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Hydrate-bearing sediments provide excellent materials for studying the primary sources
and diagenetic alterations of organic matter. In this study, the elemental and isotopic
signatures of total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN),
and total sulfur (TS) are systematically investigated in three hydrate-bearing sediment cores
(~240m) retrieved from the Shenhu area, South China Sea. All sediment layers from three
sites are with low TOC content (average 0.35%) with marine and terrestrial mixed sources
(-23.6‰ < δ13Corg < -21.4‰). However, the generally low δ15N (2.49–5.31‰) and C/N
ratios (4.35–8.2) and their variation with depth cannot be explained by the terrestrial
sources (Pearl River) and marine sources, binary end-member mixing processes.
Contribution from lateral allochthonous organic matter from the mountainous river is
considered after excluding other possible factors and ingeniously elucidating the organic
matter origins. Furthermore, specific layers in W01B and W02B exhibit elevated S/C ratios
(up to 2.39), positive bias of δ34S-TS (up to +29.7‰), and negative excursion of δ13C-TIC
(up to -8.29‰), which are the characteristics of sustained occurrence of sulfate-driven
anaerobic oxidation of methane. The occurrence of coupled carbon–sulfur anomaly may
be accompanied by deep hydrocarbon leakage and the formation of hydrate with high
saturation.
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1 INTRODUCTION

Natural gas hydrates have been a frontier issue in both industrial and academic research
(Kvenvolden, 1995; Collett et al., 2009). Marine geological surveys and drilling expeditions have
verified that the Shenhu area, South China Sea (SCS) (Figures 1A,B) (Liu et al., 2011a; Trung, 2012;
Jiang et al., 2015; He et al., 2016), is one of the most promising exploration targets for gas hydrates
and has carried out two test mining in this area in the past 5 years (Wu et al., 2011; Zhang et al.,
2014a; Wang et al., 2014; Zhang et al., 2017a; Zhang et al., 2017b; Su et al., 2018).

Gases bounded in hydrate can be divided into microbial gases and thermogenic gases, which are
different products during the burial and evolution of sedimentary organic matter (Schoell, 1983). For
whatever origin, the provenances and quality (lability) of organic matter in sediments may be the key
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factors controlling the accumulation of gas hydrate since it is the
source of carbon for a huge number of hydrocarbons bounded in
gas hydrate (Kvenvolden, 1995). Terrestrial vascular plants and

marine algae have been considered to be optimum precursors for
methanogenesis used by microbes in marine settings (Kaneko
et al., 2010). A study of organic matter in the hydrate-bearing

FIGURE 1 | (A) Location of the South China Sea (SCS, from Google Earth). (B) Location and regional oceanic circulation model of the Shenhu area, SCS, modified
fromWang et al. (2020b). White arrows: intermediate water current; colored arrows: deep-water current; white dashed lines: internal waves (Hsü et al., 2000;Wang et al.,
2012; Alford et al., 2015); yellow–red dashed arrow: slope current (Wang et al., 2010). (C) Locations of coring sites of GMGS4 (Yang et al., 2017b; Zhang et al., 2019).
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sediment of Okinawa trough proposed that terrestrial organic
matter is more conducive to the formation of microbial gases
(Saito and Suzuki, 2007), verifying that the source and activity of
sedimentary organic matter are important factors controlling the
formation of hydrate, but the specific mechanism requires further
study. Compositional ratios (C/N ratios) and isotopic
composition (δ13Corg and δ15N) of organic matter are proxies
used to deduce its original properties and transformation
processes after deposition, and may provide insights into the
gas generation.

