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Basin-scale hydropower operation and water resource allocation rely on in situ

river discharge measured at a river mouth, which is referred to as runoff. Due to

labor intensiveness and tight financial constraints, satellite hydrological

variables have been advocated for reconstructing monthly runoff via

regressing with nearby measured monthly river discharge over the past two

decades. Nevertheless, daily runoff reconstruction by regressing with upstream

satellite hydrological variables on a daily scale has yet to be examined. A data

standardization approach is proposed for daily runoff reconstructed using

satellite hydrological data upstream of the Mekong Basin. It was found that

the accuracy of reconstructed and predicted daily runoff against in situ runoff

was substantially increased, in particular, the troughs (peaks) during dry (wet)

seasons, respectively, when compared to that of the direct linear regression.

The backwater impact on the runoff accuracy is negligible after standardization,

implying the possibility of choosing the basin exit at the entrance of the river

delta. Results generated from the data standardization via neural

network–based models do not improve consistently or even a bit worse

than that of the linear regression. The best forecasted runoff, yielding the

lowest relative error of 8.6%, was obtained from the upstream standardized

water storage index. Detrended cross-correlation analysis indicated that the

reconstructed and forecasted runoff from the data standardization yielded a

cross-correlation larger than 0.8 against in situ data within most window sizes.

Further improvement lies in the methodology for mitigating the influence due

to climate variability and extreme events.
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1 Introduction

Basin-scale water allocation and management require in situ

discharge time series measured at a river mouth, which is termed

runoff when divided by the basin area. Its recorded extreme

values are useful for predicting hazards that potentially occur

around nearby-affected regions. The declining number of global

discharge stations has promoted the usage of remotely sensed

(RS) data products for discharge reconstruction since the 1990s

(Sneeuw et al., 2014), owing to its near-global coverage.

Localized passive RS data, such as vegetation index,

temperature (Yue et al., 2007), estuary dimension (Smith,

1997; Gleason and Smith, 2014), and flood extent mapping

(Pan and Nichols, 2013), correlate nearby discharge data

directly. Nonetheless, the weaknesses of these localized passive

RS data are 1) unevenly sampled with a low temporal resolution,

2) susceptible to land surface materials, and 3) no direct

causation with discharge data. As a result, satellite

hydrological variables (e.g., precipitation) having evenly

sampled on a daily basis with direct causation to discharge

are more suitable than the localized passive RS data in

reconstructing discharge at a basin scale.

Precipitation, stage, and water storage are the hydrological

variables that can be calculated from the Global Precipitation

Measurement–Tropical Rainfall Measurement Mission (GPM-

TRMM) and its follow-on satellite (Huffman et al., 2007) and

satellite altimetry (Frappart et al., 2006) and gravimetry (Wahr

et al., 2004), respectively. For instance, the GPM-TRMM

recorded monthly precipitation has been utilized for

hydrologic prediction (Su et al., 2008; He et al., 2018),

hydrologic extremes (Harris et al., 2007; Naumann et al.,

2012; Mutuga et al., 2014; Tekeli and Fouli, 2016) and their

climatic variabilities (Yan et al., 2020), and in situ precipitation

assessment (Li et al., 2013; Yan et al., 2014; Tao et al., 2016).

Nonetheless, the potential usage of daily GPM-TRMM

precipitation data is yet to be explored (Su et al., 2011;

Shirmohammadi-Aliakbarkhani and Akbari, 2020), let alone

its potential for reconstructing daily runoff time series.

Stage and water storage time series are, respectively, recorded

by satellite altimetry (e.g., Sentinel, Envisat, and Jason-3) and

gravimetry [e.g., gravity recovery and climate experiment

(GRACE)]. This altimetric-derived stage has been utilized to

monitor inland water surface in small rivers in Indonesia

(Sulistioadi et al., 2015), global lakes (Calmant et al., 2008),

and Mekong Basin (MB)’s reservoirs (Liu et al., 2016). A power

function fitting of the altimetric-derived stage with the in-situ

runoff (Beven, 2001; Tourian et al., 2013) allows runoff

reconstruction (Birkinshaw et al., 2010). A similar procedure

applies to runoff relating to basin-averaged monthly water

storage (Riegger and Tourian, 2014; Sproles et al., 2015).

Runoff can also be determined through the water balance

equation, with precipitation and evapotranspiration given

(Syed et al., 2009; Chen et al., 2019). However, the potential

usage of daily GRACE water storage data relating to daily runoff

remains elusive. It is of note that unless data assimilation has

been considered, direct daily GRACE data generation is not

feasible without the tradeoff between spatial and temporal

resolution.

In general, there are three types of hydrological models:

conceptual models [e.g., Hydrologiska Byrans Vattenavdelning

(HBV) model (Grillakis et al., 2010) and topography-based

hydrological model (TOPMODEL) (Beven et al., 1984)],

physically-based models [e.g., MIKE Système Hydrologique

Européen (SHE) (Singh et al., 1999) and Soil and Water

Assessment Tool (SWAT) (Easton et al., 2010)], and empirical

models [e.g., linear regression, hydraulic functions, time series

model, and neural network–based (NNB) model (Wang et al.,

2009)]. The first two types of hydrological models require a

significant amount of data within the basin, including runoff,

precipitation, digital elevation model, drainage locations, and soil

moisture, to mention a few (Devia et al., 2015). They are also

computationally expensive (Reggiani and Rientjes, 2005). Several

iterations are needed to get the parameters fine-tuned. Therefore,

the empirical models are more suitable in hydrological practice

due to their simplicity that is derived from input (e.g.,

precipitation and water storage) and output (e.g., runoff) time

series only. The linear regression and hydraulic functions for

reconstructing runoff have been described earlier. For instance,

the in-situ runoff relates to GPM-TRMM precipitation data via

linear regression (Zhou et al., 2019), whereas in situ runoff relates

to the monthly basin-averaged water storage (or stage) via a

hydraulic functional fitting (e.g., the power function) (Riegger

and Tourian, 2014; Sproles et al., 2015).

