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The exploitation of mineral resources is crucial for cost-effective construction but has also
led to severe damage to the ecological environment in mining areas. Therefore, it is
particularly important to effectively monitor surface environmental problems in the mining
subsidence area caused by the exploitation of mineral resources. Herein, the Huinong coal
mining subsidence area, Shizuishan city, Ningxia, China, was taken as the study area. The
remote sensing image features of various environmental elements were investigated
through field investigations, the measured spectra, and image spectrum contrast
analysis. On this basis, an object-oriented random forest classification method was
used to classify images from different time phases and sources in coal mining
subsidence areas. Next, the man–machine interactive interpretation was confirmed by
referring to the pre-classification results. By overlaying the interpretation result map and
analyzing the land-use class changes, the spatial–temporal evolution monitoring of the
surface environment in the coal mining subsidence area from 1979 to 2018 was carried
out. The results show that the surface environment in the coal mining subsidence area has
undergone significant changes over the past 40 years, among which—from 1979 to
2003—the environment of the coal mining area was severely damaged by the intensive
mining activities. The area of cultivated land and vegetation coverage decreased sharply,
while the area of other land-use classes, such as coal heaps, water bodies, and coal
gangue, exhibited a trend of rapid growth. From 2003 to 2018, after more than 10 years of
mine geological environment renovation and management, the surface environment of the
coal mining subsidence area greatly improved, among which the vegetation coverage has
shown the fastest growth rate, while the area of coal gangue, badlands, and other land-use
classes have significantly reduced. The hidden dangers of geological disasters have been
drastically mitigated. In addition, the residential area continued to decrease in the early
stages and then rebounded to a certain extent, indicating that urbanization was carried out
at the same time as the ecological environment began to improve. The surface
environment before and after the renovation is consistent with the results from remote
sensing monitoring.
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1 INTRODUCTION

Coal resources are important for energy needs of human
civilization. With recent developments in industrial and
agricultural production, the significant increase in the world
population, and improvements in living standards, society’s
demand for coal resources is increasing (Xinhua et al., 2011;
Xiao et al., 2018). However, as large quantities of coal resources
are extracted from the ground, geological hazards caused by
surface subsidence are becoming increasingly apparent
(Marschalko et al., 2012; Darmody et al., 2014; Morrison et al.,
2018). According to recent studies, the phenomena caused by coal
mining subsidence—including facility damage, road damage,
landslides, ground fissures, ground collapses, farming
difficulties, and damage to buildings—seriously threaten the
safety of personnel, travel, and infrastructure (Chugh, 2018;
He et al., 2020). Furthermore, owing to the impact of
underground mining, the surface water system is damaged,
and the surface water quality reduces, dries up, or is cut off,
which affects the ecological safety of the region. The renovation of
coal mining subsidence areas directly affects the economic and
social stability of mining areas, along with their sustainable
development. The comprehensive renovation of coal mining
subsidence areas involves relocation of residents, repair of
infrastructure and public service facilities, management of the
mining environment, geological disaster prevention and control,
land reclamation and reuse, and ecological environmental
protection.

In the management of the surface environment of coal mining
subsidence areas, the primary task is to analyze the spatial and
temporal evolution law of the surface environment. Remote
sensing (RS) techniques and geographic information systems
(GISs) provide an effective approach to monitoring the surface
environmental changes in mining areas. In comparison with
traditional field and laboratory monitoring, they have the
advantages of low time consumption, low costs, and a wide
range of monitoring capabilities, especially in larger areas
(Crósta et al., 2003; Sato et al., 2007; Mi et al., 2019; Wu et al.,
2020). Previous studies have applied RS and GIS techniques to
monitor moderate-scale categories, mining footprints, the extent
of changes caused by mining, environmental pollution, coal fires,
mining geological hazards, land-use classes, and slope stability.
For example, DeWitt et al. (2017) produced the moderate-scale
categories of land use in the Tortiya mining area within 46 years
via a supervised classification method (DeWitt et al., 2017).
Soulard et al. (2016) developed a semiautomated procedure to
detect the mining footprint and mine extent change (Soulard
et al., 2016). Lobo et al. (2017) mapped the mining areas in the
Brazilian Amazon on Sentinel-2 images (Lobo et al., 2018).
Saedpanah et al. (2019) integrated the RS, GIS, and analytical
hierarchy process (AHP) methods to assess environmental
pollution and geo-ecological (EPGE) risk in the Qhorveh
mining area (Saedpanah and Amanollahi, 2019). By using
radiant temperature images, such as Landsat-7 Enhanced
Thematic Mapper Plus (ETM+) band 6, ASTER band 13, and
Landsat-8 band ten thermal data, Mishra et al. (2011) and Roy
et al. (2015) detected the surface coal fires (Mishra et al., 2011;

Roy et al., 2015). Carlà et al. (2018) assessed the slope failure size
and temporal evolution in a copper open-pit mine (Carlà et al.,
2018). Wang et al. (2018) proposed a semiautomatically
geological mining hazard extraction method to identify and
predict geological hazards in the Shijiaying coal mine in
Beijing (Wang et al., 2013). Beyond the widespread use in
general landscape dynamics monitoring, some researchers have
also used RS and GIS techniques to assess ecosystem health and
monitor the sustainability of afforestation in semiarid and arid
regions. For example, Jafary et al. (2018) and Nadia Abbaszadeh
Tehrani et al. (2021) used remote sensing data to monitor or
assess the ecosystem health level successfully (Jafary et al., 2018;
Abbaszadeh Tehrani et al., 2021). Feghhi, J et al. (2017)
investigated the effects of homogeneous units of natural and
human factors on the sustainability of the ecosystem by using the
GIS technology (Feghhi et al., 2017). However, research on the
impact of mining on the surface environment and associated
causes is still limited. In addition, the ground objects in mining
areas are characterized by high complexity and rapid change, and
different ground objects have similar spectral characteristics,
leading to difficulties in data acquisition and image
classification in mining areas (Cloutis, 1996; Demirel et al.,
2011; He et al., 2019). Although some researchers have studied
different classificationmethods to improve classification accuracy
(Janalipour and Mohammadzadeh, 2017; Khanbani et al., 2020)
and the use of interferometric synthetic aperture radar (InSAR),
light amplification by stimulated emission of radiation (LASER),
and light detection and ranging (LiDAR) to monitor small-scale
mines in recent years (Prakash and Gupta, 1998; Perski et al.,
2009; Isidro et al., 2017; Carlà et al., 2018; Chen et al., 2018), there
are few studies on the spatial and temporal evolution of the
surface environment in large-scale coal mining subsidence areas.