The content (TS) and isotopic composition (δ34S) of sulfur can
reflect the utilization of different organic precursors and different
mineralization pathways by sulfate-reducing bacteria (SRB). In
normal methane-free marine sediment where organiclastic sulfate
reduction (OSR) is dominated, the generally low availability and
high recalcitrance of metabolizable substrates in marine sediments
result in low cell-specific sulfate reduction rate, fostering the
expression of equilibrium fractionation, leading to large and
generally constant sulfur isotope fractionation up to ca. 70‰
(e.g., Sim et al., 2011; Wing and Halevy, 2014; Jørgensen et al.,
2019). The amount of formed pyrite is usually limited and eventually
depends on the labile organic matter content. However, in certain
environments (e.g., methane seeps and probably the sulfate methane
transition zone (SMTZ) resides in deeper sediments), the sulfur
isotope fractionation can be smaller due to a higher substrate
concentration and thus a greater expression of kinetic
fractionation. This sulfate-driven anaerobic oxidation of methane
(SD-AOM) supplies a large amount of extra HS − for the formation
of pyrite and facilitates the augmentation of authigenic pyrite in the
SMTZ (Boetius et al., 2000; Peckmann et al., 2001; Jørgensen et al.,
2004; Peketi et al., 2012; Peketi et al., 2015). Therefore, the content
and isotopic composition of TS may provide key clues for the SRB-
mediated carbon–sulfur biogeochemical cycle (Jørgensen, 2021).
Furthermore, fluctuations in sedimentation rates,
disproportionation of intermediate sulfur, and other factors may
also result in additional isotope fractionation of the TS (Jørgensen
et al., 2004; Brunner and Bernasconi, 2005; Peketi et al., 2015; Liu
et al., 2019; Liu et al., 2021). In turn, the isotopic composition of TS
can provide valuable clues for the complex sulfur cycle.

The content and isotopic signatures of bulk total organic
carbon (TOC), total inorganic carbon (TIC), total nitrogen
(TN), and total sulfur (TS) were employed in this study to
constrain the primary properties of sedimentary organic
matter in Shenhu hydrate-bearing sites of the northern South
China Sea (NSCS), as well as the response of the sedimentary
organic matter under the background of the presence of methane
hydrate or potential methane leakage. Our multi-element and
multi-isotope studies will deepen our current recognition of the
characteristics of organic matter in the hydrate deposit area, as
well as the biogeochemical cycle in hydrate systems where
methanogenesis and methane oxidation are both ubiquitous.

2 GEOLOGICAL SETTING

Located at the intersection of three tectonic plates, the SCS is the
largest passive marginal sea in Western Pacific (Figure 1A) (Sun

et al., 2006; Xu et al., 2014a). The complex tectonic evolution history
and promising resource prospects have made SCS a natural
laboratory for marine geology research (Lu et al., 2011; Wang
et al., 2020a). The Shenhu drilling area is located in Baiyun Sag,
a deep-water depression in the Pearl River Mouth Basin (PRMB) of
SCS (Yu, 1990; Pang et al., 2007) (Figure 1B). The modern
oceanographic background of the SCS was established at 3Ma,
and the flow patterns have been basically unchanged since the
Quaternary (Li et al., 2007). The baroclinic gradient below 1500m in
the Luzon Strait leads to the inflow of cold and dense North Pacific
Deep Water (NPDW) into the SCS (Qu et al., 2006), bringing the
SCS a “sandwich” layered structure characterized by three contour
current at different depths: the surface water current (SWC,
<350m), intermediate water current (IWC, 350–1,500 m), and
deep-water current (DWC, >1,500 m) (Chen and Wang, 1998;
Tian et al., 2006; Zhu et al., 2010; Chen et al., 2014). A
continuous westward along-slope current within the depth of
SWC is generated subject to the East Asian monsoon and
Kuroshio intrusion (Nan et al., 2015). It is noteworthy that the
boundaries between these currents are changing spatiotemporally,
which can alter the distribution of sediments in the NSCS. In
addition, internal waves are often recorded in the mooring
systems and remote sensing images in the NSCS (Hsü et al.,
2000; Zhao and Alford, 2006; Wang et al., 2012), most of which
propagate westward from Luzon (Alford et al., 2015; Ma et al., 2016;
Tang et al., 2018). The mooring system shows that, in the eastern
part of Baiyun Sag, the internal solitary waves indirectly impact the
north slope and consequently generate strong bottom current along
the slope, with a maximum velocity more than 40 cm/s (Lin et al.,
2014). Besides the internal waves, internal tides have also been
recorded in the mooring system, which contributes to the re-
suspension and transport of the sediment on the shelf and slope
of the NSCS (Reeder et al., 2011; Ma et al., 2016; Geng et al., 2017).