Time series and NNBmodels are also ubiquitously employed.

NNB model always generates a more accurate forecasted

discharge than that from other methods (Wang et al., 2009).

Nevertheless, most studies employing time series and NNB

models used the in-situ discharge data as input rather than RS

data or satellite hydrologic variables. Furthermore, data

containing potential biases are not considered in advance

while directly input into the model in different orders to train

various numerical results. Hence, a method that generates a

unique numerical result with a potential reduction of hidden

biases is highly desirable.

Data standardization is a technique to detect hidden biases by

subtracting the raw time series from the averaged one (Jones and

Hulme, 1996; Ferreira et al., 2018). The regression between two

standardized data variables should reduce potentially-hidden

biases partially, in particular, in extreme conditions (Fok and

He, 2018). This method is utilized in this research.

The reconstructed and forecasted runoff based on data

standardization is expected to reduce the discrepancies of the

peak and trough values against the in-situ one in this study. This

is because a cascade effect is generated due to all artificial

reservoir operations along the basin that distorts the in-situ

runoff on a seasonal basis (Räsänen et al., 2017). This was
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found to be systematic for each season every year (Hecht et al.,

2019). Hence, this effect can be partly reduced by data

standardization, highlighting potential biases for a particular

data time period (Fok and He, 2018). Notably, most reliable

satellite hydrological variables were available only after 2002, in

particular, GRACE water storage, avoiding the necessity for

comparing the changes of reconstructed runoff before and

after that time.

Given the presence of a time-lagged relationship between

the upstream hydrological variables and the downstream water

level (Biancamaria et al., 2011) and/or runoff (Hirpa et al.,

2013), this study aims at regressing standardized satellite

hydrological variables obtained at the MB upstream with the

standardized in situ runoff on a daily scale. To demonstrate the

improvement of the proposed approach, their accuracies are

compared with the results generated from the direct linear

regression and the NNB models. Comparison between the

runoff reconstructed at and far away from the estuary also

allows us to assess the backwater impact on reconstructing and

forecasting runoff. Our results are finally compared with the

best published daily (Tourian et al., 2017) relative error in the

recent literature.

2 Study area

Across different latitudes, Mekong Basin is separated into

upstream (i.e., Lancang river in China) and downstream

(i.e., exit at Jinghong to river delta) (Figure 1) with distinct

climate zones. Yunnan province appears as an important

transition between upstream and downstream that shares a

similar wet season driven by the Indian monsoon to that of the

downstream (Colin et al., 2010; Tang et al., 2014). Climate

variability [e.g., El Niño Southern Oscillation (ENSO)]

abruptly alter the spatiotemporal precipitation pattern for

the entire basin, consequently affecting the amount of

runoff discharged into the ocean (Xue et al., 2011; Räsänen

and Kummu, 2013).

The natural settings of the basin are also critical to runoff

temporal variability. For instance, Tonle Sap Lake, as a natural

reservoir, provides storage water discharged into the ocean

during the dry season (Chang et al., 2020) while storing water

itself during the wet season. In addition, the backwater from the

ocean substantially contaminates the pure hydrological signals of

the water level and runoff measured at Mekong estuary channels

(Peng et al., 2020).

The artificial settings of the basin are attributed to human

activities. These activities, including dam operation, dikes

construction, groundwater extraction, and sand mining (Loc

et al., 2021), also speed up the backwater from the ocean

(Eslami et al., 2019). Among all these activities, dam

operation is the main reason for the apparent shift of the

long-term seasonal runoff before and after 2002, owing to a

drastic increase in dam construction during the 1990s (Cochrane

et al., 2014; Lu et al., 2014; Li et al., 2017).

3 Data

3.1 In situ discharge and precipitation data

Three in situ discharge gauge stations (i.e., Tan Chau, Chau

Doc, and Kratie), bought from the website of Mekong River

Commission at http://www.mrcmekong.org, were employed in

this study. Stations located at different distances from the estuary

mouth allow an assessment of the ocean tidal backwater effect.

Tan Chau and Chau Doc stations are located at Tien River and

Han River, respectively, whereas Kratie station is located at the

main stream. Tan Chau and Chau Doc (called TC-CD

hereinafter) stations’ time series were added up

correspondingly so as to approximate the basin runoff. It is of

note that the Butterworth filter was used to suppress short-period

ocean tidal signals (e.g., diurnal or semidiurnal) for the TC-CD

FIGURE 1
The Mekong Basin (yellow area) overlaying Yunnan, China
(pink area), with World Meteorological Organization (WMO)
meteorological stations (red triangle) along with hydrologic
stations within the river delta (purple dot).
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time series (Peng et al., 2020) in order to minimize the tidal

backwater effect in the river delta (Arias et al., 2012; Gugliotta

et al., 2019). To generate daily discharge of the TC-CD station (in

the unit of millimeters per day), the daily TC-CD discharge (in

the unit of cubic meters per second) is divided by the total basin

area. No pre-processing step was applied to the Kratie station

FIGURE 2
Runoff time series of the TC-CD and Kratie stations.

FIGURE 3
Time series of GPM-TRMM daily precipitation averaged over Yunnan Province against the average precipitation of nine in-situ WMO stations
during 2003–2014.