This research aimed to monitor the surface environmental
temporal and spatial evolution in a coal mining subsidence area
with more than 60 years of mining history through the use of the
object-oriented random forest classification method to assist
man-machine interactive interpretation. We adopted field
surveys, along with measured spectrum and image spectrum
contrast analyses, to establish interpretation signs. The specific
objectives were 1) to establish interpretation signs in terms of
surface environmental elements in coal mining subsidence areas
via field surveys and measured/image spectra contrast analysis; 2)
to monitor the surface environmental temporal and spatial
evolution in the Huinong coal mining subsidence area from
1979 to 2018; and 3) to analyze the causes of surface
environmental changes in coal mining subsidence areas.

2 STUDY AREA

The Huinong coal mining subsidence area is located in
Shizuishan city, Ningxia Hui Autonomous Region, and
comprises 4,000 ha of land between latitudes 39°13′50″ and
39°15′44″ and longitudes 106°45′39″ and 106°47′21″E. It was
formed because of underground coal mining in the Shizuishan
mining area, including the No. 1 and No. 2 mines (Figure 1). Its
strata include the Great Wall system, Jixian System, Cambrian,
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Carboniferous, Permian, Triassic, Neogene, and Quaternary. The
coal-bearing strata are the Taiyuan Formation of the Upper
Carboniferous and the Shanxi Formation of the Lower
Permian, with a total thickness of 28.75 m. The coal-bearing
rock group consists of soft and hard clastic rocks, and the
lithology is thick grayish-white sandstone, black shale, and
mudstone interbedded with coal seams of Carboniferous and
Permian origin. After more than 60 years of coal mining in this
area, the primary environmental problems that have arisen
include the occupation and destruction of land resources and
landscapes, secondary mining geological hazards, and the
pollution caused by solid mining waste. Among them, the
most serious geological hazards are ground subsidence and
ground fissures (Hui and Wankui, 2013). There are seven
large collapse pits in the subsidence area. The maximum
subsidence value of the collapse pit is more than 26 m, and
the depth is generally 8–10 m. The total area of the collapse
pit is 9.1 km2. Furthermore, there are another 22 small ground
collapses caused by mining in the area, with an area of about
1.3 km2; more than 140 ground fissures, with a total length of
15,462 m; and an affected area of 0.8 km2. In the subsidence area,
the surface is broken, the vegetation is sparse, the sand is
scattered, the sewage flows across, and some areas have even
become urban garbage patches, with severe environmental
pollution. With the further expansion of the city, the coal
mining subsidence area is nearing the center of the city. It is

in stark contrast with the beautiful Huinong urban area and is
significantly detrimental to the productivity and life of local
residents. Since 2004, the Huinong coal mining subsidence
area has been renovated for nearly 11 years. At present, the
environment and quality of life of residents in the mining area
have greatly improved.

3 DATA AND PROCESSING

3.1 Satellite Data
The environmental monitoring of coal mining subsidence areas
primarily involves the extraction of information regarding
destroyed and occupied land (represented by coal gangue and
coal pile areas), along with other ground objects (cultivated land,
badlands, vegetation, residential areas, etc.). These objects can be
ascertained well only through high-resolution remote sensing
images, which must be used to achieve good monitoring results
(DeWitt et al., 2017; Carlà et al., 2018; Wu et al., 2020).

This study used aerial images from 1979 (early mining),
QuickBird satellite image from 2003 (before renovation of the
mine geological environment), WorldView-2 satellite image from
2011 (during mine geological environment renovation), and
Gaofen-2 image from 2018 (after mine geological environment
renovation) for land-class interpretation. The projection method
used for the remote sensing data in four phases is Universal

FIGURE 1 | Location of the study area.
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Transverse Mercator (UTM) projection. The spatial resolution of
the aerial image is 1 m. The QuickBird satellite includes
panchromatic images with 0.61 m of resolution and a
multispectral image with 2.44 m resolution. The WorldView-2
satellite includes a panchromatic image with 0.46 m resolution
and a multispectral image with 1.8 m of resolution. Finally, the
spatial resolutions of the Gaofen-2 panchromatic and
multispectral images are 0.80 and 3.24 m, respectively. All of
these resolutions meet the requirements for monitoring the
evolution of the surface environment in coal mining
subsidence areas.

3.2 Image Processing
In comparison to medium- and low-resolution images, high-
resolution images contain more complex spatial information
within the same area (Liu et al., 2013); therefore, issues
regarding the same object with different spectra or the same
spectral foreign object on the image are more severe. Thus, in this
study, the original multispectral and panchromatic images are
preprocessed by geometric correction, resampling, and image
fusion with the help of ENVI software before interpretation.
Approximately 25 ground control points (GCPs) were uniformly
selected from feature points with the same name present on the
wrap image and base maps for the geometric correction process,
such as the building corner points and road intersections. Finally,
the registration error of aerial image is 0.329 pixels, that of
QuickBird image is 0.215 pixels, that of WorldView-2 image is
0.273 pixels, and that of GF-2 image is 0.238 pixels, which meets
the accuracy requirements for image overlay. For image fusion, an
interface description language (IDL) program was written to
calculate the index values of the principal component analysis
(PCA) algorithm, nearest neighbor diffusion (NNDiffuse) pan
sharpening algorithm, Gram–Schmidt algorithm, and Brovey
algorithm, in terms of the spatial information integration
degree and spectral information fidelity (Ji and Gallo, 2006;
Yang and Gong, 2012; Shahdoosti, 2015; Zhao et al., 2017;

Yilmaz et al., 2020). The image fusion results show that the
Gram–Schmidt fusion algorithm performs the best for QuickBird
image data, while the PCA fusion algorithm works best for
Worldview-2 and GF-2 image data.