3 MATERIALS AND METHODS

The samples are retrieved from expedition GMGS4 which was
carried out on the geotechnical drilling vessel Fugro Voyager in
2016 (Yang et al., 2017b). The water depth of the three sites is
~1,285 m, 1,274 m, and 1,310 m, respectively (Figure 1C).

The content of TOC along with TS was determined by Leco
CS744 Carbon/Sulfur Determinator after removing the carbonate
with 2 mol/L HCl. The measurement precision is 0.5% RSD for
carbon and 1.5% RSD for sulfur. The isotope of organic carbon
(δ13Corg) and bulk nitrogen (δ15N) was determined by Elementar
Isoprime 100 with analytical reproducibility better than 0.1‰ for
δ13Corg and 0.15% for δ15N. The nitrogen content (TN) was
analyzed by a vario PYRO cube analyzer with external precision
better than 0.1%. The above element and isotope analyses were
conducted at the National Research Center for Geoanalysis,
China Geological Survey (CGS).

The δ13C detection of the TIC (δ13C-TIC) phase was performed
on an isotope ratio mass spectrometer (IRMS, Thermo Fisher Delta
V Advantage) coupled with an automated carbonate preparation
device (Gas Bench II) at Peking University. The analytical precision
of δ13C is smaller than 0.2‰.
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The sulfur isotope of TS (34S-TS) was analyzed at the Oxy-Anion
Stable Isotope Consortium (OASIC) at Louisiana State University.
Bulk-powdered samples of 10–15mgwereweighted, and 2mgV2O5

was added to a tin cup for analyses on a gas-source isotope ratio
mass spectrometer (GS-IRMS, Isoprime 100) coupled with an
elemental analyzer (EA). The standard deviation associated with

FIGURE 2 | Depth profiles of TOC, TN, δ15N, δ13Corg, and C/N ratio for W01B, W02B, and W03B from the Shenhu area, SCS. The blue shaded areas indicate the
hydrate-bearing layer, and the pink shaded areas imply the possible paleo-sulfate methane transition zone (SMTZ).
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FIGURE 3 | Depth profiles of δ13C-TIC, TS, S/C ratio, and δ34S-TS for W01B, W02B, and W03B from the Shenhu area, SCS. The pink shaded areas imply the
possible P-SMTZ.
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δ34S analysis is less than 0.3‰. The δ15N, δ13C, and 34S values are
expressed as the delta (δ) notation relative to the atmospheric N2,
Vienna Pee Dee Belemnite (VPDB), and Vienna Canyon Diablo
Troilite (VCDT), respectively.

4 RESULTS

TOC contents of sediments from sites W01B and W02B decrease
exponentially with depth from 1.17 to 0.18%, while that of W03B
slightly increases with depth from 0.04 to 0.26% (Supplementary
Table S1) (Figure 2). The TN contents of sediments from the three
sites have similar trends to the TOC contents which vary from 0.03
to 0.16% (Supplementary Table S1) (Figure 2). The depth variation
of δ15N of bulk sediments from three sites is basically similar to that
of the TOC and TN, ranging from 2.48 to 5.06‰ (Supplementary
Table S1) (Figure 2). The δ13Corg of sediments from three sites
confines to -23.1–21.4‰, -23.4–21.9‰, and -23.6–22.9‰,
respectively, among which W01B and W02B sites have higher
isotope composition than W03B (Supplementary Table S1)
(Figure 2). C/N ratios for sediments from W01B and W02B
have high values at specific layers (170 mbsf for W01B and 130
mbsf for W02B), which are in the range of 4.23–14.81 and
3.89–10.65, respectively (Supplementary Table S1) (Figure 2),
whereas that of W03B shows steadiness with a depth around an
average value of 1.9%. The δ13C-TIC values of the sediment are
mostly around 0‰, with obvious negative bias in certain intervals
(120mbsf and 170mbsf forW01B; around 116–137mbsf forW02B)
(Supplementary Table S1) (Figure 2).

