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During long-term geological tectonic processes, multiple fractures are often developed in
the rock mass of high-level radioactive waste disposal sites, which provide channels for
release of radioactive material or radionuclides. Studies on the permeability of fractured
rock masses are essential for the selection and evaluation of geological disposal sites. With
traditional methods, observation and operation of fractured rock mass penetration is time-
consuming and costly. However, it is possible to improve the process using newmethods.
Based on the penetration characteristics of fractured rock mass, and using machine
learning techniques, this study has created a prediction model of the fractured rock mass
permeability based on select physical and mechanical parameters. Using the correlation
coefficients developed by Pearson, Spearman, and Kendall, the proposed framework was
first used to analyze the correlation between the physical and mechanical parameters and
permeability and determine the model input parameters. Then, a comparison model was
created for permeability prediction using four different machine-learning algorithms.
The algorithm hyper-parameters are determined by a ten-fold cross-validation. Finally,
the permeability interval prediction values are obtained by comparing and selecting the
prediction results and probability distribution density function. Overall, the computational
results indicate the framework proposed in this paper outperforms the other
benchmarking machine learning algorithms through case studies in Beishan District,
Gansu, China.

Keywords: high-level waste disposal, fractured rock mass permeability, machine learning, interval prediction,
probability distribution

INTRODUCTION

During long-term geological tectonic processes, multiple fractures of variable sizes often develop in
high-level radioactive waste disposal site rock masses (Li et al., 2014). The fractured rock mass
consists of irregular fractured structures and bedrock, which may be discontinuous, anisotropic, and
heterogeneous. High-level radioactive waste often has strong radioactivity, high heat generation, high
toxicity, and a long half-life. If the engineering barriers of the repository fail, the radionuclides will
migrate via groundwater to human living environments along the cracks in the rock (Chapman and
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Hooper, 2012). Generally, the multibarrier principle also ensures
that in case of loss of one safety function of barrier, there are
another barrier providing safety function. Nevertheless, the water
flowing through interconnected fractures are preferential
transport pathway for radionuclides. Release of radioactive
material or radionuclides will not only cause environmental
pollution, but also endanger human health and even cause
lasting adverse effects on future generations. Release of
radioactive material or radionuclides will not only cause
environmental pollution, but also endanger human health and
even cause lasting adverse effects on future generations (Zhang
et al., 2021a; Zhang et al., 2021b).

Previous study of fractured rockmass permeability was mainly
carried out through theoretical analysis and experimental
observations (Zhou et al., 2006). Theoretical research has
focused on the construction of mathematical models and
numerical analyses. The current medium models of a fractured
rock mass include three types: equivalent continuum (Hadgu
et al., 2017), discontinuous (Ning et al., 2011), and mixed models
combining both continuum and discontinuous models (Cao and
Lin 2017). The equivalent continuum model ignores the fracture
position and hydraulic characteristics calibration; therefore, it is
difficult to guarantee calculation accuracy. The discontinuous
mediummodel simulates the real leakage state, and its calculation
results are highly reliable, but the calculation requirement is
extremely large. The mixed model analyzes the characteristics
of the internal rock mass fracture differences and uses different
models to simulate the structural plane condition, which can
consider the calculation results and the calculation difficulty;
however, the discontinuous model is difficult to construct. The
fractured rock mass consists of irregular fractured structures and
bedrock, which may be discontinuous, anisotropic, and
heterogeneous. (Zhang et al., 2018).

In experimental studies, the methods have included the
steady-state, non-steady-state, capillary equilibrium, and plate
model methods. For example, by using terrestrial laser scanning
and ground-penetrating radar measurements, Longoni et al.
(2012) described the discontinuities inside the rock mass and
analyzed the characteristics of the rock slope fracture network.
Based on the linear elastic fracture mechanics (LEFM) method
and Perkins-Kern-Nordgren (PKN) models, Yao (2012)
predicted the hydraulic fracturing performance of a three-
layer water injection well, and then proposed an effective
fracture toughness method considering the influence of the
fracture process on fractures in ductile rock. Using the
steady-state method, Jiang et al. (2014) proposed a parabolic
variational inequality to solve the problem of transient free-
surface seepage in a fractured network. Using the hydraulic
geometric anisotropy coefficient and considering the direction,
length, spacing, and hydraulic aperture characteristics of
discrete fracture networks, Ren et al. (2015) performed a
numerical simulation of the pipe network method for both
connecting and directional pipes, and then verified the
correlation between the hydraulic geometric anisotropy of the
fracture network and the permeability anisotropy. By
combining the extended finite element method with the
equivalent continuum model, Khoei et al. (2016) established