4 METHODS

4.1 Establishment of Interpretation Signs
The interpretation signs of remote sensing images are image
features that can directly reflect and discriminate the feature
information in a remote sensing image, including the shape, size,
shading, hue, color, texture, pattern, location, and layout (Zhang
et al., 2014). These signs can be used to identify the nature, type,
and condition of the objects or phenomena directly through the
image, or to make inferences regarding the relationships between
identified objects or phenomena. Mining activities in the
Shizuishan mining area have severely damaged the
surrounding ecology. To understand the influence of mining
activities on the evolution of the surface environment in the
coal mining subsidence area, we first collected samples of coal
gangue, water, vegetation, bare soil, and other objects from the
study area and thenmeasured the spectral curves of these samples
(Chen et al., 2018). For satellite data, we collected the image
spectrum after removing the interference information and
compared it with the measured spectrum. For example, the
distribution characteristics of badlands and vegetation
measured spectra are consistent with the image spectra; the
measured and imaged spectra of the badlands show intense
reflection peaks between the wavelengths of 650–1,300 μm and
1,500–1800 μm, and the measured and imaged vegetation spectra
show intense absorption features at wavelengths of 1400 μm and
1800–1950 μm (Figure 2). Finally, in combination with a field
survey, the interpretation signs of eight kinds of ground
objects—badlands, coal gangue, coal heaps, cultivated land,
other construction, residential areas, vegetation, and water

FIGURE 2 | Field measured spectra and image spectra of ground objects. (A) Badlands and (B) vegetation.
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bodies—were established (Figures 3–(6). The image
characteristics of different remote sensing data are as follows:

1) Badlands: This class mainly includes bare land and abandoned
cultivated land with no vegetation cover. In remote sensing
images, it appears as a piece of distribution, irregular shape,
rough texture, uneven tone, and light gray or grayish-brown in
color, and has clear boundaries with other features
(Figure 3A, Figure 4A, Figure 5A, and Figure 6A).

2) Coal gangue: The coal gangue is generally gray in color,
similar in shape to a cone, and has different sizes. The
edges of the image are round, and the three-dimensional
effect is strong. The texture radiates from the center of the
circle to the surroundings, making it easy to identify. In
addition, coal gangue is generally near coal mines,
surrounded by badlands and sparse vegetation. It is easier
to identify using aerial or QuickBird image. TheWorldView-2
and Gaofen-2 image can be combined with field surveys to
interpret that the color of coal gangue is dark gray or brown,
and the boundary between it and the surrounding badlands is
obvious (Figure 3B, Figure 4B, Figure 5B, and Figure 6B).

3) Coal heap: The color of these heaps is natural black, and the
texture is singular, which is generally higher than the ground,
and has a good three-dimensional effect. Most heaps are
distributed near the mine or scattered in the badlands. The

large coal heaps are more regular in shape, round, or square
and have special pile sites. Small coal heaps are relatively
complex to identify, with irregular boundaries and a dark gray
color, which can be distinguished from the surrounding
objects by their three-dimensional characteristics
(Figure 3C, Figure 4C, Figure 5C, and Figure 6C).

4) Cultivated land: According to the field survey, the cultivated
land in the study area mainly comprises dryland crops such as
wheat. Generally, cultivated land has a deep and rough
texture, and is gray or gray white in aerial image, dark
green or grayish-yellow in QuickBird image, and dark
green or light yellow in WorldView-2 and GF-2 image.
These areas have clear boundaries with surrounding
residential areas or badlands (Figure 3D, Figure 4D,
Figure 5D, and Figure 6D).

5) Other construction: This class comprises square coal mine
industrial buildings and other factory buildings. The square
coal mine industrial buildings are neatly arranged and
distributed in rows, rectangular in shape, and delicate in
texture. The middle of the square is empty, and there are
coal gangue or coal heap around it. The other factory
buildings are also rectangular in shape, and their sizes are
significantly larger than those of the surrounding residential
buildings. The roof generally appears blue or red in the
images. The border is grayish-white in aerial image, and

FIGURE 3 | Interpretation signs in aerial image. (A) Badlands, (B) coal gangue, (C) coal heap, (D) cultivated land, (E) other construction, (F) residential areas, (G)
vegetation, and (H) water bodies.
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gray or brown in other images (Figure 3E, Figure 4E,
Figure 5E, and Figure 6E).

6) Residential areas: Residential areas mostly appear as squares
or clusters in the images, with obvious geometric features and
a rough structure. The residential areas in the urban area are
arranged neatly and in a concentrated manner, while
residential areas in the subsidence area are scattered. Both
have clear boundaries with other surroundings and are easy to
distinguish (Figure 3F, Figure 4F, Figure 5F, and Figure 6F).

7) Vegetation: The main vegetation types in the study area are
trees and grass. Trees are generally grown on both sides of the
main road, distributed in strips or blocks, with a three-
dimensional effect and clear boundaries. Grass is often
distributed in patches with uniform color and finer texture
than the area covered by trees. Generally, they are surrounded
by badlands or residential areas and appear grayish-black in
aerial image and dark green in other source images
(Figure 3G, Figure 4G, Figure 5G, and Figure 6G).

8) Water bodies: This class comprises mine wastewater and naturally
formed water holes. In remote sensing images, the water bodies
have smooth boundaries, fine textures, irregular shapes, uniform
colors, and generally appear black or dark green. Mine wastewater
is distributed near mines with large areas, and can be clearly
distinguished from the surrounding ground objects according to
its color. Naturally formed water holes are mainly scattered in

badlands, with small areas, and are dark green in color (Figure 3H,
Figure 4H, Figure 5H, and Figure 6H).

4.2 Remote Sensing Interpretation Method
Owing to the lack of spatial information data on various surface
objects in the study area, the interpretation accuracy obtained by
simply using an automatic classification method is far lower than
that of manual visual interpretation, which cannot meet the
research requirements (Kundu et al., 2020; Yuling et al., 2020;
Aune-Lundberg and Strand, 2021). Therefore, the object-oriented
classification method (Lawrence et al., 2006; Watts et al., 2009;
Stumpf and Kerle, 2011; Dornik et al., 2018) was used to assist
man-machine interactive interpretation in obtaining the surface
environmental information of coal mining subsidence areas to
ensure interpretation accuracy. The main processing is described
in Sections 4.2.1–4.2.3.