The TS content of sediments from W01B tends to decrease
with depth, with relatively slight increases at 120mbsf (0.51%)
and 167mbsf (0.52%) (Supplementary Table S1) (Figure 3). The
TS content of sediments fromW02B has low values (0.15–0.39%)
at the top and bottom layers but increases in the middle interval
(0.44–0.82%), especially at 106.86mbsf (0.81%) (Supplementary
Table S1) (Figure 3). However, the TS content of sediments from
W03B is lower overall (with an average value of 0.08%) and varies
little with depth, except for a slightly high value of 0.21% at the
deepest layer (Supplementary Table S1) (Figure 3). The S/C
ratios of sediments from W01B and W02B are basically greater
than 0.36, with lower values in the shallower and deeper layers
(Supplementary Table S1) (Figure 3). There are different
increases in the intermediate layer, and the highest value can
reach 2.39%. Like the depth variation of TS, the S/C ratios of
sediments from W03B also have minor variation through the
depth record, with an average value of 0.26% (Supplementary
Table S1) (Figure 3). The δ34S-TS of sediments from W01B and
W02B tends to increase with depth, except for the unique low
value in the deepest layer of W01B, while δ34S-TS of sediments
from W03B remains relatively stable with depth, with an average
value of -21.48‰ (Supplementary Table S1) (Figure 3).

5 DISCUSSIONS

5.1 Provenances of the Organic Matter
The C/N ratios and δ13Corg of deposited organic matter are
generally adopted to recognize its provenances since marine

and terrestrial organic matter is with distinct C/N ratios and
δ13Corg values (Sackett and Thompson, 1963; Hedges and Mann,
1979; Calvert and Fontugne, 1987; Jasper and Gagosian, 1989).
Typical marine organic matter is with C/N ratios in the range of
4–10 and δ13Corg values between -19 and -22‰ (Premuzic et al.,
1982; Fontugne and Jouanneau, 1987; Emerson and Hedges,
1988; O’Leary, 1988; Jasper and Gagosian, 1989; Goni and
Hedges, 1995; Aksu et al., 1999). In contrast, typical terrestrial
organic matter is usually with C/N ratios greater than 20 and
δ13Corg values between -26 and -28‰ (Emerson and Hedges,
1988; Meyers, 1994; Prahl et al., 1994). The Shenhu area is located
in the PRMB in the NSCS, which is generally considered to
mainly receive mixing organic matter from marine
autochthonous and terrestrial allochthonous sources of the
Pearl River estuary (PRE). It has been reported that δ13Corg

values of terrestrial organic material deposited in the PRE and
marine organic matter are -25.5‰ and -22.1‰, respectively, and
C/N ratio values are 14–20 and 6.6, respectively (Hu et al., 2006;
Liu et al., 2007a; Gaye et al., 2009; Kao et al., 2012; Zhang et al.,
2014b).

In general, the increase of C/N ratios and the negative bias of
δ13Corg indicate the increased contribution of terrestrial organic
matter. However, in this study, C/N ratios and δ13Corg do not
show uniform changes, that is, δ13Corg does not show negative
excursion in the C/N ratio increased horizon (Figure 2).
Specifically, for example, the δ13Corg of sediment from station
W03B is the lowest (i.e., most terrestrial contribution) among the
three sites, but its C/N ratios are almost the smallest among the
three sites (Figure 2), which means when the δ13Corg record
points to an increase of terrestrial inputs, the C/N ratio tendency
does not support it. Indications from different organic
geochemical indexes of the bulk sediment are contradictory.

