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In the Main Ethiopian Rift (East Africa) a complex tectonic history preceded Tertiary rifting
creating pre-existing discontinuities that influenced extension-related deformation.
Therefore, this area offers the opportunity to analyze the control exerted by pre-
existing structures on continental rifting at different scales. In this paper we present an
overview of such an influence. We show that at a large scale (up to ~800–1,000 km) rift
localization has been controlled by a lithospheric-scale inherited heterogeneity
corresponding to a Precambrian suture zone, separating two different lithospheric
domains beneath the plateaus surrounding the rift. The inherited rheological differences
between these two lithospheric domains, as well as the presence of pre-existing
lithospheric-scale transversal structures, largely controlled the along-axis segmentation
and symmetry/asymmetry of different, ~80–100 km-long rift segments. Inherited
transversal structures also controlled the development of off-axis volcano tectonic
activity in the plateaus surrounding the rift. At a more local scale (<80 km), inherited
fabrics controlled the geometry of normal faults and the distribution and characteristics of
rift-related volcanism. These observations document a strong control exerted by pre-
existing structures on continental rifting at all different scales.

Keywords: continental rifting, extensional tectonics, East AfricanRift System (EARS), Main Ethiopian Rift (MER), pre-
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INTRODUCTION

Continental rift systems normally develop within a previously deformed lithosphere in which the
distribution, architecture and evolution of deformation may be strongly influenced by pre-existing
structures. Indeed, inherited mechanical heterogeneities (from the lithospheric scale, e.g., suture
zones, to the upper crustal scale, e.g., foliations, shear zones, folds, faults, dykes) either weaker or
stronger than the surrounding material, are able to significantly influence the pattern, propagation
and overall evolution of continental rifts (e.g., Rosendahl, 1987; Dunbar and Sawyer, 1989; Smith and
Mosley, 1993; Vauchez et al., 1998;Morley, 1999; Corti, 2012; Buiter and Torsvik, 2014; Purcell, 2017;
Will and Frimmel, 2017).

Many extensional settings suggest such a control, including the North Sea (Bell et al., 2014;
Phillips et al., 2019), the Rhine graben system (e.g., Schumacher, 2002; Michon and Sokoutis, 2005;
Edel et al., 2007), the Tertiary rifts of Thailand (Morley et al., 2004; Pongwapee et al., 2019) and,
finally, the East African Rift System (Chorowicz, 2005; Vétel and Le Gall, 2006; Corti et al., 2007;
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Brune et al., 2017). Furthermore, several works show that many
rifts developed in different, successive extensional phases (Whipp
et al., 2014; Deng et al., 2017; Phillips et al., 2019; Wu et al., 2020),
with normal faults formed during initial extensional events
exerting a strong control on the structural architecture
developed during the later rifting phases (Bell et al., 2014;
Duffy et al., 2015; Henstra et al., 2015, 2019; Deng et al., 2018;
Wang et al., 2021). Such a control exerted by early normal faults
on structures formed during later extension is also supported by
crustal and lithospheric scale analogue models (e.g., Corti et al.,
2007; Sokoutis et al., 2007; Autin et al., 2013; Molnar et al., 2017,
2019, 2020; Zwaan and Schreurs, 2017; Maestrelli et al., 2020;
Wang et al., 2021; Zwaan et al., 2021a).

The Main Ethiopian Rift (MER), in the East African Rift
System (EARS), offers the possibility to analyse the control at

different scales of pre-existing structures on rifting. Ethiopia has
been indeed affected by several tectonic events that preceded
Cenozoic rifting, from complex Precambrian phases of collision
to extension during the Mesozoic (e.g., Korme et al., 2004;
Chorowicz et al., 1994; Abbate et al., 2015 and references
therein). This long tectonic history created pre-existing
structures that controlled the development of the Ethiopian
sector of the EARS from a regional to a local scale; the control
of these mechanical heterogeneities (which are defined at
different scales in the following sections) is the focus of this
review paper.

TECTONIC SETTING

The MER is the northernmost portion of the EARS, extending
from the Afar region in the north, to the Turkana depression in
the south (Figure 1). This region of rifting results from active
extension between the Nubia and Somalia Plates (e.g., Ebinger,
2005; Corti, 2009), with geodetic measurements indicating that
extension is currently occurring in a roughly E-W direction at
rates of ~4–6 mm/yr (e.g., Bendick et al., 2006; Saria et al., 2014;
Birhanu et al., 2016). Extension in the northern EARS, Gulf of
Aden and the Red Sea occurred contemporaneously with, and
after, an intense phase of flood basalt volcanism at ~32–30 Ma
(Wolfenden et al., 2004), which possibly resulted from upwelling
of the African Superplume (e.g., Ritsema et al., 1999), although
more complex scenarios have been recently proposed (e.g., Chang
et al., 2020).

The MER is subdivided into three main sectors: Northern
MER (NMER), Central MER (CMER) and Southern MER
(SMER) (Figure 1). These sectors differ in terms of age and
pattern of deformation, volcanic activity and lithospheric
characteristics (e.g., Mohr, 1983; WoldeGabriel et al., 1990;
Hayward and Ebinger, 1996; Bonini et al., 2005; Corti, 2009).