4.2.1 Image Segmentation
Image segmentation can generate different scale layers to
distinguish different object types using the multi-scale
segmentation method accurately. In this study, multi-scale
image segmentation is based on the bottom-up method.
Furthermore, the estimation of the scale parameter (ESP)
evaluation algorithm (Drǎguţ et al., 2010; Drăguţ and Eisank,
2012; Drăguţ et al., 2014; Louw and van Niekerk, 2019) was

FIGURE 4 | Interpretation signs in QuickBird image. (A) Badlands, (B) coal gangue, (C) coal heap, (D) cultivated land, (E) other construction, (F) residential areas,
(G) vegetation, and (H) water bodies.
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used to select the optimal scale for segmenting surface
environmental objects in coal mining subsidence areas.
Take QuickBird image in 2003 as an example. The local
variance of the image (Figure 7) changes the most when
the segmentation scale is 190,205,275,350,460,545, which
may be the best scale for each object. In combination with
visual discrimination, the optimal scale of water bodies, coal
gangue, and coal heap is 190. Furthermore, the optimal
vegetation and cultivated land segmentation scale is 275,
and the optimal segmentation scale of other construction,
residential areas, and badlands is 460 (Figure 8). Similarly,
the optimal segmentation scale for water bodies, coal gangue,
and coal heaps is 150 for aerial images and WorldView-2
images but 160 for GF-2 images. The optimal segmentation
scale for vegetation and cultivated land is 250 for aerial
images, 270 for WorldView-2 images, and 275 for GF-2
images. The optimal segmentation scale for other
construction, residential areas, and badlands is 440 for
aerial images, 360 for WorldView-2 images, and 370 for
GF-2 images.

4.2.2 Object Feature Space Establishment and
Selection
Given the phenomenon that there are many of “the same object
with different spectra” and “the same spectral foreign object” on

the high-resolution remote sensing images of typical ground
objects in the mining environment, this article extracted 44
features from the QuickBird image, WorldView-2 image, and
Gaofen-2 image. This was done to establish the initial feature
space, including 14 spectral features, 13 geometric features, 11
texture features, and six custom index features (Table 1).
Meanwhile, only 29 features are extracted from the aerial
image to construct the initial feature space due to the aerial
image used in this article being a single-band image (Table 2).
The established initial feature space is optimized by recursive
feature elimination (RFE) (Bahl et al., 2019), which measures the
importance of features by calculating out-of-pocket errors.
Following this, the feature space with the highest prediction
accuracy is selected by recursively eliminating the features
with lower importance.

From the order of importance of the initial feature space of the
QuickBird image in 2003 (Figure 9A), the contribution of
spectral features, such as mean R (band red) and mean G
(band green), in the surface environment classification of the
coal mining subsidence area, is higher. The geometric features,
such as compactness and the Stddev of the length of the edges
(polygon), contribute less. When the number of features is 36, the
classifier has the highest prediction accuracy (Figure 9B),
excluding the eight features of the border length, asymmetric,
length/width, compactness, shape index, border index, Density,

FIGURE 5 | Interpretation signs in WorldView-2 image. (A) Badlands, (B) coal gangue, (C) coal heap, (D) cultivated land, (E) other construction, (F) residential
areas, (G) vegetation, and (H) water bodies.
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and width. Similar to the QuickBird image in 2003, we finally
selected 20 features of the aerial image in 1979, 36 features of the
QuickBird image in 2003, 38 features of the WorldView-2 image
in 2011, and 39 features of Gaofen-2 image for random forest
classification.

4.2.3 Extraction of Surface Environment Information in
Coal Mining Subsidence Area
In comparison to other classification methods, random forest
classification can make full use of the differences among

training samples and has strong high-dimensional data
processing ability. Therefore, we selected the random
forest classifier to pre-classify surface environmental
elements in the Huinong coal mining subsidence area. The
accuracy of the samples directly affects the random forest
classification accuracy. We first selected training samples of
various objects based on the established interpretation signs
for surface environmental elements in the coal mining
subsidence area. Following this, we conducted multi-level
random forest classification based on the obtained optimal

FIGURE 6 | Interpretation signs in GF-2 image. (A) Badlands, (B) coal gangue, (C) coal heap, (D) cultivated land, (E) other construction, (F) residential areas, (G)
vegetation, and (H) water bodies.

FIGURE 7 | Optimal segmentation scale of the QuickBird image obtained by ESP.
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segmentation scale object and the optimized feature space.
Finally, the random forest classification results were used as
reference data to assist the man-machine interactive
interpretation and obtain the surface environment status
maps from 1979, 2003, 2011, and 2018 (Figure 10).

4.3 Remote Sensing Interpretation
Accuracy Assessment
The interpretation accuracy was evaluated by comparing the
interpretation maps with Google Earth images and historical
data (referring to land survey data and field investigations of

FIGURE 8 | Optimal segmentation scale of the objects in QuickBird image. Water bodies scale 190, coal heap scale 190, coal gangue scale 190, Cultivated land
scale 275, vegetation scale 275, other construction scale 460, residential areas scale 460 and badlands scale 460.

TABLE 1 | Object initial feature space for QuickBird image, WorldView-2 image, and Gaofen-2 image.

Spectral Features Mean B, mean G, mean R, mean NIR, max. Diff., standard deviation B, standard deviation G, standard deviation R, standard
deviation NIR, brightness, ratio R, ratio G, ratio B, and ratio NIR

Geometric features Area, length/width, width, length, asymmetry, border index, border length, compactness, density, rectangular fit, shape
index, number of edges (polygon), and Stddev of length of edges (polygon)

Texture features GLCM homogeneity (all dir.), GLCM contrast (all dir.), GLCM dissimilarity (all dir.), GLCM entropy (all dir.), GLCM Ang.2nd
moment (all dir.), GLCMmean (all dir.), GLCM Stddev (all dir.), GLDV entropy (all dir.), GLDV Ang.2nd moment (all dir.), GLDV
mean (all dir.), and GLDV contrast (all dir.)

