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A characteristic of frozen ground is a tendency to form banded sequences of particle-free
ice lenses separated by layers of ice-infiltrated soil, which produce frost heave. In
permafrost, the deformation of the ground surface caused by segregated ice harms
engineering facilities and has considerable influences on regional hydrology, ecology, and
climate changes. For predicting the impacts of permafrost degradation under global
warming and segregated ice transformation on engineering and environmental,
establishing appropriate mathematical models to describe water migration and ice
behavior in frozen soil is necessary. This requires an essential understanding of water
migration and segregated ice formation in frozen ground. This article reviewed
mechanisms of water migration and ice formation in frozen soils and their model
construction and introduced the effects of segregated ice on the permafrost
environment included landforms, regional hydrological patterns, and ecosystems.
Currently, the soil water potential has been widely accepted to characterize the energy
state of liquid water, to further study the direction and water flux of water moisture
migration. Models aimed to describe the dynamics of ice formation have successfully
predicted the macroscopic processes of segregated ice, such as the rigid ice model and
segregation potential model, which has been widely used and further developed.
However, some difficulties to describe their theoretical basis of microscope physics still
need further study. Besides, how to describe the ice lens in the landscape models is
another interesting challenge that helps to understand the interaction between soil ice
segregation and the permafrost environment. In the final of this review, some concerns
overlooked by current research have been summarized which should be the central focus
in future study.
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INTRODUCTION

Frozen ground, defined as soil or rock containing ice that remains
at or below 0°C, is widely distributed globally (Qin, 2016). About
50.5% of the long-term average maximum extent of frozen
ground in the northern hemisphere undergoes seasonal
freezing and thawing, and about 13–18% of the area in the
northern hemisphere is occupied by permafrost (Zhang et al.,
2003; Gruber, 2012). Permafrost is soil or rock that remains at or
below 0°C for at least two consecutive years (Subcommittee, 1988;
Qin, 2016). The topsoil that overlays permafrost and undergoes
seasonal freezing and thawing is known as the active layer.
Changes in permafrost temperature and the active layer
thickness (ALT) have significant environmental and
socioeconomic implications from the local to global scales. At
the local scale, soil freezing and thawing directly affect the
physical properties of water and heat transfer in the active
layer, eventually altering the heat and water exchange between
the land surface and the atmosphere (Frey and McClelland, 2009;
Vonk et al., 2019). At the global scale, permafrost thaw impacts
are attributed to their influences on biogeochemical processes and
greenhouse gas emissions. The total carbon stored in the
permafrost regions is estimated to be twice that in the
atmosphere (Schuur et al., 2015). The vast amount of carbon
stored in permafrost is likely to be released into the atmosphere
under a warming climate, exacerbating climate change due to
positive greenhouse gas feedbacks.

How permafrost thaws in response to climatic warming and its
associated impacts on ecological and hydrological aspects have
gained global attention in the scientific community (Shur and
Jorgenson, 2007; Koven et al., 2011; Schuur et al., 2015; Streletskiy
et al., 2015). Several permafrost monitoring networks, such as the
Global Terrestrial Network for Permafrost (GTN-P) (https://
gtnp.arcticportal.org/about-the-gtnp), Circumpolar Active
Layer Monitoring (CALM) (https://ipa.arcticportal.org/
products/gtn-p/calm), and Permafrost and Climate in Europe
(PACE) (https://doi.org/10.1002/ppp.377), have been established
to record changes in permafrost temperature and ALT regionally
and globally (Fagan and Nelson, 2017; Streletskiy et al., 2017;
Etzelmuller et al., 2020; Tregubov et al., 2020). In addition to
extensive field monitoring, process-based modeling is a
complementary approach to understanding water and heat
transfer processes and mechanisms in the biogeochemical
cycle in permafrost regions. In this regard, land surface
models (LSMs), soil-vegetation-atmosphere transfer (SVAT)
models, and hydrological or frozen soil water-heat models
have been used to simulate permafrost hydrothermal
conditions (Flerchinger and Saxton, 1989; Cherkauer and
Lettenmaier, 1999; Gouttevin et al., 2012; Swenson et al., 2012;
Che et al., 2014; Yi et al., 2014; Wang et al., 2017).

There are various forms of ground ice in permafrost with
different sizes, structures, and formation patterns at spatial and
temporal scales. The former Soviet Union scholar Ershov et al.
(2015) first divided permafrost ground ice into two main types
according to the formation causes: intrasedimental ice and buried
ice (Ershov et al., 2015). Mackay (1972) further provided a more
detailed classification of intrasedimental ice based upon the water

source immediately prior to freezing and the principle of water
migration. Figure 1 shows the various types of ground ice exhibit
significant differences in thickness and duration of formation and
existence. Segregated ice formed by water migration ranges in
thickness from hairline width to more than 10 m (Subcommittee,
1988; Mackay and Dallimore, 1992), and it plays a critical role in
changing soil structure, affecting the hydrothermal properties of
frozen ground (Van Huissteden, 2020). Seasonal segregated ice
lens formation and thaw cause frost heaves and thawing
settlement. In permafrost, repeated-segregation ice near the
permafrost table significantly affects the topographic features
and soil hydrologic conditions. Segregated ice formation and
water migration cause mass and energy transfer within the active
layers to be extremely complex (Xu et al., 2010). In addition, the
barrier effect and water migration caused by ice formation alter
soil hydrothermal properties, microstructure, and ventilation
conditions (He et al., 2020; He et al., 2021). These processes
influence the mass and energy exchange between the land surface
and the atmosphere, leading to the redistribution of soil carbon
and nutrients and impacting vegetation dynamics (Walker et al.,
2004). To reveal the physical mechanisms of mass and energy
transfer in frozen soil and the environmental impacts of frozen
soils, representing the mechanisms that explicitly describe these
processes is one of the main challenges in state-of-the-art LSMs.

Frost heave models based on the frozen fringe theory (Miller,
1972) have been used to simulate ice formation (Konrad and
Morgenstern, 1980; Sheng et al., 1995; Michalowski and Zhu,
2006; Ji et al., 2019; Zhou and Wei, 2020). These models have
detailed descriptions to simulate the ice segregation process in soil
freezing. However, it is difficult to apply frost heave model in
fieldwork because the empirical work has principally been
conducted in highly controlled laboratory conditions (Smith
et al., 1985). At the landscape scale, LSMs that involve
processes such as hydrogeology, biochemistry, and vegetation
dynamics focus more on frozen soil parameterization schemes
rather than a specific mechanism in the freeze-thaw processes,
such as the segregated ice formed by water migration and freezing
front movement (Oleson et al., 2010; Che et al., 2014; Sun, 2015;
Andresen et al., 2019; Li et al., 2020). The lack of detailed
representation of water migration and ice formation in models
probably increases uncertainty in the simulation of soil water
content and temperature conditions (Pitman et al., 1999), leading
to deviations in the assessment of the ecological and hydrological
effects of permafrost at the landscape scale. (Xue et al., 1996;
Koren et al., 1999; Liang et al., 2003; Oleson et al., 2013).