In the NMER, significant tectonic activity is localised at the rift
axis along a belt of Pleistocene-Holocene volcano-tectonic
structures, the so-called Wonji Fault Belt (WFB, e.g., Mohr,
1962; Boccaletti et al., 1998; Ebinger and Casey, 2001). The
WFB is characterized by swarms of short, closely-spaced faults
with minor vertical displacement, with associated focused
volcanic activity and magma intrusion (e.g., Boccaletti et al.,
1998; Tommasi and Vauchez, 2001). Large-offset boundary
faults defining prominent marginal escarpments in this rift
sector are interpreted to have accommodated deformation in
the Mio-Pliocene, but they have been deactivated during the
Pleistocene (e.g., Wolfenden et al., 2004; Casey et al., 2006; Keir
et al., 2006). Voluminous magma intrusion beneath the axial
WFB since 2 Ma caused important modifications of the
composition, thermal structure and rheology of the crust/
lithosphere in this rift sector (e.g., Beutel et al., 2010; Daniels
et al., 2014). As a result, a combination of magma intrusion and
normal faulting accommodates extension in this rift sector (e.g.,
Keranen et al., 2004; Dugda et al., 2005; Mackenzie et al., 2005;
Keir et al., 2006; Bastow et al., 2010).

In the CMER and SMER, the large boundary faults are well
developed and less eroded than in the Northern MER, and

FIGURE 1 | Tectonic setting of the Main Ethiopian Rift. (A) Present-day
plate kinematics of the East African Rift (modified fromCorti et al., 2019). Black
arrows show relative motions with respect to a stable Nubian reference frame;
values besides arrows indicate motion in mm/yr. NU: Nubian plate; SO:
Somalian plate; VI: Victoria microplate. (B)Main rift-related faults differentiated
in Boundary and Wonji (axial) faults; indicated is the subdivision in the different
segments: Northern MER (NMER), Central MER (CMER), Southern MER
(SMER). Whitish pattern indicates the transversal lineaments of Yerer-Tullu
Wellel (YTVL) and Goba-Bonga. (C) Inherited structures in Ethiopia (modified
from Korme et al., 2004; Gani et al., 2009). Dashed lines indicate NE-SW- to
N-S-trending basement foliations; solid lines illustrate E-W structures,
corresponding to the main transversal lineaments affecting the rift; greyish
pattern represents NW-SE-trending structures corresponding to sedimentary
Mesozoic basins (AG: Anza graben; OB: Ogaden basin; SSR: South Sudan
rifts).
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geological, geodetical and seismicity data indicate that they still
accommodate significant extension (Gouin, 1979; Keir et al.,
2006; Pizzi et al., 2006; Agostini et al., 2011; Kogan et al.,
2012; Molin and Corti, 2015; Corti et al., 2020). This occurs
together with a decrease in the amount of extension taken up by
axialWonji faults, which are considered to be in an incipient stage
of development in the CMER, but almost absent in the SMER
(e.g., Ebinger et al., 2000; Agostini et al., 2011). Similarly, the
volume of Quaternary volcanism decreases southwards and the
volcano-tectonic activity within the rift is sparse in the SMER and
limited to the rift margins.

All these variations of the distribution and characteristics of
the tectonic and magmatic activity along the rift axis have been
interpreted to reflect a transition from initial rifting in the SMER,
with marginal deformation and rift morphology dominated by
faulting, to more advanced rifting stages in the NMER, where
prominent axial intrusion, dyking and related normal faulting
testify a phase of magma-assisted rifting that precedes continental
break-up (e.g., Kendall et al., 2005).

The several tectonic events that affected Ethiopia since the
Precambrian created different sets of inherited structures that
exerted an important control on Cenozoic rifting and can be
classified into three main groups (Figure 1C; e.g., Korme et al.,
2004): 1) Rift-parallel or subparallel structures (NE-SW- to N-S-
trending) are mainly related to deformation connected to the
closure of the Mozambique Ocean during the Proterozoic and to
a suture zone which formed in relation to this event. 2) Roughly
E-W structures correspond to Neoproterozoic weaknesses (e.g.,
faults, fractures) sub-parallel to the trend of the Gulf of Aden. 3)
NW-SE-trending structures correspond to sedimentary basins
(e.g., Ogaden basin, Anza graben, South Sudan rifts) and
associated normal faults formed during Mesozoic extension,
which in turn likely reactivated pre-existing Precambrian
major crustal weakness zones.

CONTROL OF PRE-EXISTING
LITHOSPHERIC WEAKNESSES ON RIFT
LOCALISATION
Along with other processes (e.g., magma intrusion), the presence
of large-scale zones of weakness such as ancient suture zones (e.g.,
Buiter and Torsvik, 2014), whose rheology is different from the
surrounding regions, facilitates deformation of a continental
lithosphere which would be otherwise too strong to be
deformed by the available tectonic forces (e.g., Buck, 2004).
This is why rift structures typically localise within pre-existing
zones of weakness at a lithospheric scale, which tend to strongly
favour extensional deformation (e.g., Dunbar and Sawyer, 1989;
Buiter and Torsvik, 2014).