Custom index features NDVI, NDWI, BAI, RVI, DVI, and OSAVI

TABLE 2 | Object initial feature space for aerial image.

Spectral Features Mean layer, standard deviation layer, and brightness
Geometric features Area, length/width, width, length, asymmetry, border index, border length, compactness, density, rectangular fit, shape

index, number of edges (polygon), Stddev of length of edges (polygon), elliptic fit, and roundness
Texture features GLCM homogeneity (all dir.), GLCM contrast (all dir.), GLCM dissimilarity (all dir.), GLCM Entropy (all dir.), GLCM Ang.2nd

moment (all dir.), GLCMmean (all dir.), GLCM Stddev (all dir.), GLDV entropy (all dir.), GLDV Ang.2nd moment (all dir.), GLDV
mean (all dir.), and GLDV contrast (all dir.)

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 7907379

Shang et al. Environmental Monitoring of Coal Mine

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


typical areas) of the study area from 1979 to 2018 acquired from
the Google Earth Engine (GEE) platform and national land
survey in China (Assal et al., 2015; Padmanaban et al., 2017a;
Cao et al., 2018; Luo et al., 2020). We generated a set of 265
random points and extracted those values for four different study
periods. Then, the selected random point values were recognized
from Google Earth images or historical data and compared to the
interpretation maps. We used the kappa coefficient to quantify
the interpretation accuracy (Walston et al., 2009), which ranges
from 0 to 1, and can be divided into five groups to represent
different levels of consistency: 0.0–0.20 (slight), 0.21–0.40 (fair),
0.41–0.60 (moderate), 0.61–0.80 (substantial), and 0.81–1 (almost
perfect) (Masek et al., 2006; Dubovyk et al., 2013; Assal et al.,
2014; Moradi et al., 2020). The user and producer accuracies were
also calculated (Padmanaban et al., 2017b).

5 RESULTS AND DISCUSSION

5.1 Remote Sensing Interpretation
Accuracy Analysis
The high complexity of the surface environment in the coal
mining subsidence area made object-oriented random forest
classification unreliable. From Table 3, it can be seen that the
overall accuracy is about 75%, and the kappa coefficient is lower
than 0.7. There are mainly objects, such as coal gangue, residential
land, and vegetation, being missed. Furthermore, coal heap and
coal gangue are being misclassified. However, the classification
accuracy of water bodies and badlands is higher. After the
modification of man-machine interactive interpretation, We
acquired an overall accuracy value of more than 84% for the
interpretation maps of all years, with kappa coefficient values of
more than 0.84 (Table 4). These statistics show a satisfactory
accuracy of the interpretation maps.

5.2 Statistical Analysis of the Surface
Environment Changes in Coal Mining
Subsidence Areas
Statistical analysis was conducted on the change of land-use
classes within the four time phases to ascertain the change in
surface environment in the coal mining subsidence area from
1979–2003, 2003–2011, and 2011–2018. Table 5 shows that the
largest change in the area between 1979 and 2003 was in
cultivated land, which decreased by 2.663 km2, followed by
other construction and residential areas, which increased by
1.430 and 0.981 km2, respectively, indicating a rapid expansion
of the urban area. In addition, the area changes in coal heap and
water bodies were relatively large, increasing by 0.168 and
0.189 km2, respectively, with change rates as high as 279.432
and 353.795%, indicating that coal mining activities in the study
area had a significant impact on the ecological environment
during this period. The change rates, in the descending order,
were as follows: coal gangue, vegetation, and wasteland. The area
of vegetation coverage decreased by 34.599%, while the area of
coal gangue and badlands increased (182.277 and 0.766%,
respectively), which also indirectly reflected the impact of
mining on the ecological environment.

Table 6 shows that the largest change in area from 2003 to
2011 was in vegetation, with an increase of 7.719 km2 and a
change rate of 710.794%, followed by badlands, with a decrease of
5.082 km2. In combination with field surveys, it can be seen that
in 2011, the second phase of the geological environment
renovation project in the mining area was completed, and the
surface environment of the coal mining subsidence area
improved. In addition, the area changes in cultivated land and
water bodies are relatively large, among which, the area of
cultivated land decreased by 3.068 km2, with a change rate of
−93.967%, primarily caused by abandonment or idleness.

FIGURE 9 | (A) Order of the importance of the initial features in the QuickBird image and (B) the relationship between the prediction accuracy and the number of
features in the QuickBird image.
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Furthermore, the area of water bodies increased by 0.195 km2,
with a change rate of 80.579%, primarily caused by the
construction of many landscape lakes (mostly from the
treatment of wastewater from former mine pits) in the process
of mine geological environment renovation. Although the
increase in the area of the coal pile is small, the change rate is
large, at 31.034%, and the increased area is mainly distributed
outside the scope of the first phase of renovation, and there are
fences on the periphery of the coal pile, indicating that the pile of
coal received standardized management at this time. The area of
coal gangue decreased by 0.0832 km2 during this period, and the

rate of change was −20.006%. This was mainly due to the removal
of the coal gangue from the No. 1 andNo. 2mines after the mine’s
geological environment renovation began in 2004. Only a very
small amount of coal gangue remains. The rate of change in other
construction and residential areas is relatively small, with a slight
decrease in residential areas, which could be caused by the
demolition of old residential buildings.

The third stage of mine geological environment renovation
began in 2010 and was completed in 2015. From Table 7, it can be
seen that the largest area of change from 2011 to 2018 is in the
badlands, with an area decrease of 9.311 km2; followed by the

FIGURE 10 | Interpretation map of surface environmental elements in coal mining subsidence area. (A) 1979, (B) 2003, (C) 2011, and (D) 2018.
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vegetation, with an area increase of 7.49.3 km2, indicating that the
geological environment renovation of the mine was effective. The
area of other construction increased by 1.720 km2, with an
increase rate of 50.449%, which was mainly caused by the
areas of landscapes and geological museums supporting the
mine geological park, in addition to the factory buildings. The
area of coal gangue and cultivated land reduced; the reduction
rate in the coal gangue area was 83.131%, indicating that the
mining intensity of the mining area reduced from 2011 to 2018
and that the stacking of coal gangue became more standardized.