The overall framework and linkage between different sections
are shown in Figure 2. This review discusses the theories of water
migration and ice formation and their current modeling methods.
Their impacts on the land surface processes (such as the
landform, hydrological patterns, and biogeochemical
processes) in permafrost regions are involved. Based on the
discussion of the water migration and segregated ice formation
and their model construction, this review puts forward some
reference opinions on developing present theories and permafrost
modeling in the future. The summary review will help facilitate
studies accounting for the interaction between permafrost,
ecosystems, and climate systems.
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WATER MIGRATION DURING THE SOIL
FREEZING-THAWING PROCESS

Unfrozen Water Migration
When the temperature drops to the freezing point, where
water and ice are in equilibrium with equal free energy, the
water is transformed into ice. For pure water under normal

conditions, the freezing point equals 0°C, while the freezing
point has a depression in soil due to soil salinity, the capillary
effect, and adsorption of soil particles (Anderson and Tice,
1972; Banin and Anderson, 1974; Scherer, 1999). Many
studies have shown that liquid water exists in the soil pore
in equilibrium with ice at temperatures considerably below
0°C (Burt and Williams, 1976; Horiguchi and Miller, 1983;

FIGURE 1 | The types of ice in frozen soil range from the pore size to the massive ground ice size at the spatial scale, and their formation ranges from sub-daily to
centennial at the temporal scale. The study focuses on the segregated ice and water migration with medium andminor scales (blue dotted line), which exist in permafrost
and seasonally frozen ground.

FIGURE 2 | A diagram illustrating the overall framework and linkages of different sections in this article.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 8269613

Fu et al. Segregated Ice and Permafrost Environment

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Smith, 1985; Zhang et al., 2020). This water is known as
unfrozen water. Burt and Williams (1976) first measured
hydraulic conductivity in freezing soils and demonstrated
that the hydraulic conductivity decreased with temperature
decreases but did not fall to zero, even at relatively low
temperatures.

In general, the water-energy state and movement direction in soil
mainly determined by the soil matric potential, which is created by
the capillary and adsorption forces of the soil matrix (Or et al., 2002).
The matric potential is usually related to soil properties. However,
regardless of the soil type, the unfrozen water alongside the ice lens
has a matric potential proportional to the temperature depression
below 0°C, described by the Clausius-Clapeyron equation (Edlefsen
and Anderson, 1943; Williams and Smith, 1989). This equation
shows that the potential decreases by approximately 1.2MPa per °C
below 0°C. This potential is significant and creates suction that
makes unfrozen water migrate to zones of lower temperature and
then accumulate there, leading to the growth of ice lenses (Ferguson
et al., 1964; Biermans et al., 1978). The development of ice lenses,
called segregated ice, causes considerable volumetric expansion,
which is the primary reason for soil frost heave (Hoekstra and
Miller, 1963; Kanevskiy et al., 2013). (Taber, 1929; Taber, 1930) was
the earliest to deduce that frost heave is caused by liquid migration
that supplies growing ice lenses through a series of experiments. This
is the first basic theoretical explanation of frost heave, and is typically
referred to as the capillary theory (Smith et al., 1985). The growth
rate of segregated ice depends on the freezing speed (Station et al.,
1915; Bouyoucos, 1920;Watanabe et al., 1997). Besides, when frozen
soil thaws unidirectionally, water also migrates from thawed regions
to the thawing front, decreasing the water content through
dehydration (Cheng, 1982).

Thick segregated ice is one of the main components of ground
ice near the permafrost table (Williams, 1968; French, 2017). In
permafrost regions, more than 50% of the volumetric ice content
of massive ground ice is located near the bottom of the active layer
or permafrost table (Mackay, 1972; Hughes, 1974). Mackay
(1972) called this kind of ground ice “aggradational ice” and
attributed it to the syngenetic growth of permafrost (with the
continuous deposition of surface sediments, the upper limit of
permafrost rises with the rise of the ground). Cheng (1982)
considered that the downward migration of unfrozen water
content is always greater than the upward migration in the
active layer during a freeze-thaw cycle, accounting for
moisture accumulation at the permafrost table. He proposed
that accumulation of ice at the permafrost table might occur
under all conditions and thus form a thick ground ice layer,
namely repeated ice-segregation (Cheng, 1983). This mechanism
was verified by Burn and Michel (1988) and Yang et al. (2017)
using an isotope technology.

Vapor Flow in Frozen Soil
Unfrozen water migration in frozen soil is more likely to occur in
soil with fine particles and high moisture content than dry coarse-
grained soil (Burt and Williams, 1976; Fisher et al., 2020).
Therefore, in cold regions, replacing the foundation soil of
roadbeds or airport runways with dry coarse-grained soil is
considered an effective engineering measure to prevent frost

heaves (Vinson et al., 1996). However, frost heaves can also
occur in high-speed railway embankments and airport
runways padded with unsaturated coarse-grained soils (Zhang
et al., 2016; Teng et al., 2020). It has been confirmed that gaseous
water (vapor) migrates from the warm and humectant side of the
soil layer to the cold and dry layer below the closed/impermeable
ground surface in coarse-grained soil and then condenses into ice,
causing frost heaving (Guthrie et al., 2006; Niu et al., 2017; Yuzhi
et al., 2020). This phenomenon is called the “pot effect” or
“canopy effect” (Bai et al., 2018). The water vapor migration
rate is controlled by the pressure gradient and soil diffusion rate
related to the relative humidity (Philip and Vries, 1957). In
general, soil with an initial moisture content of less than 30%
is more prone to showing the “pot effect” (Bai et al., 2018).

Some results showed that more water comes out of the soil in
winter than can be reconciled with the theory for vapor flux
(Farouki, 1981; Currie, 1983; Smith and Burn, 1987). Smith and
Burn (1987) pointed out that unfrozen water migration is still the
dominant mode of transport in contrast with vapor flow by
comparing field observations and calculation values. Even so,
vapor migration in frozen still has potentially considerable
impacts on engineering facilities and the environment.
Numerical simulation results indicate that if vapor migration
is not considered in unsaturated coarse-grained soils, the
predicted value of frost heaving is underestimated by 60%
compared to the measured value (Teng et al., 2020). In sandy
soils, although the larger soil pores reduce capillarity, it is very
conductive to vapor migration (Yu et al., 2018). Intense
evaporation occurs on the surface of sandy soil, leading to soil
water loss. Without replenishment, the continuous loss of surface
soil moisture can cause land desertification, especially in regions
with lower groundwater tables (Zhanrong and Shuangping, 2002;
Cui and Shao, 2005; Wang et al., 2006b).