a two-phase fluid flow model in multiscale fractured porous
media, and then analyzed the influence of crack direction,
capillary pressure function, solid skeleton deformation, and
the presence of short cracks on the fluid flow mode. Based
on the unsteady flow mechanism in a single fracture and the
finite element method, Lai et al. (2017) simulated the intrusion
process of tight non-aqueous liquid in sand and mudstone
cracks. Using numerical simulation methods combined with
the temperature field information near cracks, Patterson et al.
(2018) studied the details of convective penetration in a deep
vertical fault zone.

All of the aforementioned methods require long-term
continuous observation and testing, which need to have good
control of the pressure difference measurement, flow control, and
waterproof sealing, and are often costly. In addition, the internal
rock mass structure is complex, and the observation results will
inevitably form blind spots, which could lead to unreliable testing
results.

With the rapid development of system mathematics and
nonlinear technology, data mining methods are increasingly
often used to solve quantitative analysis problems (He et al.,
2017; Esteves et al., 2019; Gessulat et al., 2019; Li et al., 2021a).
The principle of data mining methods is to use algorithms to
analyze data and then learn how to understand the data behavior,
to use it to predict new situations. In practice, this method has
been widely applied to many different fields and has achieved
effective results. For example, Deo (2015) summarized some
successful case studies by applying data mining methods to
the medical field in recent years. Ouyang et al. (2019) used the
deep belief network and copula function to build a forecasting
model with a short-term power load, which alleviates the impact
of power consumption ramp-up to a certain extent. He and
Kusiak (2018) applied a data mining method to build a wind
turbine performance evaluation model for wind farms, which can
effectively identify turbine failures. Xu et al. (2019) selected seven
mainstream machine learning algorithms to construct a loess
landslide sliding distance prediction model and extracted the
threshold value of the landslide hazard range, which provides a
reference for regional division of landslide hazard risk areas.

Compared with traditional methods for analyzing the
fractured rock mass permeability, data mining methods have
the advantages of simple operation, easy data acquisition (Li et al.,
2020; Li et al., 2021b). However, there are currently few related
studies, so much research needs to be carried out.

TABLE 1 | Parameter selection range in the training process of machine learning
algorithms.

Algorithm Parameter Notes

ANN Number of hidden layer neurons 5,10, . . . , 50
Number of hidden layers 1,2, . . . ,6

SVM Capacity factor 1, 10, 100, 1,000
Γ 0.001, 0.01, 0.1, 1

ELM Number of hidden layer neurons 5, 10, . . . , 80
LSTM-RNN Forgetting rate 0.1,0.2,0.3,0.4,0.5

Number of iterations 20,30,40,50,60
Stacked layers 2,3,4,5,6
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In this paper, we proposed a data-driven framework based on
LSTM-RNNs and probability distribution for Interval prediction
of the permeability of granite bodies in a high-level radioactive
waste disposal site. In order to improve prediction performance,
the inputs are selected by the correlation analysis. To confirm the
reliability of the prediction results of permeability, an interval
evaluation is conducted by probability distribution function.

METHODOLOGY

In this paper, an interval prediction framework based on LSTM-
RNNs and probability distribution is proposed for the fractured
rock mass permeability for a high-level radioactive waste disposal
site. First, rock sample data are obtained, including the physical
and mechanical parameters, crack geometry, and permeability,
which are based on laboratory tests. Then, a data correlation
analysis is performed to obtain the correlation coefficient between
the permeability and other parameters. In the second step, based
on the four mainstream machine learning algorithms of artificial
neural network (ANN), support vector machine (SVM), extreme
learning machine (ELM), and long short-term memory recurrent
neural network (LSTM-RNN), more relevant parameters and
other model input parameters are selected; the permeability is
used as the output to establish a simulation prediction model. The
third step is to compare the mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error
(RMSE) and maximum error rate (MER) returned by the four
algorithms and compare and select the method that obtains the

best simulation results. The fourth step is to analyze the error
returned by the optimal algorithm for the simulation effect,
obtain its probability distribution, and finally derive the
permeability interval value based on the error distribution
threshold.