Previous studies in the MER based on geophysical data suggest
that initial rift location has been controlled by a lithospheric-
scale, up to ~800-1000 km-long, pre-existing Precambrian suture
(Figure 2; e.g., Gashawbeza et al., 2004; Bastow et al., 2005; Daly
et al., 2008; Keranen and Klemperer, 2008; Keranen et al., 2009;
Cornwell et al., 2010; Purcell, 2017), resulting from the closure of
theMozambique Ocean and accretion of East toWest Gondwana.

Ophiolites composing this suture zone have been dated between
880 and 690 Ma (Kroner et al., 1992; Claesson et al., 1984;
Pallister et al., 1988). The existence of such a suture zone,
which puts in contact 870 Ma Neo-Proterozoic juvenile crust
with 2 Ga Archean basement (Kazmin et al., 1978; Vail, 1983;
Berhe, 1990; Stern et al., 1990; Stern, 1994, 2002; Abdelsalam and
Stern, 1996), is supported by differences in crustal/mantle
properties between the Ethiopian and Somalian plateaus
surrounding the rift. Several geophysical data (crustal
thickness and bulk crustal Vp/Vs ratios, resistivity from
magnetotelluric data, arrival-time body-wave tomographic
models and effective elastic plate thickness) indicate indeed a
strong and homogenous Somalian plateau, which contrasts with
the more heterogeneous Ethiopian plateau composed of a strong
and thick northern portion and a thinner and weaker southern
portion (Figure 2; e.g., Corti et al., 2018a and references therein).
The reactivation of this weakness zone is interpreted to have
occurred at the eastern margin of the upwelling mantle plume,
not above its center (e.g., Bastow et al., 2008), as documented in
other flood basalt provinces (e.g., Deccan, Greenland, Parana,
Central Atlantic; Courtillot et al., 1999). Magmatic activity and
melt upraising through the upper mantle and crust may have
promoted thermal and mechanical weakening of the continental
lithosphere, possibly contributing its extension-related
deformation (e.g., Díaz-Alvarado et al., 2021). The curved
plan-view geometry of this inherited weakness significantly
influenced the trend of the Cenozoic faulting (e.g., Mohr,
1962; Kazmin et al., 1980), with a variation from roughly N-S-
trending in the south to roughly NE-SW-trending in the North.
This resulted in an along-axis variation of the kinematics of
rifting, from orthogonal in the southern MER to moderately
oblique in the northern MER (Keir et al., 2015; Erbello et al.,
2016), which had a major control on the segmentation and
structural architecture of the rift (Corti, 2008). Notably, the

FIGURE 2 | Pre-rift lithospheric domains and location of Cenozoic
volcano-tectonic activity in the MER (modified from Keranen and Klemperer,
2008). Cenozoic extension follows the rheological boundaries between two
distinct Proterozoic basement terranes, underlying the Ethiopian and
Somalian plateaus; this lithospheric weakness zone corresponds to an
ancient suture zone (see text for details).
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reactivation of an inherited weak zone oblique to the plate motion
vector is able to impose a local reorientation of the extension
direction at the rift margins, as illustrated in below Section 6.

CONTROL OF LARGE-SCALE
TRANSVERSAL STRUCTURES ON
OFF-AXIS DEFORMATION, RIFT
INTERACTION AND LINKAGE

Transversal Lineaments and Off-Axis
Deformation
The MER is characterised by the occurrence of major transversal
lineaments, which affect the rift floor and the plateaus
surrounding the rift valley (Figure 1; e.g., Abebe Adhana,
2014 and references therein). Specifically, the main structures
correspond to the roughly E-W to WNW-ESE-trending Yerer-
Tullu Wellel and Goba Bonga volcano-tectonic lineaments
(Figure 1, Figure 3), causing deformation and volcanic
activity to extend for hundreds of kilometres into the southern
portion of the Ethiopian plateau and marking the transition
between the different MER sectors. At a regional scale, these
transversal structures have been interpreted to reflect the
reactivation of inherited Neoproterozoic weaknesses roughly
parallel to the trend of the Gulf of Aden (e.g., Abbate and
Sagri, 1980; Abebe et al., 1998; Korme et al., 2004; Abebe
Adhana, 2014; Corti et al., 2018b). As explained below,

geophysical data support indeed the influence of inheritance
on the development of these structures. The Yerer-Tullu
Wellel lineament corresponds to a significant gradient in the
thickness of the crust and marks the boundary between the
northern and southern portions of the Ethiopian Plateau
(Figure 2; Keranen and Klemperer, 2008). The P wave velocity
model of Bastow et al. (2008) in its 75 km depth slice shows
discrete low velocity anomalies that extend from the rift valley
into the Ethiopian Plateau, beneath the Yerer-Tullu Wellel and
Goba Bonga lineaments (see their Figure 7). A combination of a
thermal anomaly and partial melting in response to
asthenospheric upwelling and decompression, in turn related
to localized lithospheric extension and thinning, best explains
these low velocity anomalies beneath the two transversal
lineaments (e.g., Bastow et al., 2010; Gallacher et al., 2016).
The Goba Bonga lineament is also characterised by lower
values of the elastic thickness of the lithosphere (Te; Pérez-
Gussinyé et al., 2009), which shows a decrease from values of
up to 40 km beneath the Ethiopian plateau to values of 10–15 km
(Pérez-Gussinyé et al., 2009) in a narrow E-W domain
corresponding to the transversal structure (see Figure 3).
These zones of thinned crust or lithosphere beneath the Yerer-
TulluWellel and Goba Bonga lineaments were possibly caused by
either inherited lithospheric thinned regions or by syn-rift
extension exploiting pre-rift weakness zones. Overall, this
indicates a pre-rift, structural control on the current structure
of the lithosphere (Corti et al., 2018a).