Furthermore, it has been reported that the δ15N of the
terrestrial surface sediments in the PRE ranges from 6.2 to
7.1‰, which is 1–2‰ higher than that of the modern
nitracline (Wong et al., 2002; Gaye et al., 2009). Besides,
except for δ15N recorded at ODP 1144 in the NSCS which has
been suggested to be related to the sediment drifts and
allochthonous sources of nitrogen (Higginson et al., 2003;
Kienast et al., 2005), most of the published δ15N values in the
SCS do not show the significant glacial–interglacial difference
(Kienast, 2000), especially compared to the δ15N of foraminifera-
bound nitrogen (Wang et al., 2018), indicating that the δ15N of
marine nitrate was relatively constant (Kienast, 2000). The δ15N
of the marine source organic matter of SCS has been recorded to
be around 6.2‰ (Liu et al., 2007a; Kao et al., 2012). However, the
δ15N of sedimentary organic matter from this study ranged from
2.48 to 5.31‰, with an average value of 3.74‰ (Supplementary
Table S1) (Figure 2). The lower δ15N values indicate that the
provenance of the organic matter cannot only be from the PRE
and the marine autochthonous productivity, there must also be a
lower δ15N end-member contributing to the bulk organic matter,
or some post-deposition processes have altered the original
isotope signature of organic matter.

In addition, the differences in the isotopic composition and
content of the bulk organic matter between the three sites have
also remained unclear, which means further insights need to be
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explored into the interpretation of the provenance and
distribution of the bulk organic matter of the three sites
(Figure 2). Given the very close proximity (on either side of
the ridge of a deep-water canyon, horizontal distance less than
10 km, water depth difference less than 30 m) of the three core
sites, any sedimentary factors conceived to interpret the
prominent differences among these three sites would have to
be able to accommodate such large differences on such small
spatial patterns. Because the three sites are located under the
identical nutrient regime and biogeographic zone, the
discrepancies between them are implausible to reflect the true
gradient of the marine surface biochemistry or the original δ15N
signal. Here, we take inorganic nitrogen, diagenetic alteration,
methane-associated activities, and lateral allochthonous
sediments into consideration.

5.1.1 Inorganic Nitrogen
The inorganic nitrogen comes directly from terrestrial input or
ammonia derived from the degradation of organic matter
during diagenesis (Meyers, 1997; Hu et al., 2006). In the
former case, terrestrial inorganic nitrogen is usually more
depleted in 15N compared to marine organic nitrogen (e.g.,
Schubert and Calvert (2001); Kienast et al. (2005)), so the
mixing of the inorganic nitrogen can decrease the δ15N
signal. In contrast, for the latter case, the adsorption of
ammonium nitrogen on clay minerals can reduce the C/N

ratios inherited from the primary source characteristics
(Müller, 1977; Arnaboldi and Meyers, 2006).

The proportion of inorganic nitrogen to bulk sediments can be
calculated by the value at the y-intercept of the TN versus TOC
cross-plots (Nijenhuis and De Lange, 2000; Calvert, 2004;
Arnaboldi and Meyers, 2006). The TOC versus TN of the
three sites exhibits good linearity indicating that the bulk
organic matter phase in the sediment is relatively uniform.
There is no/minor intercept on the TN axis (Figure 4A),
which suggests that the content of clay-bound nitrogen in
these three sites is negligible. Moreover, Kienast et al. (2005)
analyzed the isotope composition of inorganic nitrogen from the
SCS and reported that inorganic nitrogen in the SCS has δ15N
values within the scope of 3.1–4.8‰. However, the lightest
nitrogen isotope in this study is 2.46‰, which means that the
inorganic nitrogen should not be the dominant 15N-depleted end-
member for the mixing model.