Correlation Analysis
In this study, three major statistical correlation coefficients
were selected for correlation analysis: Pearson, Spearman, and
Kendall. All correlation coefficients reflect the variation
trends and degrees between the two variables. Their
magnitudes fluctuate in the range [−1,1], where 0 means
that the two variables are independent of each other, and
the closer the value is to ±1, the greater the correlation
between the variables. The three correlation coefficient
formulas were as follows:

ρX,Y � cov(X,Y)
σX · σY (1)

rs � 1 − 6∑n
i�1d

2
i

n3 − n
(2)

rk � 2
n(n − 1)∑i< jsgn(xi − xj)sgn(yi − yj) (3)

where ρX,Y is the Pearson correlation coefficient; cov(X,Y) is the
covariance between variables ; σX is the standard deviation of the
variables ; rs is the Spearman correlation coefficient ; di refers to
the order difference of the corresponding elements in the variable,
namely di � rank(X) − rank(Y); n is the number of samples ; rk

FIGURE 1 | Location map of the case study area. (A,B): Location description of study area; (C): The rose diagram of the joins trend.
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is the Kendall correlation coefficient; and sgn(·) is the sign
function (see Eq. 4 for details).

sgn(z) �
⎧⎪⎨⎪⎩ 1, z> 0

0, z � 0
−1, z< 0

(4)

Prediction Method
Based on the correlation analysis results, the parameters that aremore
relevant to the permeability are selected as the input to the machine
learning algorithm and then used to predict the permeability. In this
study, four algorithms, which are widely used in many fields, were
selected to build: ANN, SVM, ELM, and LSTM-RNN. The algorithm
principle (Table 1) and operation steps are as follows:

1) ANN

An ANN is a network composed of several neurons, which can
process system information by simulating the structure and
operating mechanism of the human brain (Das et al., 2014).

This algorithm has strong nonlinear approximation ability and
fault tolerance and is often used to deal with regression and
clustering problems.

The excitation function of the neural network model for
permeability prediction constructed in this study selects the
sigmoid equation, which is shown in Eq. 5. The model loss
function is the mean square error equation, as shown in Eq. 6.

S � 1
1 + e−t

(5)

C(w, b) ≡ 1
2n
∑

x
||�y − y2|| (6)

where y is the real permeability, �y is the permeability
generated by the ANN, and w and b are the weights and
biases of the algorithm’s hidden layer. In the model training
process, the number of hidden layers was set to 1, 2. . . 6, and
the number of neurons was set to 5, 10. . . 50. The optimal
number of hidden layers and the number of neurons in the
algorithm were verified using 10-fold cross-validation to
determine the best performance.

FIGURE 2 | Typical fractured rock mass in the study area.

TABLE 2 | Modeling data.

Rock
core no

Original density
(g*cm−3)

Water content of 24 h saturation test Mean
crack
width
(mm)

Average
roughness

height
of fracture
surface
(mm)

Fracture
surface
density
(number/

cm2)

Compressive
strength
(MPa)

Peak
axial
strain
/mm

Permeability
(mD)