Frontiers in Earth Science frontiersin.org04

Fok et al. 10.3389/feart.2022.821592

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.821592


time series, except for the dividing basin area excluding the

Cambodia plain.

Daily runoff time series for the Kratie and TC-CD stations

are displayed, with highly unstable maximum and minimum

values from 2009 to 2014 (Figure 2). It is of note that the TC-CD

time series is not continuous due to instrument upgrades during

2007–2008. Therefore, the daily runoff and the satellite

hydrological variables were consistently used for time lag

determination during 2003–2006, while used for the

reconstruction (forecast) during 2009–2012 (2013–2014),

respectively.

Nine in situ precipitation data, obtained from World

Meteorological Organization (WMO) stations available at

https://www.ncei.noaa.gov/maps/daily/, were averaged over

Yunnan to evaluate the precipitation data from GPM-TRMM.

No apparent offset was observed; therefore, no calibration is

required in this study (Figure 3). It was found that the averaged in

situ precipitation data against that of GPM-TRMM

quantitatively revealed a good consistency, with a Pearson

correlation coefficient of 0.695 and an RMS error of 3.

53 mm/day.

3.2 Two satellite hydrological variables

Daily precipitation time series map gridded at 0.25° × 0.25°
during 1998–2014 was produced from version 7 3B42 of GPM-

TRMMmulti-satellite precipitation analysis datasets, available at

https://disc.gsfc.nasa.gov/. In situ precipitation from the Global

Precipitation Climatology Center have been partly used to

calibrate these data worldwide (Huffman et al., 2007). Daily

Stokes’s coefficients with nearly 4.5° × 4.5° grid resolution during
2003–2014 calculated by the Institute of Geodesy at Graz

University of Technology (IGGUT) (Kvas et al., 2019) was

available at http://icgem.gfz-potsdam.de/series. These data

were employed in this study.

3.3 ENSO index

ENSO events cause hydrological extremes in the Mekong Basin

(Räsänen and Kummu, 2013). The warm (cold) phase representing

El Niño (La Niña) can be distinguished by pressure difference and

sea surface temperature anomalies (Kiem and Franks, 2001).

Oceanic Niño Index and Multivariate ENSO Index, available at

https://www.esrl.noaa.gov/psd/data/climateindices/list/, were served

to qualitatively examine whether the indices were correlated

substantially with the runoff, especially for the extended La Niña

duration during 2010–2011 (Figure 4).

4 Methodology

4.1 Overview

Figure 5 describes the flow of the methodology, which

includes: 1) post-processing steps (i.e., spatial averaging over

Yunnan, time lag analysis, and temporal averaging process); 2)

FIGURE 4
The (A) Oceanic Nino Index and (B) Multivariate ENSO Index time series, indicating the neutral (green bar), La Niña (blue bar), and El Niño (red
bar) events.
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data standardization; 3) reconstructed and forecasted runoff via

linear regression and NNB models; and 4) validation.

4.2 Data pre- and post-processing

While no data preprocessing for GPM-TRMM daily data is

required, GRACE daily data preprocessing is needed. The GPM-

TRMM daily data are resampled at 1° × 1°. The daily geocenter

time series datasets generated from IGGUT were added to the

first-degree Stokes’s coefficients before converting them into

1° × 1° gridded data via interpolation. The second-degree

coefficients were preserved, as no external daily time series of

second-degree coefficients are available.

For data post-processing steps, all satellite hydrological

variables within the boundary of Yunnan were averaged per

day in space to produce an individual time series for each

hydrological variable. Then, a 55-day and a 5-day moving

averaging process were applied to TRMM precipitation and

GRACE water storage, respectively, followed by shifting a

lagged time between the upstream satellite hydrological

variables and in situ runoff, owing to the presence of

hysteretic properties among the hydrological variables

influenced by climate, hydrogeology, and topography (Sproles

et al., 2015). The time lag was determined via a cross-correlation

analysis (Oppenheim, 1999). Finally, the runoff reconstruction

and forecast via the direct linear regression between the satellite

hydrological variables and runoff were performed. These results

served as benchmarks against the proposed data standardization.

Precipitation is discrete, following non-normal statistical

distribution. McKee et al. (1993)’s standardization process was

used. This process transforms the GPM-TRMM daily data

during 1998–2014 into a standardized form, called

standardized precipitation index (SPI), that follows a normal

distribution (Naresh Kumar et al., 2009). A 3-month

(i.e., 90 days) time scale of SPI was selected (Lloyd-Hughes

and Saunders, 2002). However, water storage on land should

be continuous. Therefore, conventional data standardization was

used for GRACE water storage data, except that the median

values every day were adopted to standardize the water storage

(Fok and He, 2018), which is written as

SIi,j �
Si,j −median(Sj)

σ̂(Sj) (1)

where Si,j stands for water storage at j-th day of year i, with

median(Sj) and σ̂(Sj) representing the median and sampled

standard deviation of water storage.

4.3 Linear regression model

Previous research studies have found that runoff lagged the

upstream GPM-TRMM precipitation (Zhang et al., 2007; Du

et al., 2020) and GRACE water storage (Riegger and Tourian,

2014) by a month or more. Thus, the time lag between the

upstream GPM-TRMM precipitation (GRACE water storage)

and the runoff must be determined before further calculation. To

calculate the time lag, a cross-correlation analysis was conducted

during 2003–2006. This is performed by shifting the time that

maximizes the correlation coefficient between the GPM-TRMM

precipitation (GRACE water storage) and the runoff.

