing data
without assimilated observations is downscaled, will provide more
insight into this. Given the goals (high resolution) and consequent
limitations (COSMO-1 being the available forcing) this shortcoming
was unavoidable in our study’s design. However, these results also
highlight the necessity of data assimilation for downscaling schemes in

case the forcing data contains nudged observations. This is particularly
important for state variables such as snow depth, which can strongly
deviate over a full season.

When comparing models, a few choices have to be made.
Wind speeds are measured at a height of 6.8 m (IMIS) and 10 m
(SMN) above the (snow free) surface. The lowest model levels in
our 250 m simulations have respective mass heights of 4.7 m
(ICAR), 22.5 m (WRF), and 9.5 m (COSMO) when averaged over
domain D1. Due to the different dynamics of each model, the
effect of roughness lengths varies. In ICAR, the lowest model level
is unaffected by the roughness length and only the diagnostic 10m
wind speeds include a correction based on surface roughness. The
COSMO-1 forcing data resolves some surface effects however. WRF
on the other hand, given its full dynamic solution, will experience drag
from the surface. TopoSCALE outputs wind speed at pixel elevation
and does not include additional surface effects apart from what is
present in the parent model forcing. One way to compare the wind
speeds at station height is to use a log law to correct for elevation.
However, it has been mentioned by Cattin et al. (2002); Draxl and
Mayr (2009) that in complex terrain, the vertical wind profile does not
behave like a logarithmic one, in absence of an upwind fetch. Thus,
correcting wind speeds via a log law may not be very accurate. Yet at
the same time, it is clear that the comparison is not fair as it is now. A
definitive solution to this problem remains to be found. For now, given
that all downscaling methods—without a log-law correction—lead to
similar results for wind speed, we leave it as is, and conclude that these
methods produce very close results. This may in part be attributed to
the very good performance of the forcing model for this variable.
Furthermore, the comparison of instantaneous model output to
hourly averaged wind speed and direction introduces a source of
error. This could in future work be mitigated by modifying the model
codes to output hourly averaged fields, akin to WRF’s time series
option. Modifying the various model codes was outside the scope of
this study however. When comparing snow depths over the shorter
event-based simulations (run1 and run2), there are some things to
consider: For TopoSCALE, the data from run1 and run2 is a subset
from the seasonal runs 4 and 5. On the other hand, WRF and ICAR
are initalized with COSMO-1 snow heights at the beginning of run 1
and 2 (i.e., atmid-winter, when there is a considerable amount of snow
on the ground). Given COSMO’s lower resolution, narrow valleys are
not resolved properly, and there may be an over- or underestimation
of snow depth in such valleys (either due to reduced air temperatures
or reduced terrain shading). This has an effect on the statistics in
Figure 2, as the starting snow-heights are not the same for all models.
TopoSCALE’s snow heights for run 1 and run 2 can develop at 250m

TABLE 3 |Overview of computational demands. ICAR andWRF simulations were performed on the CSCS supercomputer piz Daint, with ICAR running on 8 (run1, run2), 16
(run3) or 12 nodes (run4, run5) with 36 cpus each, and WRF running on 24 nodes with 36 cpus each. Toposcale was run on the WSL cluster Hyperion using 8 cpus in all
simulations.

Core hours per simulated day

Model runs Start date End date dx ICAR WRF Toposcale

Run1 31-03-2017 17-05-2017 250 m 32 1,024 0.11
Run2 12-03-2019 27-03-2019 250 m 29 1,814 0.12
Run3 12-03-2019 16-03-2019 50 m 1,336 33 ,993 0.16
Run4 01-10-2016 31-05-2017 250 m 35 — 0.11
Run5 01-10-2018 31-05-2019 250 m 54 — 0.12
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resolution from the snow-free start of winter. Therefore the terrain
and resulting snow height are accurately resolved over the entire snow
season, and depending on station location (valley vs. ridge) may yield
better performance. Hence, when comparing snow depths between
(COSMO) ICAR and TopoSCALE, Figure 3 is more appropriate,
since all models start this simulation with a snow free surface.