FIGURE 3 | Structural scheme of the Goba Bonga lineament (from Corti et al., 2018b) superimposed on a map of the elastic thickness of the lithosphere (Te),
modified after Pérez-Gussinyé et al. (2009). Low Te values (<10–15 km) are observed in a narrow region extending in a roughly E-W direction in the region corresponding
to the extent of the Goba Bonga lineament.
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Rift Interaction and Linkage
At its southern termination, the MER interacts with the Kenya
Rift within the Turkana depression, a low-land where
deformation, seismic activity and Pleistocene-Holocene
volcanism are distributed over a width of more than 450 km
(Figure 4; e.g., Ebinger et al., 2000). Within this anomalously
wide region of ongoing tectonic and magmatic activity,

extension is accommodated by numerous small normal
faults with limited vertical displacement. This is in striking
contrast with the narrow rift valleys to the north and
south, characterized by a typical rift valley morphology
dominated by large fault escarpments and boundary faults
with large vertical displacement. Previous studies have
suggested an influence of the Mesozoic-Early Paleogene

FIGURE 4 | Tectonic setting of the Turkana depression and surrounding regions, with Quaternary faults, seismicity and Quaternary volcanoes superimposed on a
SRTM (Nasa Shuttle Radar Topography Mission, 30 m resolution) digital elevation model (modified from Brune et al., 2017). CB: Chew Bahir basin; HH: Hurri Hills; KS:
Kino Sogo belt; LA: Lake Abaya; LT: Lake Turkana; LV: Lake Victoria; MV: Marsabit volcano; RR: Ririba Rift; SV: Suguta Valley; TE: Turkwell Escarpment. Areas encircled
by red lines are the main deformation domains. Inset in the bottom right shows the crustal thickness in the region (from Benoit et al., 2006). Also illustrated are
simplified cross sections highlighting the different architecture and distribution of deformation in the Turkana depression with respect to the Kenyan and Ethiopian rifts.
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tectonic phase on the later extensional deformation related to
the EARS (e.g., Brune et al., 2017; Corti et al., 2019; Emishaw
and Abdelsalam, 2019): the location of the diffuse Cenozoic
tectono-magmatic activity has been likely controlled by the
presence of a wide region of thinned crust, trending NW-SE
and resulting from Mesozoic extension (Anza graben,
South Sudan rifts; Figure 4). More specifically, the
anomalously wide rift zone is likely caused by the N-S

direction of propagation of the Main Ethiopian and
Kenya rift systems into this NW-SE-trending region of
thinned crust and stronger mantle lithosphere (e.g., Brune
et al., 2017). In this region, the Kenyan and Ethiopian
rift valleys are left-laterally deflected away from one
another, avoiding a direct linkage to form a thoroughgoing
N-S depression (Brune et al., 2017). Therefore, the
presence of pre-existing transversal structures has a

FIGURE 5 | Along-axis variations in the structure of the Main Ethiopian Rift (modified from Corti et al., 2018a). (A) Interpreted variations in rift symmetry and polarity:
single arrows indicate the polarity of the different rift sectors; double arrows indicate symmetry of rifting. Whitish boxes indicate the hypothesised plan-view extent of the
transversal structures: Yerer-Tullu Wellel (YTVL) and Goba-Bonga (GBL) volcano-tectonic lineaments. Rift segments labelled as NMER: Northern MER; CMER: Central
MER, SMER: Southern MER. Other labels indicate the main rift escarpments as follows, An: Ankober; Ar: Arboye; AS: Agere Selam; FG: Fonko-Guraghe; GG:
GamoGidole; LA: Langano Asela; S: Sire. (B)Map of depth of the Moho in the MER, modified after Keranen et al. (2009). (C) Simplified geological profiles across different
sectors of the MER, with vertical exaggeration of x10. WFB: Wonji Fault Belt; SDZ: Silti Debre Zeit volcanic belt.
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strong influence on the interaction and linkage of major rift
segments.

CONTROL OF PRE-EXISTING
STRUCTURES ON RIFT SEGMENTATION
AND SYMMETRY
Recent studies in the MER (e.g., Corti et al., 2018a) have
shown that the pre-rift structure of the Ethiopian and
Somalian plateaus at two sides of the reactivated ancient
suture zone has a major control on rift architecture and
segmentation.