A simple model that linearly relates the upstream GPM-

TRMM precipitation (or GRACE water storage), Xt−τ , to in situ

runoff, ROt, at day t is formulated as

Rt � c1Xt−τ + c2 (2)

where c1 and c2 are the least-squares determined parameters that

are subsequently employed to reconstruct runoff during

FIGURE 5
Flowchart describing the whole methodology of this study.
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2009–2012. It is of note that the above-determined time lag τ

shifts X forward.

To regress the upstream SPI and SI inferred from GPM-

TRMM and GRACE, the standardization of in situ runoff is

achieved through

SRi,j �
Ri,j −median(Rj)

σ̂(Rj) , (3)

similar to Eq. 1. The analogous c1 and c2 relating the upstream

SPI (or SI) to SR are then estimated via Eq. 2, which was then

employed to estimate the SR from SPI and SI. Finally, the

reconstructed and forecasted SR time series were transformed

back into runoff time series via Eq. 3.

4.4 NNB models

The result from our proposed approach was then compared

to that of artificial neural network (ANN) (Hassoun, 1995) and

long short-term memory (LSTM) models (Rumelhart et al.,

1986) in order to further evaluate our approach. No matter

short- or long-term discharge forecast, previous research studies

showed that the results from these NNB models outperform that

from the linear regression and conceptual and time series models

(Wang et al., 2009; Sahoo et al., 2019; Samantaray and Ghose,

2019).

Regarding the settings of NNB models, the neural network

structure of LSTM and ANN was set the same with two hidden

layers because Cybenko (1989) stated that two hidden layers were

sufficient for a continuous time series. By choosing a scaled

exponential linear unit (Klambauer et al., 2017) as an activation

function and assigning upstream GPM-TRMM precipitation and

GRACE water storage (or SPI and SI) as input and in situ runoff

as output, training was performed using adaptive moment

(i.e., Adam) optimizer (Kingma and Ba, 2014). The two

abovementioned models were trained ten times in which

mean value was used for each time epoch because random

initial weights and the validation set members render

numerical values differently.

4.5 Assessment metrics

To evaluate the performance in a relative manner, normalized

root-mean-square error (NRMSE) (Fok et al., 2020),

Nash–Sutcliffe efficiency model coefficient (NSEMC) (Nash and

Sutcliffe, 1970), Pearson correlation coefficient (PCC) (Pearson,

1920), detrended fluctuation analysis (DFA) (Peng et al., 1994)

scale factor, and detrended cross-correlation analysis (DCCA)

(Podobnik and Stanley, 2008) exponent were served as the

assessment metrics. They were employed for assessing

reconstructed and forecasted runoff against in situ datasets.

Defining the in situ and reconstructed (or forecasted) runoff

at day k as Yobs(k) and Yf(k) with the average of Yobs and Yf as

Yobs and Yf, and the maximum and minimum value of Yobs as

max (Yobs) and min(Yobs), respectively, the NRMSE transforms

RMSE into relative error with a range between 0 and 1. It is

written as

NRMSE �

����������������������
1
N
∑N

k�1(Yf (k) − Yobs(k))2√
max(Yobs) −min(Yobs)

. (4)

The NSEMC, ranging from −∞ to 1, assesses the

performance of the reconstructed or forecasted runoff in

terms of gain in efficiency. It is written as

NSEMC � 1 − ∑N

k�1(Yf (k) − Yobs(k))2
∑N

k�1(Yf (k) − Yobs)2 . (5)

The PCC, ranging between −1 and 1, assesses temporal

consistency between two time-varying variables, which is

written as

PCC �
1
N
∑N

k�1(Yobs(k) − Yobs)(Yf (k) − Yf)��������������������
1
N
∑N

k�1(Yobs(k) − Yobs)2
√ ������������������

1
N
∑N

i�1(Yf (k) − Yf)2
√

(6)
DFA and DCCA were also used to test the stationarity of a time

series and the long-term memory between two non-stationary time

series, respectively. During the DFA, the in-situ runoff time series

Yobs(k) of length N was first transformed into a new time series

Yobs
′ (k) � ∑k

t�1(Yobs(t) − Yobs). Then, the new time series was

divided into several intervals with the window size n. The trend

of each interval was thus subtracted from Yobs
′ (k) through the least-

square method to represent the detrended fluctuation function:

FDFA(Yobs(k), n) �
����������������������
1
N
∑N

k�1[Yobs
′ (k) − ~Yobs

′ (k)]2√
, (7)

where ~Yobs
′ (k) is the trend of Yobs

′ (k). Normally, the window size

n is power law auto-correlated with the detrended fluctuation

(i.e., FDFA(Yobs(k), n)∝ nαDFA ). If the original time series is

stationary (non-stationary), the scale factor αDFA will be larger

(smaller) than 0.5. In particular, the original time series is white

noise when αDFA equals 0.5.

DCCA was further used to examine the cross-correlation

between two non-stationary time series. For instance, the

detrended co-fluctuation function of Yobs(k) and Yf(k) under
the windows size n was written as

FDCCA(Yobs(k),Yf (k), n) � ������������������������������������
1
N
∑N

k�1[Yobs
′ (k) − ~Yobs

′ (k)][Y ′
f (k) − ~Y

′
f (k)]√

, (8)

where ~Y
′
f(k) is the trend of Y′

f(k). Similarly, the square of

window-size n is power law cross-correlated with

FDCCA(Yobs(k), Yf(k), n)
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(i.e., FDCCA(Yobs(k), Yf(k), n)∝ nλDCCA ). If the exponent λDCCA

is larger than 0.5, two time series are considered with persistent

long-term cross-correlation. To further quantify this cross-

correlation, DCCA cross-correlation coefficient, ρDCCA, was

used as (Zebende, 2011)

ρDCCA(Yobs(k),Yf (k), n) � F2
DCCA(Yobs(k),Yf (k), n)

FDFA(Yobs(k), n)FDFA(Yf (k), n) .
(9)

The ρDCCA ranges from −1 to 1. Similar to PCC, ρDCCA > 0
represents that the two time series are positively correlated, while

ρDCCA < 0 indicates they are anti-correlated. Denoted that the

value of window size n ranges from 30 to 1995 days with a step of

15 days, 30–1,395 days with a step of 15 days and 30–720 days

with a step of 15 days for observed, reconstructed, and forecasted

variables, respectively. The choice of window size and step was

based on the length of variables.