Generally, when downscaling with dynamical models, care
should be taken to address physics in a consistent matter across
domains and scales. Here, we disregard any fundamental differences
in the microphysics between the forcing model COSMO-1, and the
dynamical downscaling methodsWRF and ICAR. It could very well
be that using one of the many other microphysics schemes in WRF
would yield better results, since it treats hydrometeors in a manner
similar to COSMO-1. However, due to the limited availability of
microphysics schemes in ICAR, we choose to preserve consistency
betweenWRF and ICAR, which is whywe opt to runWRFonlywith
the Thompson and Eidhammer microphysics scheme (Thompson
and Eidhammer, 2014).

5 CONCLUSION

In this study, we compare three downscaling methods of varying
complexity. TopoSCALE: A very efficient topography-based model,
ICAR: an atmosphericmodel of intermediate complexity, andWRF: a
fully dynamical atmospheric model, widely used in the scientific
community. Simulations driven by the COSMO-1 model are
compared both at the point scale and in terms of spatial patterns
(precipitation). Finally, for high-resolution ridge-scale flow processes,
a qualitative comparison of the 3D flow field and resulting
precipitation effects is conducted for the models ICAR and WRF,
as the TopoSCALE model only produces surface (i.e., 2D) output.

Point-scale comparison against various meteorological
stations with different sensor set-ups reveal the following: All
models produce very comparable results in terms of wind speed.
Somewhat surprisingly, none of the downscaling methods are
able to improve significantly upon COSMO’s wind speed
predictions at the point scale (although WRF and TopoSCALE
improve the forecasted direction somewhat). All models
overestimate wind speeds, where the overestimation increases
with elevation. This is in part due to the presence of sheltered
measurement stations at elevation, where the error is larger. It can
be concluded that at 250 m resolution, the sheltered nature of
these stations cannot be resolved by any of the models.

With regards to hourly temperature, as well as daily minima
andmaxima,meanmodel performance is also relatively close amongst
the downscaling methods. There are however, significant differences
when we look more closely. ICAR has the tendency to overestimate
temperatures in the valley, at elevations below ca 1700m.a.s.l., whereas
COSMO-1 and TopoSCALE both have a significant negative biases at
these low elevations. At higher elevations biases are reduced.WRF has
an overall negative bias w.r.t. temperature.

Temperature inversions are not captured accurately by any of
the models, due to various reasons. WRF is most capable of
simulating a diurnal cycle, but also simulates a daily cycle at
higher elevations, where none was observed. TopoSCALE does at
times produce the positive lapse rate observed over stations, but it

is unclear if this is a product of its negative bias at low elevations
or not. The warm bias in ICAR has an effect on the accuracy of
predicted snow heights, where increased melt rates contribute to
the model’s error. Nevertheless, it still performs slightly better
than the other models, especially when compared to TopoSCALE
in simulations over entire snow seasons. Similarly, the negative
bias in ICAR’s relative humidity assessment could also stem from
its temperature bias.

A comparison of 2 full winter (hydrological) seasons (October
through May) of the models ICAR and TopoSCALE shows very
similar results to the point-scale comparison of shorter simulations
(Figures 3 vs. Figure 2), indicating that shorter comparisons are
indeed representative. The only exception is snow depth, where
errors accumulate over a season, and initializing a model half way
through the snow-season can contaminate results.