The area of cultivated land decreased by 0.634 km2, with a
reduction rate of 74.868%, mainly due to the re-greening of
some cultivated land during the third stage of mine
geological renovation. The change rate of water bodies is
second only to that of coal gangue, at 72.781%. This is mainly
contributed by the changes in landscape lakes after the
treatment of mine wastewater, whose size increases year by
year after renovation. After the area of urban residents
continued to decrease in the early stages, it rose again
from 2011 to 2018, with an increase rate of 4.371%,

TABLE 3 | Accuracy assessment for the random forest classification results from 1979 to 2018 (unit: %).

Class 1979 2003 2011 2018

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Badlands 88.776 74.359 87.500 77.206 73.077 74.026 70.000 67.123
Coal gangue 55.556 71.429 63.636 70.000 68.750 73.333 75.000 60.000
Coal heap 71.429 62.500 62.500 71.429 71.429 62.500 68.750 61.111
Cultivated land 69.091 79.167 60.606 66.667 62.500 71.429 62.500 71.429
Other
construction

65.000 76.471 67.273 74.000 76.190 78.049 65.455 76.596

Residential
areas

68.750 78.571 72.000 75.000 56.250 75.000 60.000 75.00

Vegetation 61.905 68.421 52.941 69.231 78.873 70.000 82.278 73.864
Water bodies 75.000 85.714 75.000 80.00 70.00 82.353 70.588 85.714
Overall accuracy 75.197 74.700 73.208 71.970
Kappa 0.668 0.658 0.663 0.640

TABLE 4 | Accuracy assessment for the interpretation maps from 1979 to 2018 (unit: %).

Class 1979 2003 2011 2018

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Badlands 95.050 93.204 96.364 92.174 92.593 90.361 90.667 88.312
Coal gangue 77.778 87.500 91.667 91.667 73.684 87.500 71.429 100.000
Coal heap 100.000 85.714 100.000 75.000 83.333 83.333 75.000 75.000
Cultivated land 96.429 91.525 100.000 93.750 85.714 85.714 71.429 100.000
Other
construction

87.879 87.879 88.000 89.796 86.842 86.842 92.157 90.385

Residential
areas

72.222 100.000 79.167 100.000 78.947 93.750 83.333 93.750

Vegetation 80.000 80.000 84.000 91.304 92.982 85.484 92.593 90.361
Water bodies 100.000 100.000 88.235 93.750 77.273 80.952 94.444 89.474
Overall accuracy 91.129 91.971 84.326 89.811 208
Kappa 0.881 0.895 0.843 0.868

TABLE 5 | Statistical table regarding land-use classes changes, 1979–2003 (unit: 10–2 km2).

Class phase 1979 2003 Change value Rate of change (%)

Badlands 2624.589 2644.697 20.108 0.766
Coal gangue 14.730 41.580 26.850 182.277
Coal heap 6.022 22.850 16.828 279.432
Cultivated land 592.817 326.487 −266.330 −44.926
Other construction 155.577 298.552 142.975 91.899
Residential areas 291.940 390.075 98.135 33.615
Vegetation 166.051 108.600 −57.451 −34.599
Water bodies 5.338 24.224 18.886 353.795
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indicating that urbanization was carried out, while the
ecological environment in the mining area was improving.

5.3 Analysis of the Surface Environment
Transformation in Coal Mining Subsidence
Areas
5.3.1 Dynamic Change Map of the Surface
Environment
By overlaying the interpretation map of surface environmental
elements in coal mining subsidence areas from 1979 to 2018 and
sketching the change map, the dynamic change maps of the
surface environment in the study area from 1979 to 2003, 2003 to
2011, and 2011 to 2018 are generated (Figures 11A–C).

5.3.2 Analysis of the Land-Use Class Change Matrix
To further analyze the evolution law and the cause of the existing
land-use pattern in the mining area, we calculated the
interconversion of various types of surface objects and
obtained the land-use class change matrix from the dynamic
change maps by the use of overlay analysis function based on GIS
software (Tables 8–10).

The land-use class change matrix exhibits the interconversion
of various types of ground objects. From 1979 to 2003, the total
area of all land-use class changes was 7.965 km2; from 2003 to
2011, the total area of land-use class changes was 15.656 km2; and
from 2011 to 2018, the total area of land-use class change was
17.530 km2. The transformation and causes of various land-class
changes are analyzed as follows.

1) Badlands: From 1979 to 2003, the area of badlands exhibited
an increasing trend (Figure 12A), mainly owing to the

conversion of cultivated land and vegetation caused by soil
erosion, land desertification, and idle cultivated land. From
2003 to 2018, the area of badlands decreased significantly,
primarily being converted into residential areas, other
construction, and coal gangue. This is owing to urban
construction, the increase in factory buildings, and new
coal gangue stacking points. Furthermore, some idle
cultivated land and the demolition of residential areas in
the collapse pit led to the conversion of cultivated land,
other construction, and residential areas into badlands.

2) Coal gangue: The area of coal gangue exhibited an increasing
trend from 1979 to 2003 (Figure 12B), primarily converted
from badlands, accounting for 98% of the total converted area.
It is mainly distributed near the coal mine industrial square.
Since the gangue has never been cleaned during this time, it
can be seen from the remote sensing images that the plane
area and height of the gangue hill have increased, and the
ecological environment of the mining area has been severely
damaged. From 2003 to 2011, the area of coal gangue
exhibited a rapidly decreasing trend, being primarily
converted into badlands. The main reason for this is that
the coal gangue was cleared and transported from the mining
area, and only a small part of the gangue was left near the
industrial square. The ecological environment of the mining
area has greatly improved.

3) Coal heap: From 1979 to 2009, coal heaps exhibited an
increasing trend (Figure 12C). The area increase rate from
1979 to 2003 ranked first among all land-use classes, reaching
279.43%, which was mainly owing to conversion from
badlands. This shows that the mining intensity of the
mining area is large in this period, and the coal mined
mainly accumulates around the industrial square and the

TABLE 6 | Land-use classes changes from 2003 to 2011 (unit: 10–2 km2).