5 Results

Through cross-correlation analysis, lagged time between the

in-situ runoff at the TC-CD (and Kratie) station and the

upstream GPM-TRMM precipitation (or GRACE water

storage) during 2003–2006 was determined, respectively

(Figure 6), through the obtained maximum PCC between

them. The lagged time was found to be −64 days (or 0 day),

while the lagged time for that of the Kratie station was found to

be −43 days (or 15 days), respectively. This implies the

fundamental difference between the Kratie and TC-CD station

locations chosen as runoff because the TC-CD stations’ pair

recorded an additional regulation influence due to the natural

reservoir—Tonle Sap Lake. However, GRACE water storage is

synchronized with (15 days’ lag) in-situ runoff at the TC-CD

(Kratie) station, which might be attributable to regionalized

smoothing in the pre-processing steps. Nonetheless, all lagged

time calculated results were used to shift the time series against

the in-situ runoff for reconstructing runoff.

The fluctuation pattern of the upstream GPM-TRMM

precipitation and GRACE water storage are largely in

agreement with the in-situ runoff (Figure 7). However, a

lagged time is exhibited between the upstream GRACE water

storage and in situ runoff during the dry season. This may be

potentially due to different storage-runoff properties between the

upstream and the total basin runoff, resulting in a slower decrease

in storage against the runoff. Furthermore, an even more obvious

lagged shift of water storage is apparent in 2014, potentially

attributed to the end-of-commission of GRACE when the

occurrence of the data quality degradation.

The accuracies and performances of the reconstructed (from

2009 to 2012) and forecasted (from 2013 to 2014) runoff are then

assessed using the upstream GPM-TRMM precipitation, GRACE

water storage, and their standardizations, generated from the linear

regression, ANN, and LSTM models (Figures 8, 9). We observed

that the runoff reconstructed and forecasted at the TC-CD station

FIGURE 6
PCC between (A) GPM-TRMM precipitation or (B) GRACE water storage bounded by Yunnan and the in-situ TC-CD runoff and between (C)
GPM-TRMM precipitation or (D) GRACE water storage bounded by Yunnan and the in situ Kratie runoff.
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using the upstream GPM-TRMM precipitation performed similarly

among different models (Figure 8), while it performed differently at

the Kratie station. Those runoff time series generated from NNB

models performed better than that of linear regression, particularly

capturing the troughs better against in situ runoff at Kratie station

during the dry season (Figures 8D–F). Nevertheless, no runoff

among the models captured the peaks very well. This is

particularly apparent in 2011, 2013, and 2014. This should be

attributable to La Niña events in 2011, 2013, and 2014 (Figure 3)

that might potentially alter the usual hydrological conditions

between the upstream and the downstream. This is further

discussed qualitatively in the next section.

The runoff generated using GRACE water storage

(Figure 9) yields a similar result but appears better in

capturing the peaks visually than that of GPM-TRMM

precipitation. This might be attributable to the well-

known hydraulic relationship between water storage and

runoff on land. However, in terms of the accuracy

evaluation statistics (Tables 1, 2), the overall consistency

of runoff generated using GRACE water storage is still a bit

worse than that of GPM-TRMM precipitation. This might be

caused by a moderately strong spatiotemporal smoothing in

the GRACE data preprocessing, making GRACE-

reconstructed runoff able to visually capture the rise and

FIGURE 7
Spatially averaged time series of the upstream GPM-TRMM precipitation (left) and GRACE water storage (right) against in situ runoff at the TC-
CD (upper) and Kratie (lower) stations.
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fall during the dry and wet season time period but unable to

capture the extreme peaks and troughs at an accurate timing

on a daily scale.

From the concept, the runoff reconstructed at the Kratie

station should be better than that of the TC-CD station, since the

location of the Kratie station should be less influenced by

FIGURE 8
Reconstructed (during 2009–2012) and forecasted (during 2013–2014) runoff using the upstreamGPM-TRMMprecipitation based on (A) linear
regression, (B) ANN, and (C) LSTM models against the TC-CD station and (D) linear regression, (E) ANN, and (F) LSTM models against the Kratie
station.
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FIGURE 9
Reconstructed (during 2009–2012) and forecasted (during 2013–2014) runoff using the upstream GRACE water storage based on (A) linear
regression, (B) ANN, and (C) LSTM models against the TC-CD station and (D) linear regression, (E) ANN, and (F) LSTM models against the Kratie
station.
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backwater due to the long distance away from the estuary.

However, comparing the runoff reconstructed and forecasted

at the TC-CD station with that at the Kratie station in terms of

accuracy evaluation statistics, the runoff reconstructed at the

Kratie station is worse than that of the TC-CD station. It is of

note that the Butterworth filter was applied to suppress the short-

period tidal backwater effect in the river delta (Peng et al., 2020),

whichmight improve the overall accuracy. Another reason is that

the Kratie station does not really represent the entire Mekong

Basin due to ignorance of the Cambodian plain area where Tonle

Sap Lake is located. In addition, mountainous areas with steep

slopes located around the Kratie station might be another error

source. It is also of note that the runoff peaks at the Kratie station

are highly fluctuated compared to those of the TC-CD station.