The eastern margin of the MER, where the lithosphere
beneath the Somalian Plateau is strong and homogeneous
(e.g., Keranen and Klemperer, 2008; Corti et al., 2018a), is
characterised by the presence of a more or less continuous
system of large boundary faults (Figures 1, 5). Conversely, the
western margin shows significant along-axis variations, with
segments marked by large boundary faults (Ankober, Fonko-
Guraghe, Gamo-Gidole) alternating with sectors characterised
by flexures, with gentle monoclines dipping towards the rift
axis (Figures 1, 5). This has been interpreted to reflect a more
heterogeneous and complex structure of the Ethiopian plateau
lithosphere than the Somalian, with the Ethiopian plateau
characterised by a strong northern portion and a southern

FIGURE 6 | Reorientation of the extension direction at the Asela-Langano margin. The local direction of extension at boundary and internal faults is indicated with
light blue and red arrows, respectively; the regional direction of extension is illustrated with the big white arrows. Inset in the bottom right shows the relationship between
the rift trend (or its perpendicular), the regional direction of extension (or plate divergence, PD) and the trend of the greatest horizontal principal strain (εh1) in the different
portions of the oblique rift (modified from Corti et al., 2020).
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portion with a thinner and weaker crust (Figure 5; e.g.,
Keranen and Klemperer, 2008). This southern portion is
marked by the presence of the E-W Yerer-Tullu Wellel and
Goba Bonga volcano-tectonic lineaments (Figure 5). Where
these pre-existing weaknesses intersect the rift at a high angle,
major boundary faults are absent from the western margin and
are instead replaced by gentle flexures; this, together with well-
developed faults on the eastern side, gives rise to an overall
asymmetry of the rift (Figure 5). Instead, where large

boundary faults characterise the western margin, the rift is
symmetric (Figure 5). Notably, southeast of Addis Ababa, the
eastern rift margin is characterised by a prominent shift to the
East, which occurs in spatial coincidence with the Yerer-Tullu
Wellel volcano-tectonic lineament (Figures 1, 5). This
coincidence has been interpreted to reflect an influence
exerted by the E-W-trending pre-existing weakness on the
plan-view geometry of the rift valley at this latitude (e.g.,
Korme et al., 2004).

FIGURE 7 | (A) Digital elevation model (NASA-SRTM) of southern Ethiopia. CB: Chew Bahir; GP: Gofa province. (B) Geological map of the Chew Bahir basin and
surrounding areas, illustrating the pattern of foliation on the basement. (C) Typical angular pattern of boundary faults of the Chow Bahir basin (see text for details); (D)
structural sketch. (E)Distribution of inherited basement fabrics and boundary faults, illustrated as plots of weighted fault azimuths. Note the similarity between the trend of
basement fabrics and that of boundary faults, supporting that the development of the latter is strongly influenced by basement inherited weaknesses. Panels (A),
(C), (D), (E) modified from Corti (2009); panel (B) modified from Philippon et al. (2014).
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In summary, the above observations indicate that the MER is
characterized by a segmentation strongly controlled by the
inherited lithospheric structure, which results in 80–100 km-
long rift segments with alternating symmetric/asymmetric basins.

CONTROL OF PRE-EXISTING
STRUCTURES ON LOCAL-SCALE FAULT
GEOMETRY AND ARCHITECTURE
Pre-existing structures have a significant influence on the
geometry and segmentation of extension-related normal faults
at a more local (<80 km) and shallower scale. The architecture
and kinematics of boundary faults at the margins of the CMER
and NMER are strongly influenced by the oblique inherited
weakness described in Section 3. The boundary faults are at
surface en-echelon arranged and oblique to both the pre-existing
weakness (i.e., the rift trend) and the orthogonal to the regional
plate motion vector; they trend orthogonal to the local direction
of extension (Figure 6; Corti et al., 2013; Philippon et al., 2015).
Inversion of fault-slip data and detailed analysis of fault
kinematics in analogue models of oblique rifting indicate
indeed a pure dip-slip motion on these faults, in which (given
the oblique orientation with respect to the extension direction) a
strike-slip component of motion could be expected (Corti et al.,
2013; Philippon et al., 2015). This documents a reorientation in
the extension direction at the margins of the rift, where the local

extension direction does not correspond to the regional plate
divergence, resulting in a pure dip-slip motion in an overall
oblique kinematics (e.g., Morley, 2010; Corti et al., 2013; Figure 6).

Examples of an important control of inherited structures like
fractures, faults, foliations, and dikes on the geometry of
individual faults or fault segments are evident in the Gofa
Basin and Range and in the Chew Bahir basin, in southern
Ethiopia (Figures 7, 8). In these regions, large boundary faults
are typically highly segmented, with many short interacting segments
characterised by sharp changes in orientation giving rise to zig-zag
geometries and angular patterns (e.g., Moore and Davidson, 1978;
Vétel et al., 2005; Vétel and Le Gall, 2006). Typically, the orientation
of the boundary fault segments mimics the trend of foliations or
mylonite zones indicating a strong control exerted by pre-existing
basement structures (Figures 7, 8;Moore andDavidson, 1978). Faults
parallel to the extension direction are related to reactivation of
basement fabrics rather than to recent transcurrent faults (Moore
and Davidson, 1978; Philippon et al., 2014).