5.1.2 Diagenetic Alteration
As for the C/N ratio, there is no correlation between the C/N ratio
and TOC (Figure 4B), and the C/N ratio has no systematic
variation with depth (Figure 2), suggesting the diagenetic
alteration is an insignificant or not dominated factor for the
C/N ratio discrepancies of the organic matter. It has been
reported that the 13C-enriched organic proteins and
carbohydrates will be preferentially decomposed during

FIGURE 4 | Scatterplots of (A) TN versus TOC, (B) C/N ratio versus TOC, (C) δ13Corg versus TOC, (D) C/N ratio versus δ13Corg, (E) δ15N versus TN, and (F) TS
versus TOC of the sediment of W01B, W02B, and W03B from the Shenhu area, SCS.
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diagenesis, thus changing the primary δ13C composition of the
organic matter, but the fractionation is relatively insignificant
(<-2‰ (McArthur et al., 1992)). In this study, the overall δ13Corg

appears to be independent of TOC content and C/N ratio
(Figures 4C,D), indicating diagenesis has not appreciably
affected δ13Corg values (Fontugne and Duplessy, 1986; Calvert
and Fontugne, 1987; Calvert et al., 1992). The ammonium
nitrogen released during diagenesis is 15N-depleted, and the
δ15N of residual sedimentary nitrogen will be increased by
~2.5‰, associated with the type and intensity of microbial
activity (Freudenthal et al., 2001; Lehmann et al., 2002), which
simultaneously dampen the C/N ratio. In respect of δ15N, among
the three sites, only the δ15N of W03B increases with depth, but
contrary to the decrease of nitrogen content that diagenesis
should have caused, the TN of W03B increased with depth
(Figure 4E), which argues against the law of diagenetic
modification.

5.1.3 Impact From Hydrate Dissociation or Methane
Seepage
Only a few studies have described the organic geochemical
characteristics of hydrate-bearing sediments. Yu et al. (2006)
found that the presence of natural gas hydrate changed the
diagenetic evolution trajectory of organic carbon and nitrogen
elements in hydrate-bearing sediments of Hydrate Ridge and
found that the δ15N value (~2%) and C/N ratio of sediments at
the hydrate-bearing layer declined simultaneously, but the δ13C
value was relatively high. In that case, the increase of nitrogen
content and the loss of 15N in the hydrate stability zone were
interpreted to be related to the nitrogen fixation of bacteria and
archaea in the sediments where gas hydrate is developed (Yu
et al., 2006). Recent studies have found negative excursions of
δ15N in the SMTZ of the sediment from Haima seeps of the SCS,
and it is pointed out that the anaerobic methanotrophic (ANME)
archaea can intermediate nitrogen fixation and ammonium
assimilation (Hu et al., 2020). 14N is considered to be
preferentially utilized during these processes and thereby cause
the negative excursion of δ15N (Hu et al., 2020).

In this study, the δ15N depth records ofW01B andW02B seem
to be relatively lower in the deeper part which bears gas hydrate
and conforms to the inference of Yu et al. (2006) (Figure 2), while
concerning W03B, it presents an opposite trend and has a higher
δ15N in the hydrate-bearing zone. Therefore, the existence of
hydrate does not seem to be the main cause of the nitrogen
isotope variation. We also identified several SMTZs in W01B and
W02B by the elevated S/C ratio and excursion of δ13C-TIC and
δ34S-TS (see details in the 5.3 chapter), which assist us to find the
potential effect of ANME archaea or AOM consortia. But it seems
that there is no negative δ15N excursion in the identified SMTZ.
Moreover, the SMTZ has not been recognized at W03B, but it has
the most negative δ15N among the three sites, so the effect of
AOM seems limited to cause the variation of δ15N depth record.

Apart from nitrogen fixation and ammonium assimilation,
denitrification (especially coupled with AOM) and anaerobic
ammonium oxidation are widespread in the shallow
subsurface of the continental margin. However, their impact
on nitrogen stable isotope compositions of bulk sediments is

negligible (Lehmann et al., 2007). Furthermore, amorphous
carbon has been identified and isolated from ANME archaea
and select methanogens in the previous study, which was
characterized by strong 13C depletion (δ13C–60‰) and high
C/N ratios (17.5–58.4) (Allen et al., 2021). Therefore, the
formation of amorphous carbon in natural sediments will
significantly lower its δ13Corg value and elevate its C/N ratios.
The proxies of sediments from the identified SMTZ do not exhibit
such synchronous variation trends, indicating that the role of
amorphous carbon is negligible in this study.