This might be caused by a cascade of inconsistent dam operations

by humans among different countries and places during summer.

These fluctuating peaks cannot be observed from the relatively

smoothed satellite hydrological variables by nature and, hence,

result in lower relative accuracy.

In any occasion, runoff reconstructed and forecasted using

GPM-TRMM precipitation and GRACE water storage yield the

PCC (NRMSE) of 0.92 (~10%) and 0.85 (~13%), respectively, no

matter at the TC-CD and Kratie stations (Tables 1, 2). Overall,

the abovestated resulting evaluation statistics are comparable to

TABLE 1 Evaluation of runoff reconstruction and forecast at the TC-CD stations.

Data/Index Method Reconstruction Forecast

NRMSE NSEMC PCC NRMSE NSEMC PCC

P Linear regression 0.0996 0.8426 0.9180 0.1421 0.7410 0.9187

ANN 0.0990 0.8446 0.9199 0.1373 0.7582 0.9198

LSTM 0.0990 0.8445 0.9202 0.1387 0.7533 0.9158

S Linear regression 0.1381 0.6976 0.8352 0.1850 0.5607 0.8879

ANN 0.1266 0.7457 0.8636 0.1654 0.6490 0.8883

LSTM 0.1302 0.7309 0.8551 0.2033 0.4698 0.8925

SPI Linear regression 0.1047 0.8260 0.9197 0.0928 0.8895 0.9471

ANN 0.1078 0.8157 0.9182 0.0936 0.8875 0.9466

LSTM 0.1069 0.8187 0.9191 0.0937 0.8873 0.9463

SI Linear regression 0.1048 0.8258 0.9190 0.0936 0.8876 0.9461

ANN 0.1095 0.8098 0.9173 0.0966 0.8802 0.9431

LSTM 0.1087 0.8128 0.9170 0.0945 0.8854 0.9461

TABLE 2 Evaluation of runoff reconstruction and forecast at the Kratie station.

Data/Index Method Reconstruction Forecast

NRMSE NSEMC PCC NRMSE NSEMC PCC

P Linear regression 0.1121 0.7996 0.8942 0.1460 0.6753 0.8582

ANN 0.1026 0.8321 0.9132 0.1401 0.7012 0.8829

LSTM 0.1020 0.8339 0.9144 0.1393 0.7045 0.8843

S Linear regression 0.1467 0.6565 0.8103 0.2151 0.2950 0.7900

ANN 0.1195 0.7720 0.8787 0.2247 0.2306 0.8056

LSTM 0.1208 0.7670 0.8783 0.2547 0.0116 0.8115

SPI Linear regression 0.1023 0.8332 0.9139 0.0874 0.8836 0.9405

ANN 0.1049 0.8246 0.9114 0.0881 0.8819 0.9398

LSTM 0.1048 0.8248 0.9110 0.0890 0.8793 0.9384

SI Linear regression 0.1035 0.8289 0.9117 0.0865 0.8860 0.9417

ANN 0.1109 0.8037 0.9028 0.0875 0.8834 0.9405

LSTM 0.1061 0.8203 0.9093 0.0864 0.8864 0.9426
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FIGURE 10
Reconstructed (from 2009 to 2012) and forecasted (from 2013 to 2014) runoff using the upstream GPM-TRMM SPI against in situ runoff at the
TC-CD and Kratie stations based on (A and D) linear regression, (B and E) ANN, and (C and F) LSTM models, respectively.
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FIGURE 11
Reconstructed (from 2009 to 2012) and forecasted (from 2013 to 2014) runoff using the upstream GRACE SI against in situ runoff at the TC-CD
and Kratie stations based on (A and D) linear regression, (B and E) ANN, and (C and F) LSTM models, respectively.
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the best published daily relative error of 12% by Tourian et al.

(2017).

The reconstructed runoff using standardized data is better

than that generated from the satellite hydrological variables

directly via linear regression (Tables 1 and 2). This is

manifested from the runoff reconstructed from SPI and SI,

yielding a better agreement in the wet and dry seasons against

in situ runoff, no matter in the TC-CD and Kratie stations

(Figures 10, 11).

Compared to the runoff generated directly using upstream

GPM-TRMM precipitation against in situ TC-CD and Kratie

stations, the reconstructed runoff based on SPI is worsened

(improved) at most by 0.9% (1%), respectively, while that of

the forecasted runoff is improved by 5% consistently (Tables 1

and 2). For the resulting runoff using GRACE water storage

against in situ TC-CD and Kratie stations, the reconstructed

runoff based on SI is consistently improved at most by 3% and

4%, respectively, while that of the forecasted runoff is improved

at most by 10% and 16%, respectively. This indicates that

systematic influences can be minimized via data

standardization (Ferreira et al., 2018), while the improvement

for the standardized GRACE water storage (i.e., SI) is

significantly better than that of SPI. Assessing the relative

accuracy (in terms of NRMSE), both the reconstructed and

forecasted runoffs’ relative accuracies are presented with less

than 11%. Those are slightly better than the best relative accuracy

published in the recent literature (i.e., 12%) (Tourian et al., 2017).

Notably, no matter reconstructed using SPI and SI at the TC-CD

or Kratie stations, the relative accuracy in terms of NRMSE for

the forecasted runoff is still ~9%, indicating that the backwater

effect on TC-CD should be further minimized after the data

standardization process. In other words, the basin exit can be

chosen as close as the estuary mouth, such that the runoff could

best represent the total discharge of the entire basin.