Driving Forces of Water Migration
The capillary theory indicates that water migrates toward the
freezing front along with the pores among soil particles because of
the primary mover of capillary force during freezing. Based on the
capillary theory (Everett, 1961), illustrated frost heaving and
estimated the amount of frost heaving quantitatively. However,
the theoretical value calculated by capillary theory is always
smaller than the experimental value, and there is no plausible
mechanism within the capillary theory for explaining the
initiation of new lenses (Miller, 1972; Peppin and Style, 2013).

With the development of the theory, the hypothesis of film
water migration was proposed to make up for these deficiencies
(Beskow and Fil, 1935). The film theory suggested that the water
film on soil particle surfaces shows asymmetry under temperature
gradients, causing a thinner film at the end with low temperature
and a thicker film at the opposite end, resulting in the unfrozen
imbalance in the water-ice-soil particle system. Suppose the soil
particles have identical radii but different water film thicknesses.
In that case, the film water will migrate from the place with a
thicker film (with more extensive water molecular activity) to the
place with a thinner film (with lower water molecular activity) to
reach a new thermodynamic equilibrium under the water
potential gradients (Figure 3). There is a 1/3 power function
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relationship between water film thickness and temperature
(Dash, 1989):

d � ( −A
6πρsL

)(T0 − T

T0
)

−1/3
, (1)

where d is the film thickness, T is the temperature, A is the
Hamker constant, ρs is the density of soil particles, L is the latent
heat of ice, and T0 is the freezing temperature of soil water. The
film theory that relates unfrozen water migration to temperature
gradients has been confirmed in subsequent studies and once
substituted the capillary theory as the mainstream theory
(Hoekstra, 1966; Hoekstra, 1969; Takagi, 1980; Wilen and
Dash, 1995).

In 1963, the International Union of Soil Sciences (IUSS)
clarified the definition of soil water potential, pointing out that
water migration can be caused by any component (such as
pressure, temperature, matric, osmotic, or gravity) of soil
water potential (Shao et al., 2006). However, the water
potential gradient is difficult to determine in frozen soil
because the surficial films are too small. The temperature
gradient is the only driving gradient that could be determined
directly. Using a thermodynamic approach, A linear relation
between temperature below 0°C and soil water potential is
derived from the generalized Clausius Clapeyron equation
(GCCE) (Gilpin, 1982; Spaans and Baker, 1996; Hansson
et al., 2004). GCCE indicates that the temperature specifically
controls the difference in potential between solid and liquid
phases, and if ice pressure rises, water potential rises too.
Therefore, a linear relation is only considered reliable under
static conditions (Takashi et al., 1982). However, the freezing
and thawing of an open system is more likely to be a non-
equilibrium thermodynamic process in many cases
(Bronfenbrener, 2013). Wood (1990) suggested a pressure
difference between the ice and aqueous phases throughout the
freeze-thaw cycle and ice deformation consecutively, making it

difficult to approach equilibrium. Li et al. (2001) pointed out that
GCCEmust satisfy the assumption that temperature and pressure
do not change with time. The depression of pore water pressure
under open-system freezing is approximately half of that under
closed-system freezing while considering the dynamic flow of soil
freezing (Miyata and Akagawa, 1997). There are inconsistencies
between experiments results and the calculation of GCCE
(McGaw et al., 1983; Zhang et al., 2014b). Style and Peppin
(2012) suggested that using the GCCE to determine the water
pressure at the ice-lens front and applying it to Darcy’s law will
overestimate the ice growth rate. Ma et al. (2015) discussed the
applicability of GCCE and proposed a static and a dynamic
model, respectively. The dynamic GCCE model may be closer
to the actual freezing process. Thus, it can better describe
nonlinear variations in pore water pressure and address
inconsistency between calculated values and experiments.

In addition to the above theories, various hypotheses of water
migration driving force have been proposed, such as
crystallization force, suction force, barometric vacuole, and ice
pressure gradient (Xu et al., 2010). These hypotheses explain the
mechanism of moisture migration in frozen soil from the
perspectives of thermodynamics, mechanics, and physical
chemistry. However, each view has its limitations (Table 1),
representing the driving force under specific conditions
(Bouyoucos, 1920; Taber, 1930; Korkina, 1965; Hoekstra, 1969;
Gilpin, 1980). There is now a consensus that the water migration
in frozen soil is due to multiple factors (such as thermodynamic,
mechanics, and physicochemical) that need comprehensive
analysis from various perspectives.

ICE SEGREGATION IN FROZEN SOIL

The Structure of Frozen Fringe
In the early stage of research on frozen soil, the capillary theory
(primary frost heave) was used to illustrate the formation

FIGURE 3 | A schematic diagram of film water migration: (A) the direction of film water migration; (B) the principle of film water migration around soil particles (i.e., A
and B are soil particles with equal radius, a and b are water film thickness (a > b), and particle B is closer to the freezing front).
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mechanism of segregated ice (Taber, 1930; Gold, 1957; Everett,
1961; Haynes, 1965). Primary heave occurs when there is no frost
penetration into the soil, leading to needle ice and for some of the
very large lenses of massive ice (Miller, 1972; Goulet, 1995).
However, the primary frost heave theory still did not answer the
questions: 1) mechanisms to explain the initiation of new ice
lenses; and 2) the frost heaving force estimated by the theory does
not match the experimental data (Sheppard et al., 1978; Jansson
and Halldin, 1979; Guymon et al., 1980). Peppin and Style (2013)
considered that the flow rate toward the ice lens tends to be
overestimated due to the Clapeyron equation breaking down
outside equilibrium under the assumption of local equilibrium at
the ice-lens-soil boundary.

Miller (1972) proposed the concept of frozen fringe
(secondary frost heave). The frozen fringe is defined as the
partially frozen zone between the ice lens and the warmest
soil with pore ice, i.e., the soil volume in which the water

pressure declines due to coexisting with ice (Figure 4)
(Gilpin, 1982; Konrad, 1999; Miller, 1972; ONeill and
Miller, 1985). Therefore, any internal and external factors
that can change soil unfrozen water content will influence the
thickness of the frozen fringe, such as soil texture, soil
salinity, and the external load (Radd and Oertle, 1973;
Loch and Miller, 1975; Konrad and Morgenstern, 1981;
Akagawa, 1988; Ma et al., 2015). Some reports have stated
that the frozen fringe is non-existent in saturated soil with a
particle size larger than 0.1 mm (Liu et al., 2005). However, if
the soil water has high salinity, there may well be the
coexistence of ice and water below 0°C (Chamberlain,
1983). The ice lens growth rate at the frozen fringe
depends on the freezing velocity (Watanabe et al., 1997).
During fast freezing, the freezing front moves so rapidly that
water cannot migrate towards the freezing front immediately,
and the water freezes in situ without forming a frozen fringe

TABLE 1 | Hypotheses on the driving force of water migration in frozen soil.