BS43-01 2.7105 0.69% 1.2 0.2201 0.0510 96.5014 1.0271 6.7866
BS43-03 2.5759 0.57% 0.6 0.2417 0.1338 39.7098 1.5914 9.8608
BSQ05-01 2.4637 1.10% 0.1 0.2537 0.0764 160.0309 1.1581 1.9145
BSQ05-02 2.4434 0.26% 0.2 0.2195 0.0191 26.5801 0.4441 4.2556
BSQ05-03 2.4592 1.11% 0.1 0.2678 0.0637 91.0825 1.0848 1.2678
BSQ05-04 2.4566 1.19% 0.1 0.2760 0.0701 85.1950 1.0510 2.1221
BSQ05-05 2.3430 1.10% 0.4 0.2489 0.0892 80.0817 1.0712 1.9311
BSQ08-01 2.5291 0.61% 0.1 0.2463 0.0764 98.8289 0.6426 2.6294
BSQ08-02 2.5422 0.74% 0.1 0.2524 0.0510 92.2946 1.0905 2.6300
BSQ08-03 2.4066 2.18% 1.9 0.2316 0.0318 10.3031 0.5780 2.5058
BSQ08-04 2.5193 1.19% 0.6 0.2284 0.0382 79.4756 0.8812 2.3218
BSQ08-05 2.4318 0.87% 0.1 0.1754 0.1019 60.0256 0.6051 2.7468
BSQ08-06 2.4033 0.51% 1.1 0.2468 0.0510 72.3811 0.6227 6.4057
BSQ08-07 2.5092 0.70% 1.2 0.2291 0.0637 42.8420 0.6642 3.6431
BSQ08-08 2.5171 0.66% 0.6 0.2656 0.0382 53.6849 0.5568 2.2796
BSQ11-01 2.4750 0.74% 0.1 0.2502 0.0892 160.0309 1.1581 1.4034
BSQ11-02 2.4738 0.18% 2.8 0.2051 0.0064 26.5801 0.4441 3.5128
BSQ11-03 2.5530 0.96% 0.6 0.2485 0.0064 91.0825 1.0848 3.3306
BSQ11-04 2.5770 1.12% 0.1 0.2731 0.0637 85.1950 1.0510 1.3990
BSQ11-05 2.5506 1.08% 1.3 0.2610 0.0382 80.0817 1.0712 2.0188
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2) SVM

The purpose of SVM modeling is to find a hyperplane based
on the principle of maximum spacing, divide all samples, and
simplify the solution to a convex quadratic programming
problem. Since the advent of this algorithm (Cortes and
Vapnik, 1995), it has shown strong performance in text
classification and high-dimensional data processing, which
makes it the most widely used machine learning algorithm in
many fields (Abdi and Giveki, 2013; Ouyang et al., 2017; Ouyang
et al., 2018). The kernel function of the SVM selects the Gaussian
radial basis equation:

K(X, X′) � exp(|| − X −X′||
2σ2

) (7)

where X is the input data vector, and σ is the standard
deviation of the input data. During model training, the
algorithm capacity coefficient C is set to 1, 10, 100, and

1,000, and the parameter γ � 1
2σ2 is set to 0.001,001, 0.1, and

1, and then the optimal parameter combination is determined
by 10-fold cross-validation. The model loss function is the
mean square error Eq.6.

3) ELM

ELM is a type of single hidden layer feedforward neural
network (SLFN). During model training, the algorithm can
eliminate the iterative optimization of the input layer weights
to the hidden layer and only randomly assign values (Huang et al.,
2004; Huang et al., 2006). Therefore, the algorithm has the
advantages of a simple mathematical model, fast learning
speed, strong generalization ability, and global optimal
solutions. At present, the algorithm has been widely used in
many fields and has achieved good application results (Li et al.,
2018). The solving function of ELM is expressed as follows:

f(X) � ∑L

1
βlG(a, b, X) (8)

where L is the number of hidden layers of the extreme training
machine, a and b are hidden layer node parameters , βl is the
hidden layer outer weight parameter, and G(·) is the algorithm
excitation function, as shown in Eq. 8. During ELM training, only
the number of neurons in the hidden layer must be determined.
This parameter was set to 5,10, . . . ,80, and the optimal parameter
was determined by 10-fold cross-validation. The model loss
function is the mean square error Eq. 6.

4) LSTM-RNN

LSTM-RNN is a time recursive algorithm based on a recurrent
neural network (RNN). Through an in-depth understanding of the

FIGURE 3 | Width measurement map of partial rock samples (units: mm).

TABLE 3 | Correspondence between variable data and symbols.

Variable name Symbol

Original density x1
Water content of 24 h Saturation test x2
Mean crack width x3
Average rough height of Fracture surface x4
Fracture surface density x5
Compressive strength x6
Peak axial strain x7
Permeability y
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global characteristics of the data, it provides the algorithm with more
powerful generalization capabilities than other models. Compared
with RNN, this algorithm adds a structure of information availability

judgment in the training process: the LSTMnetwork (Hochreiter and
Schmidhuber, 1997), which consists of input, forgetting, and output
gates. When the information flow enters the algorithm network, the
redundant information that does not meet the algorithm rules is
placed in the forget gate and removed (Li et al., 2021c). In practice, the
LSTM-RNN algorithm can be expressed by Eqs 9–13 (Irie et al.,
2018):

it � σ(Wxixt +Whiht−1 +Wcict−1 + bi) (9)

ft � s(Wxfxt +Whfht−1 +Wcfct−1 + bf) (10)

ct � ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (11)

ot � s(Wxoxt +Whoht−1 +Wcoct−1 + bo) (12)