A similar control has been suggested by recent works in the
Ririba rift, at the southern termination of the Ethiopian Rift
(Corti et al., 2019). In this rift, besides the angular fault pattern and
the parallelism between faults and inherited fabrics, the main
boundary faults are characterised by an anomalously low
displacement/length ratio (i.e. long faults have very low
displacement) and by displacement/length (D-L) curves (with flat
top profiles, low-end gradients and low D-L ratio values) typical of a
‘constant length model’ of fault growth (see Supplementary Fig. 4 in

FIGURE 8 | Field examples of structures affecting the Precambrian basement in the southern MER: (A) magmatic foliation and (B) Cenozoic fault plane affecting
basement and cutting quartz vein and aplitic dike in the Gofa province; (C) System of sub parallel fractures reactivated and associated to a major normal fault (not visible
of the left) in the Chew Bahir basin; (D) basement foliation sub parallel to the major fault plane delimiting the Chew Bahir basin.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 10 | Article 8085039

Corti et al. Pre-Existing Structures and Continental Rifting

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Corti et al., 2019). This growth model is representative of reactivated
fault systems in which fault lengths are inherited from underlying
structures and established almost instantaneously on geological
timescales, as also suggested for the nearby Kino Sogo fault belt
in Kenya (Vétel et al., 2005; Vétel and Le Gall, 2006).

Another typical example is the Langano (or Haroresa)
Rhomboidal Fault System (Le Turdu et al., 1999), located East
of Lake Langano (Figure 9). In this area, the NE-SW-trending
Asela-Langano escarpment curve to acquire a NW-SE trend and
the interaction between NE-SW and NW-SE-trending structures
give rise to a complex pattern of normal faults, with typical S- or
Z-shaped plan-view geometries (Figure 9). This pattern and the
curvature of the escarpment have been suggested to be controlled
by a major NW-SE pre-existing crustal weakness zone, roughly
parallel to the trend of the Red Sea (e.g., Korme et al., 2004). The
existence of such pre-existing transverse structure close the Lake
Langano is also supported by gravity data (Korme et al., 2004)
which evidence the presence of NW-SE graben below the rift
depression. A similar example of control on the local-scale fault
pattern of inherited structures includes NW-SE faults East of Addis
Ababa (Wolenchiti area) defining a NW-SE-trending graben filled
by Pleistocene diatomite deposits (Korme et al., 2004).

CONTROL OF PRE-EXISTING
STRUCTURES ON THE DISTRIBUTION
VOLCANISM
Many examples in theMER document a strong control exerted by
pre-existing structures on the distribution of volcanic vents and

edifice geometries. In the Ririba rift, at the southern termination
of the MER, the Quaternary volcanic fields are aligned in a NE-
SW direction and show no apparent relationship with the N-S-
trending Pliocene boundary faults of the rift (Figure 10) therefore
indicating that these structures do not exert a control on the
pathways of magma ascent. This volcanism aligns parallel with
regional, NE-SW/NNE-SSW-trending pre-existing lineaments
(such as the Buluk Fault Zone in Figure 10) suggesting that
the distribution of volcanic centres may have been controlled by
these major deep inherited structures (e.g., Vétel and Le Gall,
2006; Corti et al., 2019; Franceschini et al., 2020). Magma ascent
along these pre-existing structures may have been caused by
abandonment of the Ririba rift and consequent deactivation of
the main rift faults, and a stress re-organization due to gradients
in crustal thickness (Franceschini et al., 2020). This resulted in
buoyancy forces causing a local stress field with maximum
horizontal stress orthogonal to the Turkana depression,
enabling the uprising and emplacement of magma along NE-
SW pre-existing structures. At a more local scale, the distribution
of vents and their preferential directions of elongation (within
individual volcanic fields) suggest a second-order control by
inherited basement fabrics (Franceschini et al., 2020), as
documented by the above-mentioned angular networks of
minor normal faults observed in the area. Overall, the Ririba
example supports that major, lithospheric-scale inherited
structures may represent zones of crustal weakness that
magma can exploit during its ascent, controlling the volcanic
spatial and temporal evolution, volcanic morphology, magma
volume, and eruptive dynamics (e.g., Le Corvec et al., 2013;
Wadge et al., 2016).

FIGURE 9 | Digital elevation model (NASA-Shuttle Radar Topography Mission, SRTM 30 m resolution; left panel), and faults superimposed onto a SRTM digital
elevation model (right panel) of the Langano Rhomboidal Fault System. Inset in the bottom right shows a schematic representation of the possible influence of a NW-SE-
trending inherited weakness on the fault pattern. See text for details.
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In a recent compilation, Maestrelli et al. (2021) suggested that
at least some calderas in the MER (e.g., Fantale, Kone, Gedemsa
and Corbetti) may have experienced a tectonic control exerted by
pre-existing faults reactivated during the collapse (i.e., fault-
controlled caldera rim; Figure 11). Furthermore, Acocella
et al. (2002) hypothesized a control exerted by inherited
structures, reactivated during rift extension, on the localization
for Fantale, Kone and Gedemsa calderas. In this regard, Lloyd
et al. (2018) suggested the presence of a E-W deep rooted
inherited structures controlling the localization and the
structural setting of the Corbetti Caldera. As supported by
Corti et al. (2018b), this structure may be related to the
regional-scale Goba Bonga lineament.