Hypotheses References Driving force Mechanism Deficiency

Capillary theory 0tulfobfr[, B.
J. (1885)

Capillary force The capillary force between soil particles drives water
migration from the unfrozen zone to the freezing front

The theoretical value is lower than the experimental
value. It cannot explain the formation of the first ice
lens

Film theory Beskow and Fil
(1935)

Pressure
difference

The ice lenses are connected with the water supply via
the water film at the ice surface, the film is a path for
water migration

The rate of water migration is underestimated

Suction theory Ershov et al. (2015)) Vacuum
suction force

The imbalance of ice crystal growth causes vacuums,
and then the water in the unfrozen area is pumped into
the crack, forming ice

The theory can only be applied to saturated soil, and
the essence of water migration was not studied

Crystallization
theory

Taber (1929) Cohesion of
water

The cohesion amongwater molecules is lower than that
between water molecules and ice crystals, driving the
water to migrate towards ice crystals’ growth

This view can be subsumed into the suction theory

Electro-osmotic
theory

Korkina (1965) Freezing
potential

The voltages caused by the rejection of soil ions, cause
unfrozen water migration

The magnitude of the electro-osmotic effect cannot
be evaluated

FIGURE 4 | A schematic diagram (not to scale) of frozen fringe: (A) shows the relative position of the frozen, frozen fringe, and unfrozen zones within freezing soil
and, (B) is the magnified views of the frozen fringe zone.
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(Xu and Deng, 1991). Overall, the internal structure of the
frozen fringe is complex, and various physical parameters
change significantly in different freezing stages, making it
challenging to accurately determine different parameters
(Akagawa et al., 2006; Akagawa and Nishisato, 2009).

Initiation Criteria of Ice Lenses
The conditions of moisture, temperature, and stress conditions in
the frozen fringe can determine when and where ice lens
initiation occurs (Xu et al., 2010). In the frozen fringe,
although the permeability decreases rapidly with the formation
of porous ice during the freezing process, moisture still migrates
to the frozen zone continuously under the pressure gradient
caused by the depression of pore water pressure (Peppin and
Style, 2013). However, the permeability in the frozen fringe is so
poor that moisture accumulates, forming ice lenses at the back of
the freezing front (Figure 4A) (Rempel, 2007). Ice lenses undergo
sustained grow with enough water supply. The location of new ice
lenses is related to the hydraulic conductivity of the currently
frozen fringe. The growth or stagnation of the ice lenses depends
on the temperature at the warmest end of the ice lens, i.e., the
segregation temperature (Figure 4B) (Konrad and Morgenstern,
1980). Akagawa (1988) found that the segregation temperature
was around −0.8°C through experiments. Based on a simple
method to determine the segregation temperature and the ice
lens location, Xu et al. (2010) found that segregated ice was most
likely to form in soil with structural connections. The
temperature gradient and water migration caused uneven soil
shrinkage, resulting in the appearance of cracks in the frozen

fringe (Arenson et al., 2007). In addition to stress and
temperature criteria, there are also some other possible criteria
for the formation of ice lens. Style et al. (2011) claimed that a new
ice lens occurs at a location where supercooling reaches
maximum. Zhou and Li (2012) modelled ice lens formation
with the concept of separating void ratio, a critical void ratio
that enables pore ice to connect into an ice lens.

Figure 5B and Figure 5C show the temperature and pressure
profiles around the frozen fringe. When discussing the ice lens
initiation criteria, typically only the stress conditions are
considered to facilitate practical calculation and application
(Ma et al., 2015). The stress conditions include pore pressure
σpor (Sheng et al., 1995), pore water pressure uw (Hazirbaba et al.,
2011), ice pressure ui, and overburden σR (Nixon, 1991)
(Figure 5C). ONeill and Miller, 1985 pointed out that a new
ice lens forms when the ice pressure in the frozen fringe is greater
than or equal to the external load at the cold end of the frozen
fringe. Gilpin (1980) proposed critical segregation pressure, in
which ice pressure is regarded as the destructive force of soil
structures that determines the ice lens formation. An increasing
number of studies have shown that the formation of new ice
lenses and the halt in the growth of old ice lenses may not occur at
the same time, which can be determined using mechanical and
thermophysical methods, respectively (Konrad and Duquennoi,
1993; Zhang et al., 2014a). A previous study showed that the stress
conditions of ice lens initiation should include two stresses: the
driving force of soil fracturing as well as ice lens formation and
the constraining force preventing soil fracturing (Ma et al., 2015).
Ice lens initiation can only occur when the pore pressure is greater

FIGURE 5 | The temperature and pressure of the frozen fringe (based on a static model of the frozen fringe by Ma et al. (2015): (A) the location of the ice lens and
frozen fringe; (B) temperature in the frozen fringe. TC and TW are the upper and lower boundary temperatures, respectively; TS is the segregated temperature; and T0 is
the soil freezing point; (C) pressure in the frozen fringe.
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than or equal to the restraining force, and the effective stress (σ ’

in Figure 5C) equals zero (Ma et al., 2015).

Environment for the Development of
Segregated Ice
The natural formation of massive segregated ice is mainly
affected by soil properties. Fine-grained soils generally
promote segregated ice formation due to their high
unfrozen water content (Van Huissteden, 2020). However,
Burt and Williams (1976) showed that although clays have
the highest unfrozen water content, their low permeability
leads to a lower hydraulic conductivity than silts below 0°C.
For this reason, silts have a high frost susceptibility compared
to clay and are easy to occur the segregated ice (Burt and
Williams, 1976; Chamberlain, 1981). The change in soil
structures due to frost cracking is another essential
mechanism for ground ice formation (Azmatch et al.,
2008). During the freezing process, vertical cracks may
occur in the frozen fringe and unfrozen areas, leading to
appropriate soil local stress conditions for segregated ice
growth. Segregated ice may also occur in rocks by
accelerating cracking and physical weathering, especially in
stratums prone to fission, such as shale or fine-grained porous
rocks (Murton and Lautridou, 2003; French and Shur, 2010).
Higher soil water content is critical factor for the growth of
segregated ice in some permafrost regions. The results of
Calmels and Allard (2008) showed that ice content could
exceed 50% after frost heaving in wet peat. Segregated ice
formation brings about water migration and accumulation in
soil with enough groundwater supply recharge. Without
sufficient water, segregated ice ceases to grow, and the soil
finally becomes consolidated and contracted due to
dehydration under freeze-thaw cycles (Van Huissteden,
2020).