�yt � ottanh(ct) (13)

whereWxi,Whi,Wci,Wxf,Whf,Wcf,Wxc,Whc,Wxo,Who, and
Wco are the weight parameters of the algorithm excitation
function; it, ft, ct, and ot are the input gates, forgetting gates,
and information judgment status, respectively; and s(·) is the
sigmoid excitation function. In the algorithm training process,
the forgetting rate parameter was set to 0.1, 0.2, 0.3, 0.4, and 0.5; the
number of iterations parameter was set to 20, 30, 40, 50, 60; and the
number of stacking layers was set to 2, 3, 4, 5, and 6. The optimal
parameter combination was determined by 10-fold cross-
validation. The model loss function is the mean square error Eq. 6.

Error Evaluation Function
To quantitatively evaluate the simulation of the permeability by
the selected machine learning algorithm, it is important to

FIGURE 4 | Correlation coefficient results.

TABLE 4 | Combination of input and output parameters.

Group Input parameters Target parameters

Group 1 x1, x2, x3, x4, x5, x6, x7 Y
Group 2 x2, x3, x4, x5, x6, x7 Y
Group 3 x1, x2, x3, x4, x6, x7 y
Group 4 x2, x3, x4, x6, x7 y

FIGURE 5 | Fitting performance of different input parameters.
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analyze the model to predict its performance. Four evaluation
functions were chosen in this study: MAE (mean absolute error),
MAPE (mean absolute percentage error), RMSE (root mean
square error), and MER (max error rate). The evaluation
function equations are as follows:

MAE � 1
n
∑n

t�1
∣∣∣∣�yt − yt

∣∣∣∣ (14)

MAPE � 1
n
∑n

t�1

∣∣∣∣∣∣∣∣�yt − yt

yt

∣∣∣∣∣∣∣∣ (15)

RMSE �















1
n
∑n

t�1 (�yt − yt)2√
(16)

MER � max(�yt − yt)
yMER

(17)

where yt is the real permeability data, �yt is the calculated
permeability data, and yMER is the real permeability data
where the maximum error occurs.

By analyzing the four evaluation function equations, MAE can
reflect the actual deviation between the real permeability and the
calculated value, which can evaluate the dispersion of the
algorithm error. MAPE reflects the ratio between the real data
and the calculated value, which can evaluate the percentage
accuracy of the algorithm, because of the square term. RMSE
is more sensitive to large algorithm errors than other evaluations
functions. Finally, MER reflects the maximum error ratio, which
can be used to evaluate the ability of the algorithm to control the
maximum error. It can be seen that the four types of evaluation
indicators can evaluate the overall algorithm performance.

Interval Prediction of Permeability
To make the calculated results of permeability prediction
more reliable, this study introduces the concept of interval
prediction. Interval prediction can reflect the inherent
prediction uncertainty and has a high fault-tolerance rate
Table 1. The interval prediction in this study is divided into
the following three steps.

1) Obtain the absolute value of the true error returned by the
optimal algorithm based on the prediction results of the
machine learning algorithm.

2) Determine the most suitable probability distribution function
type for the error dataset using probability analysis methods.

3) Obtain prediction intervals with different reliabilities based on
the point prediction results and probability density function.

FIGURE 6 | Calculation results of four algorithm loss curves.

TABLE 5 | Evaluation of the calculation effect of the selected algorithm.