Class phase 2003 2011 Change value Rate of change (%)

Badlands 2644.697 2136.530 −508.167 −19.215
Coal gangue 41.580 33.261 -8.319 −20.006
Coal heap 22.850 29.942 7.091 31.034
Cultivated land 326.487 19.697 −306.790 −93.967
Other construction 298.552 340.979 42.427 14.211
Residential areas 390.075 372.385 −17.690 −4.535
Vegetation 108.600 880.523 771.923 710.794
Water bodies 24.224 43.743 19.519 80.579

TABLE 7 | Land-use classes changes from 2011 to 2018 (unit: 10–2 km2).

Classes phase 2011 2018 Change Value Rate of Change (%)

Badlands 2136.530 1205.400 −931.130 −43.581
Coal gangue 33.261 5.611 −27.651 −83.131
Coal heap 29.942 33.846 3.905 13.041
Cultivated land 19.697 5.161 −14.535 −73.796
Other construction 340.979 513.000 172.021 50.449
Residential areas 372.385 388.661 16.276 4.371
Vegetation 880.523 1629.810 749.287 85.096
Water bodies 43.743 75.579 31.837 72.781
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mine. From 2003 to 2018, a partial coal heap was converted
from cultivated land and vegetation. The increase was
significantly less than that from 1979 to 2003. In
addition, some coal heap areas were converted into
badlands, vegetation, and other construction,
indicating that coal mining efforts during this period
lessened. During the renovation of the geological
environment in the mining area, a unified plan for
coal storage was carried out.

4) Cultivated land: From 1979 to 2018, the cultivated land
exhibited a decreasing trend, where the area decreased the
most from 2003 to 2011, being primarily converted into
badlands (61.987%) and vegetation (32.241%), followed by
other construction and coal heaps (Figure 12D). This is
primarily because most of the cultivated land was
abandoned or idle in this period and was occupied by
other infrastructure under construction during the process
of urban expansion. From 1979 to 2003, cultivated land was

FIGURE 11 | Maps on surface environment changes in the Huinong coal mining subsidence area. (A) 1979 to 2003, (B) 2003 to 2011, and (C) 2011 to 2018.
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mainly converted into badlands and other construction
areas, accounting for 75.481% of the total converted
area. In addition to the fact that most cultivated lands
were abandoned and idle, some were still occupied by coal
heaps or coal gangue. Furthermore, some vegetation,
other construction, and badlands were also converted
into cultivated land; however, this area was much
smaller than the reduction. From 2011 to 2018, the
cultivated land area decreased slightly, which was
mainly converted into badlands and vegetation, caused
by the re-greening of part of the cultivated land after being
abandoned and idle.

5) Other construction: Other buildings exhibited a continuous
increase from 1979 to 2018 (Figure 12E), with the highest
change rate of 50.449%. This area was mainly converted from
badlands, vegetation, residential areas, and coal heaps,
accounting for 98.805% of the converted area. The area
that increased mainly comprises factory buildings and brick
factories built during wasteland development and occupied
vegetation-covered areas.

6) Residential areas: The growth rate of residential areas was the
largest between 1979 and 2003, indicating that urban
expansion was rapid during this period (Figure 12F). From
2003 to 2011, the residential area decreased slightly. Then,

TABLE 8 | Land-use class change matrix from 1979 to 2003 (unit: 10–2 km2).

Class Badlands Coal
gangue

Coal
heap

Cultivated
land

Other
Construction

Residential
areas

Vegetation Water
bodies

Total

Badlands — 35.020 16.407 11.594 105.978 66.424 27.726 20.921 284.069
Coal gangue 5.606 — 1.218 0.115 0.633 0.963 0.000 0.212 8.747
Coal heap 0.680 0.017 — 0.000 0.905 0.000 0.035 0.208 1.845
Cultivated land 181.766 0.295 0.510 — 39.939 37.191 33.898 0.123 293.723
Other
construction

19.790 0.095 0.500 0.712 — 15.201 5.036 0.047 41.381

Residential areas 5.969 0.118 0.038 0.380 23.737 — 4.790 0.072 35.103
Vegetation 87.810 0.052 0.000 14.592 13.093 13.389 — 0.000 128.935
Water bodies 2.557 0.000 0.000 0.000 0.071 0.071 0.000 — 2.699
Total 304.177 35.597 18.673 27.393 184.355 133.238 71.484 21.585 796.502

TABLE 9 | Land-use class change matrix from 2003 to 2011 (unit: 10–2 km2).

Class Badlands Coal
gangue

Coal
heap

Cultivated
land

Other
construction

Residential
areas

Vegetation Water
bodies

Total

Badlands — 19.783 15.056 5.831 136.293 36.428 608.594 23.879 845.865
Coal gangue 19.211 — 0.159 0.000 9.047 0.089 1.001 0.030 29.535
Coal heap 18.983 0.000 — 0.000 2.314 0.140 0.178 0.000 21.614
Cultivated land 195.255 0.114 5.053 — 10.917 0.529 101.558 1.569 314.996
Other
construction

36.383 0.165 3.975 0.657 — 86.257 20.248 0.068 147.753

Residential areas 36.120 0.000 0.000 0.000 23.287 — 88.333 0.526 148.265
Vegetation 27.819 0.000 4.463 1.717 8.040 7.132 — 0.927 50.099
Water bodies 3.930 1.154 0.000 0.000 0.282 0.000 2.114 — 7.480
Total 337.701 21.217 28.706 8.206 190.179 130.575 822.025 26.999 1,565.607

TABLE 10 | Land-use class change matrix from 2011 to 2018 (unit: 10–2 km2).