LABORATORY STUDIES AND
SIMULATIONS OF SEGREGATED ICE

Mathematical models of the soil ice formation process have
attracted much attention in the past decades (Harlan, 1973;
Jame and Norum, 1980; Hansson et al., 2004; Lai et al., 2014;
Liu et al., 2019). These studies help elucidate the mechanism of
frost heaving and provide practical measures for frost heave
prediction and prevention for engineering. The review does
not try to comprehensively discuss all aspects related to soil
frost heave, such as the distinction of primary, secondary, and
tertiary heave (Miller, 1978; Mackay et al., 1979; Horiguchi,
1980; Smith et al., 1985). Instead, we focus on the processes
involved in segregated ice formation, which mostly describes
the warmest or first ice lens ice based on the frozen fringe. They
can be broadly divided into three types: rigid ice models
(ONeill and Miller, 1985; Sheng et al., 1995; Zhou et al.,
2018), models based on segregation potential (Gilpin, 1980;
Koren et al., 1999; Ji et al., 2019), and pre-melting dynamic
models (Wettlaufer et al., 1996; Rempel et al., 2004;

Michalowski and Zhu, 2006; Zhou and Wei, 2020). These
models differ in practical applications due to different
theoretical assumptions and bases.

Rigid Ice Model and Separated Ice Model
The rigid ice model was first proposed by Miller (1972), who
considered that ice lens and pore ice in the frozen fringe is a rigid
ensemble that moves at a uniform velocity. The pore ice in the
frozen fringe is attached to the growing lens above and moves
relative to the surrounding soil particles by melting and refreezing
as necessary. ONeill and Miller (1985) developed it into a
complete model, aiming to directly predict the characteristics
of ice lenses and the rate of frost heave as a function of
environmental conditions and sediment constitutive behavior.
In the model, the relationship between ice content I (%) and water
pore pressure Pw (Pa), and temperature T (°C) was connected by
the soil-water characteristic curve and integral form of the
Clapeyron equation:

I � I(APw + BT), (2)
where A and B are known constants. In addition, the movement
of the ice lens is considered in basic transport equations:

(ρi − ρw) zθizt
− z

zx
[Kh

g
(zPw

zx
− ρwg) − ρiVIθi] � 0 (3)

∑ ρncnθn
zT

zt
− z

zx
(λ zT

zx
) − ρiL(zθizt

+ VI
zθi
zx

) � 0, (4)

where ρi and ρw are ice and water density (kg m
−3), respectively; n

represents different soil components; cn is the thermal
conductivity of different components (J m−1 s−1 K−1); θn is the
volume fraction of the nth component including soil solids (%);
VI is the segregation rate of ice (m s−1); g is gravitational
acceleration (m s−2); Kh is the hydraulic conductivity (m s−1),
and the function of unfrozen water content in frozen fringe and
can be regarded as the saturated hydraulic conductivity in the
unfrozen zone; and λ is the thermal conductivity of the soil
skeleton (J m−1 s−1 K−1), which is related to the content of soil
components. The segregation rate VI can be obtained from the
conservation of mass in the frozen fringe as

VI � −Kh(zPw

zx
− ρwg) 1

ρwg(1 − θi). (5)

Soil particles lose contact and new ice lenses form when the
effective stress of pores in the frozen fringe is greater than or equal
to the total load at the end of the frozen fringe:

σn � χPw + (1 − χ)Pi ≥ P0, (6)
where σn is the effective stress (Pa), and χ � (θu/ρ)1.5 is the stress-
partition parameter (Pa) (Miller, 1978), where θu is the unfrozen
water content (%) and ρ is the soil density.

The rigid ice model can describe frost-heave behavior by
keeping track of only two essential parameters of the ice
content in the frozen fringe: 1) spatial variations in the
volume fraction of the pore space that is occupied by ice; and
2) spatial variations in the effective permeability caused by these
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changes in ice saturation (Rempel, 2010). Both parameters can be
obtained from independent laboratory studies (Watanabe and
Flury, 2008; Watanabe and Wake, 2009). However, there are still
considerable workloads to put it into practical application (Ming
and Li, 2016). Many researchers have devoted attention to
simplifying the model (Black, 1985; Ishizaki and Nishio, 1988;
Sheng et al., 1995). Fowler and Krantz (1994) reduced the
computational amount of the rigid-ice model by using
asymptotic analysis to reformulate the model and greatly
improve its practical implementation. Sheng et al. (1995)
modified the governing equation and interruption stress
expression, establishing an operable simplified model
(PCheave). This model can solve variables such as soil frost
heave rate, freeze-thaw front movement speed, and ice volume
content, which is helpful for frost heave monitoring in the field
(Zhang et al., 2014a).

Segregation Potential Model
The segregation potential model is a semi-empirical model
describing the growth of a single ice lens (Konrad and
Morgenstern, 1980; Konrad and Morgenstern, 1982b). The
basic assumption is that for any identical soil, while the one-
dimensional freeze is steady-state, the ratio of the velocity of
water migration at the bottom of the last ice lens and the soil
temperature gradient below ice lens is a constant, namely,
segregation potential SP：

V � SP · ΔT, (7)
where V is the velocity of water migration and ΔT is temperature
gradient (K cm−1), and the segregated ice content can be
calculated by (Konrad et al., 1995):

H � 1.09∫
t

0

SPΔTdt. (8)

The SP, in effect, is a conductivity driven by temperature, and
depends on external pressure, suction at the frost front, and rate
of cooling of the frozen fringe (Konrad and Morgenstern, 1980;
Konrad andMorgenstern, 1982a). All of these parameters may be
obtained directly from laboratory frost heave tests at the
macroscopic scale. Konrad (2005) reported values of SP
ranging 160 to 410 (mm2/°C·d) for saturated sand–silt–clay
mixtures, 52 to 325 (mm2/°C·d) for till samples, and 84 to 329
(mm2/°C·d) for fine quarry materials. Water migration and
segregated ice can be directly predicted as long as SP has been
measured by experiments. (Nixon, 1982; Fukuda et al., 1988;
Saarelainen, 1992; Tiedje and Guo, 2012). Konrad and
Morgenstern (1984) predicted the frost heave caused by a
frozen pipe buried in an unfrozen region using the segregation
potential model. The simulation was in good agreement with
long-term field observation results. However, Nixon (1987) and
Ishizaki and Nishio (1988) pointed out that the model could not
describe the ice lens growth under unstable thermal conditions.
The model cannot predict the dewatering at the initial stage of
freezing. Furthermore, the model did not involve the parameters
related to basic soil properties (Li et al., 2000). Based on the

segregation potential model and the water activity criteria, Ji et al.
(2019) proposed a quasi-static model for ice lens growth to
describe the ice lens growth under slowly changing segregation
temperature.