Algorithm MAE MAPE (%) RMSE MER (%)

ANN 0.3337 11.79 0.3986 28.19
SVM 0.2962 12.64 0.3718 39.82
ELM 0.3511 14.30 0.4427 34.36
LSTM-RNNs 0.1695 6.70 0.2102 13.37
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Because the permeability error data set is a vector, the process
of determining its probability distribution function can be
simplified to a fitting problem, in which the data set is
substituted into different probability distribution functions, the
log likelihood estimation test is used to quantitatively evaluate the
fitting effect, and then the fitting function is obtained. In this
study, four classical parameter distribution functions were
selected: gamma (Eq. 18), lognormal (Eq. 19), exponential
(Eq. 20), and Weibull (Eq. 21). Their equations are as follows:

f(x) � (x/θ)αe−x/θ
xτ(α) (18)

f(x) � 1
xσ





2π

√ exp(−z2/2) (19)

f(x) � e−x/θ

θ
(20)

f(x) � τ(x/θ)τe−(x/θτ )
x

(21)

where α and θ are the fitting parameters of the gamma
distribution, z and σ are the fitting parameters of the
lognormal distribution, θ is the fitting parameter of the
exponential distribution, and τ and θ are the fitting
parameters of the Weibull distribution. Selecting the reliability
p to obtain the prediction result of the permeability interval, the
equation is as follows:

�y ∈ [y − VaRP(y), y + VaRP(y)] (22)

VaRP(X) � F−1
X (p) (23)

where F−1
X (p) is the inverse of the cumulative distribution

function (CDF) of the probability distribution function and
VaR is the threshold corresponding to the distribution function.

DATA COLLECTION

The rock sample was from an actual radioactive waste disposal
site in Beishan District, Gansu Province (Figures 1A,B), with no
perennial rivers on the surface of the study area, no permanent
surface water, and all surface waters formed by seasonal valley
flows following intermittent floods. The study area is located in
the middle section of the Liuyuan–Tiancang fold belt in the
northern Tianshan–Yinshan zonal structural system, which
belongs to the Erdaojing–Xiananluzi–Jiusidun north fault fold
belt (Figure 2). The chemical composition of major dissolved
components of the groundwater in the area is mainly composed
of Na-Cl·SO4, and the groundwater is divided into three main
types: bedrock fissure water, basin pore-fissure water, and valley
depression fissure-pore water. The lithology of the strata in the
area is mainly magmatic rock, mostly granite, which is dominated
by medium-fine grained granodiorite, medium-fine grained
monzonitic granite, and biotite diorite, all the rockmass are

FIGURE 7 | Summary of calculation results of the four algorithms.
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joint developed (Figure 3). As illustrated in Figure 1C, the trend
of joints in the study area is mostly northeast to southwest.

Through on-site sampling, three-dimensional laser
scanning, and indoor physical and mechanical tests, the
modeling data were obtained, including the original density
of the rock sample, average fracture width, average fracture
surface roughness height, fracture surface density (the
number of cracks per unit area), water content of 24 h

saturation test, compressive strength, peak axial strain, and
rock sample permeability (Table 2). Additionally, the sample
is a standard cylinder with a bottom circle diameter of 50 mm
and a height of 100 mm.

COMPUTATIONAL RESULTS

Correlation Analysis Results
To determine the internal correlation between the case data, it is
necessary to obtain the optimal input parameters of the
simulation model. First, we performed a correlation analysis
on the selected data. To facilitate the description, the variable
data were assigned mathematical symbols, and the corresponding
relationship is shown in Table 3.

Then, the following parameters were calculated separately:
permeability (y), original density (x1), water content of a 24 h
water tent saturation test (x2), mean crack width (x3), average
rough height of fracture surface (x4), fracture surface density (x5),
Pearson correlation coefficient between compressive strength (x6)
and peak axial strain (x7), Spearman correlation coefficient, and
Kendall correlation coefficient. Among them, the correlation
coefficient between permeability and other parameters is used to
evaluate the correlation closeness, and the correlation coefficient
between other parameters (excluding permeability data) is to

FIGURE 8 | Fitting result of forecast error probability distribution.

TABLE 6 | Fitting effect evaluation.

Distribution Log likelihood Fitting mean Fitting variance

Gamma 15.9286 0.1695 0.0218
Lognormal 13.2983 0.2151 0.1286
Exponential 15.5004 0.1695 0.0287
Weibull 16.1979 0.1686 0.0182

TABLE 7 | Threshold calculation result.

p-value VaR

0.90 0.2426
0.95 0.3520
0.99 0.4340
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eliminate redundant input to simplify the calculation. The results are
presented in Figure 4.