Previous works have also suggested the influence of inherited
structures on the development of off-axis (or flank) volcanoes
(Figure 12). Such volcanic edifices are located in the plateaus
surrounding the rift, in an off-axis position with respect to the
tectonic depression; a classic example of this volcanism is the
Galama range, located in the Somalian plateau (Figure 12).
Different models of magma generation and/or migration have
been applied to explain the development of such volcanism
(e.g., Bonini et al., 2001; Maccaferri et al., 2014; Chiasera et al.,
2018). However, in most of the different models, the final
uprising of magma at shallow crustal levels, resulting in the

alignment of dikes and scoria cones in an area of thicker crust,
has been related to ascending mafic dikes exploiting pre-
existing basement faults and fractures slightly oblique to the
rift margins (Mohr and Potter, 1976; Chiasera et al., 2018).
Off-axis volcanism is also associated with pre-existing E-W
lithospheric structures corresponding the Yerer-Tullu Wellel
and Goba Bonga transversal lineaments (Abebe Adhana, 2014;
Corti et al., 2018b).

DISCUSSIONS AND IMPLICATIONS FOR
REACTIVATION OF PRE-EXISTING
STRUCTURES DURING CONTINENTAL
RIFTING

Understanding how the pre-existing structure of the continental
lithosphere influences rifting is of primary importance, as it may
have an impact on several aspects of the rifting process and its
outcomes. These may include the potential architecture (e.g.,
symmetry/asymmetry) of resulting passive margins, the possible
segmentation of oceanic domains and transform faults separating
them, the characteristics (length, depth extent, segmentation) of
seismogenic faults (with implications for maximummagnitude of
earthquakes), the distribution, volumes, and dynamics of

FIGURE 10 | Schematic relations between the distribution of the Quaternary volcanic fields of Dilo, Mega and Huri Hills (orange ellipses) and major inherited
structures (dashed lines in the figure) such as the BFZ (Buluk Fault Zone), modified from Franceschini et al. (2020). Black arrows schematically indicate the main
compressive stress resulting from buoyancy forces in the area related to variations in crustal thickness and topography. See text for details.
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associated volcanism (influencing volcanic risks and geo-
resources such as geothermal energy). Because of this, the
relationship between the Proterozoic crustal/lithospheric
framework and the pattern of rift-related structures in East

Africa has attracted considerable debate over the last decades
(see Purcell, 2017).

Examples from the MER provide useful insights into this
debate. Specifically, these examples document a significant

FIGURE 11 | Structural control on collapsed caldera margin at (A) Fantale, (B) Kone Volcanic complex (KVC), (C) Gedemsa and (D) Corbetti. Red dashed lines
indicate caldera ring faults controlled by inherited structures reactivated during the collapse. Red stars mark volcanic emission points (modified from Maestrelli et al.,
2021). Ko: Kone caldera; Kr: Korke caldera; Bi: Birenti caldera; MtB: Mount Birenti; Co.: Corbetti; L. Aw, Lake Awasa; Aw: Awasa caldera remnants.

FIGURE 12 | Satellite image (left) and main off-axis volcanoes (right) in the Somalian Plateau. Red dashed lines indicate the trend of inherited fabrics that possibly
feed the volcanoes.
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control exerted by inherited heterogeneities at all different scales,
which is illustrated in Figure 13.

At a large scale (up to ~800–1,000 km), the localisation of
extensional deformation and the plan-view geometry of the rift
valley is largely controlled by a NE-SW- to N-S-trending,
lithospheric-scale Precambrian suture zone (Figure 13A).
Suture zones may be indeed weaker than the normal
lithosphere, because of processes including increased heat
production in the thickened crust and the presence of
inherited faults that can weaken the crust (Buiter and Torsvik,
2014). This explains why suture zones are typically reactivated
during extension and localize extension-related deformation, as
documented in many examples worldwide (see review in Buiter
and Torsvik, 2014). In Ethiopia, the along-axis variations in the
trend of the suture and the resulting rift valley, determine along-
axis differences in the kinematics of rifting, from orthogonal in
the southern MER to moderately oblique in the northern MER,

which have important implications for rift architecture and
evolution (see Keir et al., 2015).

Within the rift, the inherited rheological heterogeneities and
different strength of the lithospheric domains surrounding
the rift, and the presence of transversal structures, control the
interaction between the Ethiopian and Kenyan rift, as well as
the along-axis segmentation of the rift valley (Figure 13B).
Specifically, the strength difference (or similarity) of the
lithosphere beneath the plateaus controlled the
development of 80–100 km-long rift portions characterised
by asymmetry (or symmetry) of the rift valley. Recent
analysis from other continental rifts (e.g., Malawi Rift,
Upper Rhine Graben; Laó-Dávila et al., 2015; Grimmer
et al., 2017) support that along-axis variations in inherited
structures (e.g., basement fabrics) have a significant influence
on basin architecture and segmentation, and on the
characteristics of the rift margins.