Pre-Melting Dynamics Theory
The rigid-ice model and the segregated potential model give a
successful prediction of the macroscopic processes of segregated
ice. At the microscale, the force-balance condition of the
initiation of new lenses still lacks a firm theoretical basis.
Römkens and Miller (1973) observed the migration of
particles in freezing soil and attributed it to the osmotic
transport of water in the film surrounding the particles. The
authors explained the force between ice and soil particles based
on two models: 1) electrical double-layer effects and the viscous
flow of water, and 2) a brine pocket enclosing the particle and
diffusion phenomena. Wettlaufer et al. (1996), Wettlaufer et al.
(1997) found that due to the thermal molecular repulsion
between the porous medium and ice, there is interfacial
melting between the ice lens and the matrix. This melting
forms a thin liquid water film on the surface of the substrate
called pre-melting film (Lu et al., 2017). The net force between the
ice and sediment particles can be explained quantitatively as a
result of the intermolecular forces that act between them and
produce the intervening pre-melting films (Williams, 1995). The
intermolecular force changes the thickness of the film between the
soil particles and surrounding ice, and increases with the
decreasing distance and increasing temperature between soil
particles and ice (Rempel et al., 2001). In the presence of pre-
melting film, the total surface energy of the soil particle-water and
liquid water-ice interface is lower than that of the soil particle-ice
surface (Zhou and Meschke, 2013).

Rempel et al. (2004) concluded that the thermal molecular
repulsion of both the cold and warm ends of soil particles is
imbalanced. Owing to the difference in water film thickness, the
force of the cold end is greater than that of the warm end. This
force will drive soil particles away from the ice lens, causing ice to
melt on the warmer side and water to refreeze on the colder side
through thermal regelation. Rempel et al. (2004) developed a
model based on mechanical equilibrium and conservation to
describe the formation and evolution of ice lenses. Based on
the micro thermodynamic theory of ice soil particle interaction,
different forms of macro frost heaving processes can be described,
including the growth of single ice lens or needle ice, the successive
growth of multiple lenses, and the situation with only pore ice
(Rempel et al., 2004; Rempel, 2007). It should be noted that the
pre-melting film is still affected by thermal molecular forces while
the frozen fringe disappears because the warm side coincides with
the freezing front. Therefore, the frozen fringe is not always
considered in the pre-melting film model (Lu et al., 2017). The
derivation and development of pre-melting film originated from
the micro-physical mechanism, discussing the essence of soil
water and heat change during the freeze-thaw process, opening
up a new direction for the macroscopic ice formation process
model (Rempel et al., 2004; Zhou and Wei, 2020).

In the 1990s, Fremond and Mikkola (1991) proposed a
thermodynamic model based on the law of energy
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conservation and entropy increase balance. This model was
derived from a series of thermodynamic equations based on
the basic axioms. The model can describe the suction caused
by pore water freezing and moisture and heat transfer (Ran et al.,
2019). However, the application of this model has not been
extensive due to its large number of parameters, which are too
difficult to obtain in experiments. The model still needs to be
further improved and developed in the future.

ENVIRONMENT EFFECTS CAUSED BY THE
SEGREGATED ICE FORMATION

Segregated ice is a vital factor affecting the permafrost
environment. It is widespread in the active layer from the
permafrost table to the ground surface (Figure 6A), where
there are acute water and heat transports among soil,
vegetation, and the atmosphere. These energy exchange
processes are significantly affected by segregated ice formation,
growing, and melting via changes in the soil hydrothermal
properties and soil structures (Wu et al., 2003). Thus,
segregated ice formation shapes the unique frozen land
morphology, changing the regional topography and
hydrological processes, and causes soil and vegetation
reorganization in the cold region ecosystems, affecting the
carbon and nitrogen cycle and other biogeochemical processes.

Permafrost Landforms
The ice in permafrost has an important role in the formation of
topography, or at least, in the origin of minor relief in permafrost
regions. Segregated ice development causes frost heave and
modifies topography (Figure 6B). Sometimes segregated ice
development causes polygonal cracks because of the uneven
distribution of ice in the soil mass (Walker et al., 2004).
Segregated ice is also an essential factor in frost mounds
formation (Van Huissteden, 2020). Hummocks are widely
distributed in arctic and subarctic permafrost regions

(Washburn, 1980), and are caused by the long-term seasonal
freeze-thaw of ice lenses at the top and bottom of the active layer
(Mackay, 1980). When permafrost degrades, the inhomogeneous
melting of segregated ice causes the ground surface to collapse
unevenly (Streletskiy et al., 2015; French, 2017). The hollows
caused by the subsidence of the ground surface easily collect
precipitation, runoff, and meltwater, forming ponds or lakes,
changing the surface heat balance (Boike et al., 2015).

Regional Hydrological Processes
Segregated ice affects the hydrological process mainly by
changing the hydrological properties and micro-topography by
reducing soil permeability (Woo, 2012; Walvoord and Kurylyk,
2016). Massive segregated ice near the permafrost table causes a
sharp decrease in permeability of this area. The zone with massive
segregated ice can be regarded as a regional aquifer or
impermeable layer. The impermeable layer obstructs or
weakens the hydraulic connection between groundwater and
active layer water, runoff, and even atmospheric precipitation
on a seasonal scale (Zhao et al., 2019). In addition, the formation
and melting processes of segregated ice accompanied by water
migration significantly affect the spatiotemporal characteristics of
the hydrological conditions of the active layer (Woo, 2012;
Walvoord and Kurylyk, 2016). During warm seasons, the
moisture content of the active layer increases due to the
influence of rainfall, snowmelt water and excessive ice melting
of the ice-rich permafrost table. Before percolating into the deep
soil, most of this melted water, is discharged into rivers or lakes
through surface runoff or subsurface lateral flow. The runoff
variation is related to slope, ALT, and saturation, as well as the
supply due to the seasonal melt of segregated ice (Van
Huissteden, 2020). During periods of alternating warmth and
cold, snow meltwater permeates through the surrounding soil.
However, because the soil temperature is still below 0°C, a portion
of the meltwater will refreeze, reducing the permeability of the
ground surface. Meltwater generates runoff easily, forming ponds
(Woo, 2012). In the cold season, there is bidirectional freezing in
the active layer, and water migrates toward the freezing front,
dehydrating the soil in the middle unfrozen layer (Woo, 2012).
Soil fractures due to frost heaves, increasing the infiltration of
precipitation and meltwater downward in the warm season
(Ostroumov et al., 2001).