It can be seen from Figure 4 that the permeability has the
strongest correlation with the water content of the 24 h
saturation test, with correlation coefficients of -0.4216,
−0.6775, and −0.4509, respectively, which shows the
weakest correlation with the original density and the
fracture surface density, with correlation coefficients
between permeability and original density of 0.3482,
0.1263, and 0.0947, respectively. The ratios of the
correlation coefficients between the permeability and
fracture surface density were 0.2246, −0.22208, and
−0.1523, respectively. Four sets of input parameters were
selected to construct the permeability simulation model to

reflect the influence of the input parameters scientifically and
quantitatively on the simulation results. The parameter
combination details are presented in Table 4.

Prediction Results
Before building the simulation model, a simple neural network
was used to test the fitting performance of the four combinations.
The hidden layer of this simple neural network was set to two
layers, with twenty neurons in each layer. The obtained data were
divided into a training set and a test set according to the ratio of
70 and 30%, and then simulation experiments were conducted on
the four combinations, respectively, finally obtaining the loss
value when the different combinations converged. To clearly
compare the algorithm fitment under different input
conditions, this study grouped the loss values once the
operation stabilized, and then drew a box diagram, as shown
in Figure 5.

Figure 5 shows the returned loss value when the algorithm is
stable under different combinations. Among them, the loss value
obtained by Group 1 was (0.6001, 0.6969), Group 2 was (0.5534,
0.6697), Group 3 was (0.4705, 0.5282), and Group 4 was (0.5479,
0.6149). The loss value obtained in Group 2 had the largest
fluctuation range, up to 0.1166. The loss value obtained in Group
1 was the largest, as its fitting was the worst, while the obtained
value in Group 3 was the smallest, and the fluctuation range is
also the smallest, only 0.0585. Thus, when Group 3 was used as
the input, the fitting effect was the best.

Subsequently, using Group 3 as the input, four methods
were selected, including ANN, SVM, ELM, and LSTM-RNN, to
construct a simulation model for permeability prediction. In
the calculation, the hyper-parameters of all algorithms were
adjusted and optimized by cross-validation. Therefore, the
relevant connections in the dataset were better investigated.
In the training process, the training data set was used to
establish the connection between the input and target
parameters, and then the test data were used to verify the
connection. Figure 6 shows the computational performance of
the four algorithms.

It can be seen from Figure 6 that during training, the
algorithm loss decreases as the number of iterations increases.
When the number of iterations reached 220, the loss of the
ANN algorithm began to converge; for SVM, it was 200 times,
for ELM, it was 150 times, and for LSTM-RNN, it was
approximately 140 times. Observing the test process, the
number of convergence iterations of the four algorithms
was less than that of the training process. However, as the
number of iterations increased, the training process loss
tended to increase slightly. The analysis shows that there
was an over-fitting situation at this time. To prevent errors
caused by overfitting, this study chose the number of
iterations corresponding to the smallest loss value during
the test as the final model. That is, when the number of
ANN iterations was 256, the loss value of 0.1334 was the
smallest. When the number of SVM iterations was 221, its loss
reached a minimum of 0.1276. For ELM, when the number of
iterations was 191, the loss value was 0.1537. The results are
similar for LSTM-RNNs; when the number of iterations was

FIGURE 9 | Simulation results of permeability interval prediction.
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158, the loss value was only 0.0453. Table 5 summarizes the
evaluation indicators of all the algorithm test sets, and
Figure 7 shows the final calculation results.

According toTable 5, based on the calculated data, theMAE value
obtained by the LSTM-RNN algorithm was only 0.1695, which is
smaller than the 0.3337, 0.2962, and 0.3511 for ANN, SVM, and
ELM. The MAPE values of the four algorithms were 11.79, 12.64,
14.30, and 6.70%, respectively; the RMSE values were 0.3986, 0.3718,
0.4427, and 0.2102, respectively; and the MER values were 28.19,
39.82, 34.36, and 13.37%, respectively. Thus, the simulation effect of
the LSTM-RNN algorithm was the best, and its MAE, MAPE, and
RMSE values were only half of those of the other algorithms. Most
importantly, the LSTM-RNN algorithm was only 13.37% in the
indicator of the largest error in the evaluation of theMER. Thismeans
that the difference between the simulated data and real data did not
exceed 15%, which reflects the powerful stability and generalizability
of the algorithm.