To test the stationarity of different hydrological variables,

their logarithmic fluctuation functions versus logarithmic

window size is shown in Figure 12 and Supplementary Figures

S1 and S2, with the scale factor αDFA (also known as Hurst

component) fitted through the least-square method (Tables 3–5).

The observed hydrological data time series shared obvious

crossovers at the window size of around 1 year, except for

standardized data removing seasonal trends (Figure 12). Below

FIGURE 12
Double logarithmic plots of the fluctuation functions of DFA versuswindow-size n derived from P, S, SPI, SI, and in-situ runoff at the TC-CD and
Kratie stations. The slopes of dashed blue lines represent the fitted αDFA , and the three red solid lines from top to bottom denote αDFA � 1, αDFA � 0.8,
and αDFA � 0.5, respectively.

TABLE 3 αDFA of different hydrological variables or index.

Data/Index Station αDFA

In-situ R TC-CD 0.81

Kratie 0.69

P Yunnan 0.65

S Yunnan 0.73

SPI Yunnan 0.90

SI Yunnan 0.94
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the crossover, the scale factor is larger than 1.2, indicating a

strong short-term correlation (Bunde et al., 2012). Particularly,

the scale factors of forecast runoff at the TC-CD and Kratie

stations were also higher than 1 (Supplementary Figures S1, S2).

One of the reasons might be the time span in the forecast was so

short (i.e., 2 years) that the long-term correlation was weak.

Nevertheless, the αDFA of most hydrological variables or

indices ranged between 0.6 and 0.9, showing their persistent

stationarity. This is consistent with previous studies that the

Hurst component of precipitation and runoff in other rivers is

commonly around 0.8 (Kantelhardt et al., 2006; Koscielny-Bunde

et al., 2006; Bogachev and Bunde, 2012).

To examine the long-term cross-correlation between our

reconstructed (forecasted) and in-situ runoff, the exponent

λDCCA of DCCA was also obtained (Tables 4 and 5). The λDCCA
of reconstruction were higher than 0.5, which means the

reconstruction time series are persistent cross-correlated against

in-situ runoff at the TC-CD andKratie stations. Similar toαDFA, the

λDCCA of forecasted time series were extremely high (i.e., >1.2) due
to the limited time span, as mentioned earlier (Figures 13 and 14).

TABLE 4 αDFA of different reconstructed and forecasted runoff at the TC-CD station and λDCCA of different reconstructed and forecasted runoff
against the TC-CD station.

Data/Index Method Reconstruction Forecast

αDFA λDCCA αDFA λDCCA

P Linear regression 0.84 0.85 1.27 1.32

ANN 0.85 0.86 1.29 1.32

LSTM 0.85 0.86 1.30 1.32

S Linear regression 0.95 0.90 1.34 1.41

ANN 0.91 0.89 1.35 1.40

LSTM 0.93 0.88 1.34 1.40

SPI Linear regression 0.86 0.86 1.31 1.31

ANN 0.86 0.87 1.31 1.31

LSTM 0.86 0.87 1.31 1.31

SI Linear regression 0.86 0.86 1.31 1.31

ANN 0.86 0.87 1.31 1.31

LSTM 0.85 0.86 1.31 1.31

TABLE 5 αDFA of different reconstructed and forecasted runoff at the Kratie station and λDCCA of different reconstructed and forecasted runoff against
the Kratie station.

Data/Index Method Reconstruction Forecast

αDFA λDCCA αDFA λDCCA

P Linear regression 0.84 0.84 1.27 1.31

ANN 0.86 0.85 1.31 1.32

LSTM 0.85 0.84 1.28 1.31

S Linear regression 0.95 0.89 1.34 1.37

ANN 0.94 0.89 1.35 1.34

LSTM 0.90 0.84 1.333 1.39

SPI Linear regression 0.79 0.80 1.22 1.20

ANN 0.79 0.80 1.23 1.21

LSTM 0.80 0.80 1.23 1.21

SI Linear regression 0.79 0.80 1.22 1.20

ANN 0.80 0.80 1.22 1.20

LSTM 0.79 0.80 1.22 1.20
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For further quantifying the cross-correlations between

reconstructed (forecasted) and in-situ runoff, the DCCA

cross-correlation coefficients ρDCCA were also provided.

Within most of the window sizes, both reconstructed and

forecasted runoff derived from the observed P showed higher

ρDCCA against in-situ runoff at TC-CD (left subplots in Figure 15)

and Kratie (left subplots in Figure 16) compared to that from the

observed S. However, this discrepancy almost disappeared when

it comes to SPI and SI (right subplots in Figures 15 and 16). We

speculated the data standardization process removed the

relatively high seasonality of the observed S and, hence,

reduced the systematic component of observations. In

addition, the ρDCCA of the reconstructed (forecasted) runoff

generated from different methods (i.e., linear regression,

FIGURE 13
Power-law cross-correlations between ANN-reconstructed (upper four subplots) and ANN-forecasted (lower four subplots) runoff and in-situ
TC-CD runoff. The slopes of dashed blue lines represent the fitted λDCCA, and the three red solid lines from top to bottom denote λDCCA � 1,
λDCCA � 0.8, and λDCCA � 0.5, respectively.
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ANN, and LSTM) showed a decreasing trend when the window

sizes were larger than about 750 (350) days. It is consistent with

the previous analysis that reconstruction and forecast were

relatively weak on long-term variance (e.g., extreme peaks and

troughs in Figures 9–11). In addition, extremely low values of

ρDCCA at some lower window sizes (e.g., 180 days) might result

from the remaining errors in observed P and S time series, such as

high-frequency noise.