Ecosystem and Biogeochemical Processes
Segregated ice affects the growth dynamics of plants indirectly in
cold regions by changing soil microstructure, soil ventilation, and
thermal conductivity. Meanwhile, the water migration affects the
nutrient and water distribution of the active layer, transforming
the succession of the whole cold region ecosystem (Wang et al.,
2006a). For example, during the development of frost mound,
frost heave causes the central location to move upward year by
year with the growth of segregated ice. In this process, the organic
matter and nutrients at the bottom of active layer are pushed to
the center of frost mound, and then transported and accumulated
to the surrounding edge by leaching and soil movement (Peterson
and Krantz, 2003). It will result in sparse vegetation in the center
over time and luxuriant vegetation in the edge of frost mound,

FIGURE 6 | A schematic diagram of landforms in permafrost regions. (A)
Segregated ice forms in the active layer at first, and the ice lens at the
permafrost table is preserved after a freeze-thaw cycle. (B) Under a cooling
climate, the permafrost table is raised, and the accumulation of
segregated ice forms massive repeated-segregation ice, causing frost heave
and frost crack.
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respectively, forming the unique honeycomb vegetation
characteristics in permafrost regions (Walker et al., 2004). In
the Qinghai Tibet Plateau, thawing segregated ice near the
permafrost table weakened its role as an impermeable layer,
which lowers water table and dries surface soil (Niu et al.,
2011), thus decreasing the water available to plants and the
productivity of the ecosystem (Wang et al., 2006a; Yi et al., 2014).

Large amounts of soil organic carbon (SOC) and soil
organic nitrogen (SON) are stored in the active layer and
underlying permafrost (Tarnocai et al., 2009; Koch et al.,
2013; Zubrzycki et al., 2014; Ping et al., 2015). These organic
matters easily develop into dissolved organic carbon (DOC)
and dissolved organic or inorganic nitrogen (DON, and DIN,
respectively) while the segregated ice melts (Wickland et al.,
2018). Moreover, various soluble ions migrate to the freeze-
thaw front with water migration, increasing their
concentration near the ice lens (Ostroumov et al., 2001).
Studies have shown that the DOC concentration in the soil
solution ranges from 2 to 30 mg C L−1 (White, 2020), while
that in the segregated ice meltwater is as high as
4–128 mg C L−1 (Ewing et al., 2015). Other types of
dissolved organic matter (such as root exudates) produced
by vegetation may accumulate due to the restriction of
subsurface drainage by segregated ice (Michaelson and
Ping, 2003). This organic matter is then transported to
rivers through runoff (Prokushkin et al., 2009; Ma et al.,
2019), strongly affecting oxidation-reduction,
decomposition, and other biogeochemical processes.

Ice lenses in frozen soil also affect the below-ground gas
transport process. When the soil changes between the
freezing and thawing state, the SOC stored in permafrost
will be decomposed by soil microbes, generating carbon
dioxide (CO2), methane (CH4), nitrous oxide (N2O), or
other greenhouse gases (Yang et al., 2014; Zona et al.,
2016). Owing to the ice lens barrier, the frozen soil delays
the emission of N2O and CO2 in winter (Van Bochove et al.,
2001; Song et al., 2012). The large autumn burst of CH4 from
the tundra in high latitudes may be related to the freezing and
thawing process of permafrost in the Arctic (Mastepanov
et al., 2008; Zona et al., 2016; Byun et al., 2017). Because gas
solubility is significantly lower in ice than in liquid water, the
formation of segregated ice at the freezing front during the
bidirectional freezing process in autumn may lead to the
efflux of methane previously dissolved in soil water (Byun
et al., 2017). However, segregated ice blocks the pores and
hinders the gas discharge, leading to the retention of CH4.
Subsequently, frost heaving due to the continuous formation
of segregated ice destroys the mechanical structure of soil and
causes ground cracking, providing a channel for gas to escape,
thus producing a CH4 peak (Mastepanov et al., 2013). Under
a cold climate, the seasonal segregated ice and the trapped
CH4 in the active layer may be permanently incorporated into
near-surface or even deeper permafrost (Byun et al., 2017).
The reverse is also possible upon climate warming. Higher
soil temperature will promote the activity of soil organisms
and thus aggravate the decomposition of SOC to release more
carbon dioxide (Natali et al., 2015).

SUMMARY AND FUTURE PERSPECTIVES

Since Taber realized that frost heaving mainly comes from liquid
water migration that supplies growing ice lenses, people have put
forward to various theoretical models to improve the
understanding of their mechanism. Now the processes of ice
lenses have been explained by mathematical models that
successfully verified from the macroscopic features. In
permafrost regions, water migration and segregated ice shapes
spectacular permafrost topographic features, changes regional
hydrological patterns, even makes their carbon cycle differ from
that of other soils. Under a warming climate, researchers have
much renewed interest in how the processes of water migration
and ice formation play roles in the interaction between frozen
ground and the environment. This article reviewed the
mechanism of water migration and segregated ice formation
and different models developed to account for their physical
processes, as well as an overview of their impact on the
permafrost environment. Given the aspects that current
research regarding water migration and ice formation has
overlooked, we suggest the following perspectives should be
the central focus in future research.

(1) It is the basis for understanding the mechanism of ice
segregation to explicitly know the driving forces of
unfrozen water migration. Since the theory of unfrozen
water film was brought up, the concept of soil water
potential has been widely accepted to characterize the
energy state of liquid water, to further study the
direction and water flux during water moisture
migration. Current methods are hard to directly measure
the soil water potential in frozen soil, so researchers rely on
the Clapeyron equation based on phase equilibrium to
convert the temperature gradient to water potential
(Loch, 1978; Gilpin, 1980; Drotz et al., 2009; Thomas
et al., 2009). However, one of the primary assumptions
invoked when employing the Clapeyron equation and its
modified versions is that the pore water pressure is
measured relative to the pressure in the ice phase, which
is often implicitly assumed to be atmospheric (Kurylyk and
Watanabe, 2013). In fact, soil increases its strength as
temperature declines and as ice progressively fills the
pores in the freezing process. This means the ice pressure
must rise for a growing ice lens and the potential gradient
will no longer be linearly related to the temperature gradient
(Wood, 1990). If we can only measure the temperature
gradient, it is difficult to fully interpret the reason why the
growth rate of ice lenses decreases with temperature.
Therefore, the applicability of the Clapeyron equation in
frozen soil still needs to be further verified by accurately
measuring the pore water pressure and ice pressure in the
laboratory, which depends on the progress of measurement
technologies. Another concern is the calculation and
determination of unfrozen water content, which is also
important for the study of water migration. At present, a
commonly used method to calculate unfrozen water content
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in frozen soil is the empirical formula or relate soil frozen
characteristic curve (SFCC) and the soil water characteristic
curve (SWCC) by the Clausius-Clapeyron equation (Spaans
and Baker, 1996; Kurylyk and Watanabe, 2013; Fu et al.,
2021). The latter is inappropriate to apply this equation at
disequilibrium, such as during rapid early-stage freezing.
The accuracy of the empirical formula largely depends on
the calibration dataset size and characteristics. However,
because of the possibility of ice be melted by the
temperature or moisture probes, it is difficult to conduct
long-term monitoring of the energy state of unfrozen water
or unfrozen water and ice content in frozen ground under
field conditions (He et al., 2018). Many new theories and
methods emerged to partition water and ice in partially
frozen soil to estimate unfrozen water content and ice
content (Gang and Si, 2011; Kojima et al., 2016; Kojima
et al., 2020). New theories and methods are in their infancy
and have limitations at present. Still, they potentially could
greatly improve the measurement techniques and our
understanding of unfrozen water migration and ice
formation.