Class Badlands Coal
gangue

Coal
heap

Cultivated
land

Other
construction

Residential
areas

Vegetation Water
bodies

Total

Badlands — 3.421 25.558 0.000 171.376 34.433 983.048 26.008 1,243.843
Coal gangue 30.454 — 0.274 0.000 1.931 0.000 0.365 0.185 33.209
Coal heap 22.568 0.000 — 0.000 4.571 0.000 0.041 0.000 27.180
Cultivated land 10.783 0.000 0.591 — 1.006 0.000 2.278 0.000 14.659
Other
construction

52.166 1.720 0.632 0.124 — 37.262 11.463 0.414 103.780

Residential areas 26.628 0.000 0.000 0.000 26.060 — 8.137 0.558 61.383
Vegetation 164.056 0.417 4.002 0.000 70.498 5.583 — 14.556 259.111
Water bodies 6.055 0.000 0.028 0.000 0.359 0.381 3.061 — 9.884
Total 312.709 5.558 31.085 0.124 275.801 77.658 1,008.394 41.720 1753.049
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from 2011 to 2018, the area rebounded, but the increase was
less than that from 1979 to 2003, indicating that the pace of
urban expansion has slowed in recent years. The changes in
the residential area have the following two characteristics: ①
Most of the residential area is converted from cultivated land
and badlands, followed by other construction and vegetation.
This indicates that in the process of urban expansion, the most
severely affected land-use classes are surrounding cultivated
land and badlands, mainly because this type of land is
relatively flat and close to the built area of the city, making
distance costs relatively low; ② while residential areas are
increasing, they are partly converted into other construction,
badlands, and vegetation coverage areas. Among them, other
construction and badlands are formed by the demolition of
old houses in the subsidence area, and the vegetation coverage
area is formed by the re-greening of vegetation after
demolition.

7) Vegetation: From 1979 to 2003, the vegetation area exhibited a
decreasing trend (Figure 12G), mainly being converted into
badlands, cultivated land, and residential areas, accounting for
89.806% of the total converted area. This indicates that the
ecological environment of the mining area has been severely

damaged during this period. From 2003 to 2018, the
vegetation area exhibited a significantly increasing
trend, mainly converted from badlands and residential
areas, followed by other construction and water bodies.
In 2004, the geological environment underwent
renovation. The measures taken included demolishing
residential houses in the main collapse pits, backfilling
part of the collapse pits with coal gangue and
construction waste, and re-greening according to the
terrain. These measures have greatly increased the
vegetation coverage in the mining area and reduced
soil erosion. The significant increase in the vegetation
area found in the statistical results is consistent with the
effectiveness of geological environment governance in
the mining area.

8) Water bodies: The water areas in the mining region exhibited
a gradually increasing trend (Figure 12H), mainly reflecting
conversion from badlands. Most of the water is mine
wastewater, with small amounts of natural water formation.
Through the process of governing the mine geological
environment, the natural landscape is directly formed after
the treatment of mine wastewater. Some water bodies are

FIGURE 12 | Statistical chart of the area change of various land-use classes. (A) Changes in the badlands, (B) changes in the coal gangue, (C) changes in the coal
heaps, (D) changes in the cultivated land, (E) changes in the other construction, (F) changes in the residential area, (G) changes in the vegetation, and (H) changes in the
water bodies.
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converted into badlands, primarily natural puddles, whose
area is generally small.

6 CONCLUSION

Based on the results of this study, the following conclusions can
be drawn:

1) The original multispectral and panchromatic images are
preprocessed by geometric correction, resampling, and
image fusion with the help of ENVI software (version 5.3)
before interpretation. All the registration errors meet the
accuracy requirements for image overlay. For image fusion,
the Gram–Schmidt fusion algorithm performs the best for
QuickBird image, while the PCA fusion algorithm works best
for Worldview-2 and GF-2 images.

2) Through the field investigation and measured/image
spectrum contrast analysis, the remote sensing image
features of various environmental elements were analyzed,
and the interpretation signs of surface environmental
elements in coal mining subsidence areas were established.
These include badlands, coal gangue, coal heaps, cultivated
land, other construction, residential areas, vegetation, and
water bodies.

3) Using the object-oriented random forest classification method
to assist man-machine interactive interpretation had a
satisfactory classification accuracy. The interpretation maps
of all years acquired an overall accuracy value of more than
85%, with kappa coefficient values of more than 0.84.

4) The surface environment in the coal mining subsidence area
has undergone significant changes over the past 40 years.
From 1979 to 2003, the area of cultivated land and
vegetation cover decreased sharply, and the conversion to
badlands and residential areas was particularly obvious, which
was mainly caused by the infrastructure construction and soil
erosion in the process of urbanization. The other land-use
class areas, such as coal heaps, water bodies, and coal gangue,
exhibited a trend of rapid growth, mainly converted from
badlands. Mining activities have caused severe damage to the
environment of the mining area.

5) From 2003 to 2018, the vegetation-covered area exhibited the
fastest growth rate, while the area of coal gangue, badlands,
and other land-use classes significantly reduced. This change
coincides with the period of geological environment
renovation in the mining area, reflecting its effectiveness.
In addition, the residential area continued to decrease in
the early stages and then rebounded to some extent,
indicating that urbanization was carried out at the same
time as the ecological environment in the mining area
improved.

6) After more than 10 years of mine geological environment
renovation, the surface environment of the coal mining

subsidence area greatly improved, practically eliminating
the hidden dangers of geological disasters. Furthermore, the
quality of life of the residents in the mining area has also been
improved. The surface environment before and after the
renovation of the mine geological environment in the study
area is consistent with the results of remote sensing
monitoring.

Therefore, remote sensing–GIS techniques are very useful for
monitoring surface environmental evolution in the coal mining
subsidence area. This study was based on data from aerial image,
QuickBird, WorldView-2, and GF-2 imaging. However, inputs
from other sources (e.g., Spot data, HJ-A data, and ZY-3-01/02
data) should be used to improve the comparison and further
verify the reliability of this method. Moreover, there are many
remote sensing image classifiers. Only the widely used and
effective random forest classifier is selected in this study
for the automatic classification of the surface environment
in the coal mining subsidence area. However, some other
classification methods also work well, such as developing a
semiautomated fuzzy decision-making system using the
genetic algorithm (GA), constructing a classification model
by combining the tree root algorithm with the extreme
learning machine method, and the like. Further studies are
necessary to consider these models for comparison with
random forest classifiers to analyze their effectiveness for
application in the surface environment of coal mining
subsidence areas.
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