6 Discussion

Even though the SPI- and SI-reconstructed runoff yield

substantial improvements in capturing the peaks (troughs)

during wet (dry) seasons against the in-situ runoff, substantial

discrepancies during the wet season still exist. We analyze the SPI

and SI during 2009–2014 against the standardized in situ runoff

for potential reasons (Figure 17).

FIGURE 14
Power-law cross-correlations between ANN-reconstructed (upper four subplots) and ANN-forecasted (lower four subplots) runoff and in-situ
Kratie runoff. The slopes of dashed blue lines represent the fitted λDCCA , and the three red solid lines from top to bottom denote λDCCA � 1,
λDCCA � 0.8, and λDCCA � 0.5, respectively.
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FIGURE 15
ρDCCA between reconstructed runoff derived from P, S (upper-left), reconstructed runoff derived from SPI, SI (upper-right), forecasted runoff
derived from P, S (lower-left), and forecast runoff derived from SPI, SI (lower-right) and in-situ TC-CD runoff.

FIGURE 16
ρDCCA between reconstructed runoff derived from P, S (upper-left), reconstructed runoff derived from SPI, SI (upper-right), forecasted runoff
derived from P, S (lower-left), and forecast runoff derived from SPI, SI (lower-right) and in-situ Kratie runoff.
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Plotting the SPI and SI with the in-situ SR at the TC-CD and

Kratie stations, Figure 17 both the SPI and SI time series display

fluctuation patterns irregularly when compared to the in-situ SR. It is

of note that the lagged time has been applied.We found the presence

of the reverse pattern of SPI and SI when compared to SR during

different time periods within 2009–2014. The time duration sessions

for the reverse pattern of SPI and SI are basically the same, which are

June–September 2010, January–April 2011, July 2011–February

2012, September–December 2012, and June-December 2014.

For the period between June–September 2010 and

January–April 2011, the reverse patterns of these periods

should be caused by the presence of the strongly alternating

El Niño and La Niña events during 2009–2010 and 2010–2011,

respectively. It is of note that the moderately strong ENSO events

should take 6–9 months before the start of runoff response in the

Mekong Basin (Fok et al., 2018). Those reverse patterns indicate

the downstream was relatively wet while the upstream was dry

during 2009–2011. Apparently, the normal precipitation and

water storage patterns were distorted, making the hydrological

conditions between the downstream and the downstream more

distinguishable (Biancamaria et al., 2011).

Though ENSO indices can be speculated to be

incorporated into the linear regression model for a better

runoff reconstruction and forecast, the reverse patterns

between September–December 2012 and June–December

2014 are not shown to be related to ENSO (Figure 17).

We speculate that the reverse patterns between

September–December 2012 and June–December

2014 might be due to the regional climate of the Mekong

Basin. Monsoon indices, such as the Indian summer

monsoon index and the western North Pacific monsoon

index, can be potentially utilized to explain these

anomalies. In addition, the SPI and SI appear to have an

offset against SR, indicating the chosen mean (or median)

value of each day within the year for the entire time series

would have a substantial impact on the interpretation as well.

The abovestated result and discussion detailed the

limitations of this study.

7 Conclusion

Daily runoff in the Mekong Basin was reconstructed and

forecasted via direct linear regression and neural network–based

models, using upstream daily satellite hydrological variables

(i.e., precipitation from GPM-TRMM and water storage from

GRACE) and their respective standardized forms (i.e., SPI and

SI). Our proposed standardization approach further reduces the

discrepancy for the peaks and troughs during wet and dry

seasons, respectively, when compared to the direct correlation

between the in-situ runoff and individual satellite hydrological

variables.

Comparing the runoff from our proposed approach against the

in-situ runoff at the TC-CD and Kratie stations, we found that the

backwater effect on the TC-CD station can be negligible so long as

the low-pass filter has been applied to the in-situ time series in order

to suppress the short-period ocean tides. This implies it is possible to

choose the basin exit as close as the entrance of the river delta, such

that the runoff could best represent the total discharge of the entire

basin. For instance, the neglect of the Cambodian plain area would

FIGURE 17
Upstream (A) SPI from GPM-TRMM and (B) SI from GRACE against the standardized runoff at the TC-CD station.
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render an incomplete description of the entire Mekong Basin.

Moreover, the runoff reconstructed and forecasted from neural

network–based models using the standardized data does not

guarantee improvement over that from the direct linear

regression. This implies the standardized input and output,

potentially including exogenic variables, might be unfavorable to

explore the full capabilities of neural network–based models in

reconstructing and forecasting runoff. In summary, the

reconstructed and forecasted runoff based on standardized data

can be improved at most by 5% and 16%, respectively. The runoff

forecasted from the SI resulted in the lowest NRMSE (i.e., 0.086 or

8.6%). Results from DFA and DCCA also indicated that the

standardization process would increase the consistency of

reconstructed and forecasted runoff among different methods by

minimizing the systematic errors of observed hydrological variables

(i.e., P and S).

Nonetheless, substantial discrepancies are still obvious

using our proposed approach. The chosen median

standardized values should be one of the potential reasons

to be further investigated. Relating ENSO and monsoon

index (e.g., the Indian summer monsoon index and the

western North Pacific monsoon index) quantitatively to

the standardized runoff, SPI and SI should help discover

the potential for further improvement in the reconstructed

and forecasted runoff during abnormal conditions. This

further improvement should lie in the methodology for

mitigating the climate variability in both the satellite

hydrological variables and in situ runoff.
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