2) The measurement of ice content is essential for studying the
water migration in frozen soil and is very important for
understanding the mechanism of frost heave or thaw
settlement. In laboratory experiments, the ice content is
usually estimated by subtracting the unfrozen water
content from the total water content. The latter could be
directly measured by mature methods, such as the neutron
moisture meter method (NMM) (Sun et al., 2021) and
gamma-ray attenuation method (Zhou et al., 2014) for the
total water content, TDR (time-domain reflectometer)
method, FDR (frequency-domain reflectometer) method,
and NMR (Nuclear Magnetic Resonance) method for
unfrozen water content (Feng et al., 2021). However, there
is still no suitable method to monitor the ice content, water
migration, and their spatial variation under field conditions.
One of the critical problems is that we cannot monitor the
change of ice content during freezing and thawing without
damaging the soil structure. Although some improved
methods have been verified in the field (Cheng et al.,
2013; Kojima et al., 2020; Wang et al., 2021), there is still
no commercial sensor available. Another way is to estimate
the ice content by geophysical technology or remote sensing
methods, such as ground-penetrating radar (GPR) (Daniels
et al., 1995; Lamoureux et al., 2018). However, the GPR
method prefers to resolve wedge ice, massive ice, and ice-rich
sediments rather than the individual ice lenses with small
volume, and it needs to be combined with other means to
improve the accuracy of detection (Fortier and Savard, 2010;
Sokolov et al., 2020). Satellite remote sensing provides
another method to continuously monitor the surface water
condition of frozen soil in space via data assimilation
(Mwangi et al., 2020; Szczykulska et al., 2021). Cosmic-ray
neutron probes (CRNP) allows continuous monitoring of soil
ice content at the field scale averaged over several hectares in
shallow soil profiles (Mwangi et al., 2020). However, it is still
unable to reasonably estimate the ice content of deep soil

layer due to soil heterogeneities (Stevanato et al., 2019). With
the ever-expanding use of geophysical methods for
permafrost and ground ice studies, new inversion means
or improved methods should be verified by boreholes or test
pits to estimate the spatiotemporal variation and distribution.
This will be a new challenge for engineering geologists and
shallow geophysicists.

(3) Models aimed to describe the dynamics of ice formation
have given a successful prediction of the macroscopic
processes of segregated ice, such as the rigid ice model,
which has been widely used and further developed.
However, the pre-hypothesis of the rigid ice model used
to predict the heave rate and the initiation of new lenses
still lack a firm theoretical basis at the microscope physics.
This means it will produce uncertainty when applying the
model in different physical environments by modifying the
model parameters. The rigid-ice model assumes that lenses
initiate within ice that is connected through the frozen
fringe to the active lens. However, experiments showed that
there are variety of ice growth forms in addition to lenses
(Peppin et al., 2006; Rempel, 2011), and their initiation
mechanisms should also be considered. Premelting theory
began with surface interface physics provides a new sight in
understanding the microphysical interactions that occur
between the soil particles, the ice and the liquid (Rempel
et al., 2004; Rempel, 2007). The net ice-particle force within
the fringe can be calculated by applying the concept of
thermodynamic buoyancy (Rempel, 2010). However, as it
still employed a few simplifying assumptions in
constructing theoretical model, the premelting model
needs further development. Engineering applications of
the ice formation models is another critical problem.
Many works verified the model simulations through
laboratory measurements (Williams and Smith, 1989),
Unfortunately, relatively little field research has been
conducted on frost heave. The empirical work has
principally been conducted under highly controlled
laboratory conditions, making it difficult to apply
theoretical models in field conditions. These difficulties
include but are not limited to the following: a) the complex
form and various parameters of the model make it difficult
for it to be popularized in actual application, b) most
models are based on saturated soils, and they are not
well suited to application in unsaturated permafrost and
c) the considerable diversities of soil particle characteristics
in different soils cause it is hard to find a uniform method
to evaluate the parameters regard to frost susceptibility,
such as the parameterization scheme of soil thermal
conductivity and hydraulic conductivity (Gelfan, 2006;
He et al., 2020). In the future, simplifying existing
models or developing new ice formation models will be
an exciting challenge that will facilitate field application.
Additionally, combined with more observational data,
developing the comprehensive and systematic scheme of
permafrost soil thermal and hydraulic conductivity will
also help improve the description of soil thermal properties
in models.
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(4) The development and decline of segregated ice at the
permafrost table is an important feature in the change of
permafrost, which exerts a strong influence on the
development of landforms, hydrology and biochemical
processes (Van Huissteden, 2020). Sustained climate
warming is accelerating the degradation of permafrost and
the thawing of ice lenses near the permafrost table. Under this
condition, landscape models were developed to predict the
influences of permafrost degradation on hydrological,
ecological, and climatic effects (Flerchinger and Saxton,
1989; Cherkauer and Lettenmaier, 1999; Gouttevin et al.,
2012; Yang et al., 2018a; Yang et al., 2018b). However, there
were significant deviations of simulations when the models
applied to permafrost, especially the unfrozen soil moisture
during the freezing and thawing process (Swenson et al.,
2012; Xiao et al., 2013; Chadburn et al., 2015; Yang et al.,
2018a; Luo et al., 2018). One possible reason is the inadequate
consideration of the water migration and segregated ice in
models. Most landscape models that we have checked
simplify, even ignore the process of water migration and
ice lenses formation in constructing the model (Dai et al.,
2003; Liang et al., 2003; Chen et al., 2007; Swenson et al.,
2012; Zheng et al., 2017). Of course, it is necessary and
understandable because the factors that control segregated
ice formation operate at a sub-mm scale, and are primarily
affected by soil properties. This makes incorporating
segregated ice behavior into models operating with 1- or
10-km grid cells difficult due to soil spatial heterogeneity.
However, when discussing the long-term effects of the
permafrost changes, the development and thawing of ice
lenses is still an inseparable feature. Some researchers have

added excess ground ice to the model for simulating thermal
karst caused by permafrost degradation in recent years, but
they are not concerned with the long-term process of excess
ice formation (Lee et al., 2014; Cai et al., 2020). In the future,
we may be able to find methods to connect segregated ice
models with landscape models to achieve the modeling of ice
lenses that through the hundreds or even ten thousand years
of evolvement. This will be a challenging and interesting
work that will help us to understand the interaction between
soil ice segregation and the permafrost environment, and
improve the accuracy of landscape models in permafrost
regions.
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