Interval Prediction Results
Based on the comparison calculation, the permeability simulation
result was obtained based on the LSTM-RNN algorithm, and the
calculation error was also obtained. To make the simulation
results more reliable, this study introduced the concept of
interval prediction, which increases the fault tolerance of the
calculation results. To ensure the generalizability of the interval
prediction model, this study first calculated the model training
data error, analyzed the probability distribution type of the error
generated during the training process, and then extracted the tail
thresholds corresponding to different p-values. Finally, the
prediction interval was obtained based on this threshold.

First, it was assumed that the error data in the training
phase was normally distributed, and the K-S test was
performed (Alexandrowicz and Gula, 2020); however, the
calculation result negated this assumption. Subsequently,
this study selected four types of widely used non-normal
distribution functions to perform the fitting: gamma,
lognormal, exponential, and Weibull distributions. The
calculation results are shown in Figure 8. Log likelihood
(Staude, 2001) was selected as the evaluation index of the
fitting situation, which shows that the larger the value, the
better the fitting effect. The evaluation results are presented in
Table 6.

Figure 8 shows the fitting results of the four probability
density functions. Combining Eqs 18–21, the fitting
parameters of the gamma, lognormal, exponential, and
Weibull distributions were 1.3147 and 0.1289, −2.113 and
1.1531, 0.1695, and 0.1812 and 1.2561, respectively. The four
probability distribution functions had the best fitting effect under
a combination of the above parameters.

Table 6 shows the fitting conditions of the four probability
density functions, and the evaluation indicators log likelihood
were 15.9286, 13.2983, 15.5004, and 16.1979, respectively. By
comparison, it was found that the evaluation index of the
Weibull distribution was greater than that of the other three
probability density functions, so it can be concluded that the
prediction error of permeability is most consistent with the
Weibull distribution.

Subsequently, based on the Weibull distribution probability
density function and Eq. 23, the VaR values at p-values of 0.90,
0.95, and 0.99 were obtained. The calculation results are presented
in Table 7. Finally, the interval simulation results of permeability
were obtained based on the simulation results and thresholds of the
LSTM-RNNs. The calculation results are shown in Figure 9.

It can be seen from Figure 9 that, regardless of the interval
simulation under the threshold value, the reliability of the
calculation result is better than that of the point value
simulation, which gives the algorithm a stronger reliability.
When the p-value was 0.90, the interval value was the smallest.
As the value of p increased, the simulation interval increased.
In summary, when p is 0.90, there are still five points that do
not fall within the interval; when p is 0.95, only two points are
outside the interval; when p is 0.99, all points fall into the
interval, and the reliability reaches up to 100% at this time.

CONCLUSION

Considering the low-permeability granite body in the study
area as the disposal site for high-level radioactive waste, this
study focuses on the simulation method of its permeability. To
improve the efficiency of permeability acquisition, this study
proposed a model structure based on comparing and selecting
different machine learning methods, which is different from
traditional methods. This method simplifies the acquisition of
basic data, optimizes the permeability data calculation steps,
and strengthens the reliability of the permeability calculation
results. Based on case studies, the main conclusions of this
paper are as follows.

1) Based on the correlation analysis, it can be seen that the
granite permeability in the case site has the strongest
correlation with the water content of the 24 h saturation
test, but the weakest correlation with the original density
and fracture surface density. Based on this knowledge and
machine learning pre-calculation, the input parameters of the
permeability simulation model were selected as the original
density, saturated water 24 h water content, average crack
width, average roughness height of fracture surfaces,
compressive strength, and peak axial strain.

2) Based on the ten-fold cross-validation, the computing power
of the four machine learning algorithms was optimized, and
the respective final calculation results were obtained. The
comparison shows that the LSTM-RNN algorithm has the
best computational performance, followed by SVM, and then
ANN, while ELM has the worst computational performance.
Finally, the calculation results of the LSTM-RNN were chosen
to perform the interval prediction.

3) Based on the training error of LSTM-RNNs, the
probability density function is fitted, and the Weibull
distribution fitting effect is concluded to be the best.
Therefore, thresholds with p-values of 0.90, 0.95, and 0.99,
and the corresponding prediction intervals were obtained.
Compared with point value prediction, interval prediction is
more reliable.
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