TopoSCALE performs surprisingly well at the point scale and
250 m spatial resolution in light of its computational efficiency.
However, in this study we use forcing data that already contains
many dynamic effects that happen at the km scale. It remains to
be seen if forcing data of a significantly lower resolution would
lead to similar results. It could well be that the dynamical nature
ofWRF and ICAR canmake a stronger impact when downscaling
data from 20 to 100 km resolution to the sub-km scale, because
dynamic processes at these scales cannot be simulated by
TopoSCALE. Further comparison of downscaling methods
over various scales is required to support such claims, but it
could very well be that the added benefits of fully dynamical
models are less relevant at certain scales, while at other crucial
scale steps, a dynamical approach is essential. It may also be that
scales where dynamical models struggle, such as the so-called
“Grey Zone” (Chow et al., 2019), form an opportunity for simpler
downscaling techniques. Based on the current work, we can only
conclude that when downscaling forcing data with an already
high resolution to the 250 m scale, the differences between
dynamical and more static downscaling techniques—based on
point validations—are very small. Most importantly however,
where WRF and (to a lesser degree) ICAR only take COSMO’s
forcing data at the domain’s lateral boundaries, TopoSCALE
works on the 1D column of forcing data. In doing so, it can
benefit from the observational nudging in the forcing that is lost
to the other downscaling schemes, and as a result TopoSCALE
has less freedom to deviate from observations. This is a result of
the choice of forcing data rather than amodel trait, and in the case
of forecasts and climate studies, this benefit would be lost.

Qualitative comparison of wind fields and snowfall patterns at
increasing resolutions shows changes due to the improved
representation of the topography when downscaling to 250m
resolution. Although noticeable, the difference between WRF and
ICAR is relatively small at this resolution. At the next scale step
however, when increasing the horizontal resolution to 50m,
differences are more pronounced. WRF’s non-linear dynamics
allow for complex re-circulation patterns to appear in the
simulation, where ICAR’s linear dynamics, although showing some
signs of these complex structures, show distinctly less of such effects.
This is in agreement with Gerber et al. (2018), Gerber et al. (2019),
who showed that leeward loading/preferential deposition require(s)
horizontal model resolution of 50m or less to be represented.
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To summarize, taking into account the vast computational
differences, we conclude that:

• ICAR is an efficient alternative for WRF when downscaling
to 250 m resolution, as the computational demands are
reduced by a factor 20–50. Although this factor is less
than reported by Gutmann et al. (2016), this is still a
significant step, and part of the difference may be due to
differences in I/O routines. Simulations from ICAR and
WRF at the 250 m resolution are in close agreement, both at
the point and spatial scale, although it should be noted
ICAR tends to overestimate temperatures at lower
(1,500–2,000 m.a.s.l.) elevations.

• TopoSCALE provides very similar results to themore complex
models when compared to point-based observations, but it is
unclear howmuch of this performance can be attributed to the
chosen forcing data. This forcing data 1) due to its high
resolution already resolves many dynamical processes that
non-dynamical models like TopoSCALE cannot simulate, and
2) has extensive observational nudging, which TopoSCALE
can benefit from, whereas WRF and ICAR cannot. However,
the computational efficiency of TopoSCALE is orders of
magnitude above that of ICAR and especially WRF, which
is a strong benefit when doing large simulations, or when
computationally restricted.

• At very high resolutions of 50 m, the non-linear dynamics of
WRF allow for the representation of complex flow
structures, and their effects on leeward snowfall that less
sophisticated models like TopoSCALE and ICAR cannot.
Thus, processes like preferential deposition can only be
captured by such non-linear models.

This study shows that ICAR is not suited to capture high-
resolution terrain-induced flow precipitation interactions in
complex terrain. In order to better account for terrain-induced
flows in complex terrain a new version of ICAR is currently
under development. This version aims to represent terrain-
induced flow features such as speed-up, flow deceleration, flow
separation and flow blocking. Future work will show how this
improved model version compares to WRF in its ability to
simulate such complex flow features, and at what computational

cost. To extend the conclusions of the current work, it would be
interesting to compare downscaling methods across scales:
i.e., downscaling forcing data of various resolutions to different
target resolutions, to investigate if there are specific “scale steps” at
which more complex models provide significant benefits.
Conducting such a work without observational nudging will
allow for a better comparison of model capabilities.
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