FIGURE 13 | Schematic illustration of the control exerted by inherited heterogeneities at different scales in the MER. From regional-scale to local-scale, we observe:
(A) Rift localization controlled by Proterozoic suture. YTVL: Yerer-Tullu Wellel transversal structure; (B) Rift segmentation and asymmetry induced by large-scale
transversal structures; (C) Off-Axis volcanism controlled by large-scale transversal structures; (D) Local-scale architecture controlled by inherited basement fabrics; (E)
Distribution and setting of volcanism controlled by local scale-inherited structures.
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Roughly E-W, lithospheric-scale inherited weaknesses control
the development of off-axis volcano-tectonic activity in the
plateaus surrounding the rift, an activity which may extend
hundreds of kilometres away from the rift (Figure 13C).
Transversal pre-existing structures may have controlled other
characteristics of the MER, such as its plan-view geometry and its
deflection southeast of Addis Ababa. Similar controls have been
described in other regions of East Africa: for instance, the
inherited Aswa Shear Zone has been suggested to control rift
deflection in northern Kenya and the transfer of strain from the
Western Branch to the Eastern Branch of the EARS (e.g., Purcell,
2017 and references therein).

At a local scale (<80 km), pre-existing structures may control
the geometry of extension-related normal faults, causing
anomalous fault patterns (Figure 13D): when controlled by
inherited structures, normal faults may deviate from linear to
zig-zag or sigmoidal plan-view geometries, with atypical
displacement/length (D/L) curves and fault lengths established
almost instantaneously on geological timescales (constant length
model of fault growth). Examples from other sectors of the EARS
(e.g., Malawi) confirm that pre-existing basement fabrics may
have an important influence on the architecture of later rift-
related faults (e.g., Williams et al., 2019; Wedmore et al., 2020;
Kolawole et al., 2021). However, this may not always be the case:
other studies have shown that pre-existing weaknesses only
locally control border fault geometry at subsurface (e.g.,
Hodge et al., 2018) or that high-angle normal faults may cut
through low-angle basement fabrics (e.g., Ebinger et al., 1989). In
the Kenya rift, recent studies (Muirhead and Kattenhorn, 2018)
points to a complex time-evolution of inheritance during rifting,
with reactivation of pre-existing structures documented to
postdate rift initiation and occur in an advanced rifting stage.
In this case, later activation of inherited fabrics may reflect a
complex contribution by magma-assisted deformation
(Muirhead and Kattenhorn, 2018). A time-dependent
reactivation of inherited structures has been also documented
in other regions of the EARS, such as the Turkana depression of
southern Ethiopia and northern Kenya. There, contrarily to what
suggested for the Kenya rift, field analyses and seismic reflection
data indicate that some NE-SW-trending basement structures
have been reactivated during initial rifting but then abandoned
during progressive extension, given their non-optimal orientation
with respect to the roughly E-W extension direction (Nutz et al.,
2021). Similarly, NW-SE-trending faults related to a previous
Cretaceous-Early Paleogene extension phase are non-optimally
oriented with respect to the roughly E-W extension of Cenozoic
rifting. In this case, geodetic observations, and analysis of present-
day deformation (Knappe et al., 2020) indicate no reactivation of
these pre-existing faults during later extension, as also supported
by analogue modelling of extension in the region (Wang et al.,
2021). These analogue models indicate that the absence of fault
reactivation may be related to a limited development of structures
during the early rift phase, with a small volume of crust affected
by pre-existing weak zones and a low reduction in strength in the
brittle crust, and to their obliquity with respect to the later
extension direction. In general, the strength contrast between
the undeformed crust and that affected by pre-existing structures

and the orientation, size and depth of inherited faults with respect
to the extension direction are controlling factors in the
reactivation of pre-existing structures as documented in many
modelling works (e.g., Bellahsen and Daniel, 2005; Maestrelli
et al., 2020; Molnar et al., 2017, 2019, 2020; Osagiede et al., 2021;
Samsu et al., 2021; Schori et al., 2021; Wang et al., 2021, Zwaan
and Schreurs, 2017; Zwaan et al., 2021a,b).

Inherited structures also control the patterns of migration and
emplacement of rift-related magmas (Figure 13E), which may at
some places show no direct relations to rift related faults and rather
cut them. The MER examples support that pre-existing structures
may control the spatial and temporal evolution of volcanic activity,
its volume and eruptive dynamics, as observed in other parts of the
EARS (such as the Chyulu Hills in the Kenya Rift; e.g., Mazzarini
and Isola, 2021) and other regions undergoing extension (e.g.,
Gómez-Vasconcelos et al., 2020).

CONCLUDING REMARKS

We have shown how inherited structures have controlled the
development of the MER from regional to local-scale. In general,
as typically observed in other rift settings, the influence of
inheritance on rift-related deformation is rather obvious at a
regional scale, as rift valleys localise within lithospheric-scale
weak zones avoiding stronger regions. Similarly, large,
lithospheric-scale transversal structures influenced the MER
segmentation, symmetry and off-axis volcanic activity.
Examples in the MER document a local-scale influence of
inherited structures on normal fault geometries and rift-related
volcanism. However, comparison with other examples from the
EARS suggests that the relations between pre-rift structures and
individual rift basins or faults are more complex and several
aspects of fault reactivation at a local scale remain enigmatic.
These include, among others, the time-space variations of
reactivation during rift progression and its dependence on
parameters such as: the volume of crust affected by pre-
existing weak zones and/or their dimensions, the strength
contrast required for their re-use, and their dip and
orientation with respect to the extension direction. Additional
detailed studies in locations where we can clearly analyse, in 3D,
crustal faults and ancient structures are therefore needed to
improve our knowledge of these complex relations.
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