5.1.4 Lateral Allochthonous Input
According to the data of the sediment trap, the collected particle
N flux below 2000 m in the SCS is higher than that in the upper
euphotic zone; these additional particulate N fluxes are thought to
be due to lateral transport, which carried 15N-depleted particles
that originated from the Kaoping Canyon (Yang et al., 2017a).
The Kaoping River in the southwest of Taiwan island was
reported to import 36–40 Mt/yr particulate matter into the
SCS, of which around 85% was transported to the deep-sea
basin of the SCS through the Kaoping Canyon (Huh et al.,
2009). The lateral particulate organic matter (POM) inputs to
the basin tend to have a lighter nitrogen isotopic signature (Kao
et al., 2006; Gaye et al., 2009; Yang et al., 2017a).

After eliminating the possible interference from the above
factors, we consider this lateral allochthonous input and
comprehensively adopt the δ15N, δ13Corg, and C/N (or N/C)
ratio proxies to constrain the potential sources of the organic
matter (Figure 5). Potential source end-members of organic
matter in the NSCS include the marine autochthonous source,
the PRE, and mountainous rivers from Taiwan and Luzon. The
published values of the above end-members are compiled in
Figure 5 (Hu et al., 2006; Kao et al., 2006; Liu et al., 2007a; Gaye
et al., 2009; Kao et al., 2012; Zhang et al., 2014b; Yang et al.,
2017a). Overall, according to the relationship between δ13C
values, N/C ratios, and δ15N values, the organic matter of
sediments from this study basically falls into the mixing zone
of mountainous river sources and marine sources (Figure 5),
indicating the mixed characteristic of these end-members, which
is consistent with the conclusion of the sources of detrital clastic
components of the studied samples (unpublished data). In brief,
from content ratios and isotope composition cross-plots, we
hypothesize that the mountainous rivers are a potential source
of organic matter transported laterally to the study area by
possible contour current, which will be discussed in detail in
the next chapter (Liu et al., 2010b; Schroeder et al., 2015; Liu et al.,
2016).

The introduction of the Taiwan mountainous river
provenance end-member provides clues for the unresolved
question we raised earlier. First, the variations of C/N ratios
and δ13Corg of sediment is asynchronously in the depth profile,
may ascribe to the lower C/N ratios of Taiwan mountainous
riverine organic matter which different from the conventional
terrestrial organic matter (high C/N ratios). In this case,
the addition of terrestrial organic matter could not
significantly elevate the C/N ratio and solely lower the δ13Corg

of sediment. Second, the Taiwan mountainous river end-member
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provides a 15N depleted end-member, which can help to explain
that the δ15N of our samples can be as low as 2.46‰ under the
circumstance that the PRE andmarine organic matter both have a
high δ15N signature (4.2–6.6‰ and 6.2 ± 1‰, respectively).
Third, the provenance of Taiwan indicates the complex
hydrodynamic flow field in the Shenhu area, especially the
influence of contour current. Combined with the existing
geophysical studies, we believe that the samples in this study
are products of complex redeposition, and the distribution of
geochemical characteristics of sediments is closely related to
hydrodynamic conditions (Su et al., 2019; Su et al., 2020; Su
et al., 2021).

5.2 Implication From the Provenance
Given the proximity of the Pearl River and the NSCS, especially
during the period of low sea level, it has been generally accepted
that the Pearl River has supplied a large amount of terrigenous
detritus to the NSCS, while studies in recent years suggest that the
detrital materials derived from the Pearl River are mostly
transported by coastal currents to the southwest, and most of
them are deposited in the inner and/or middle shelf (e.g., Liu
J. et al. (2011); Ge et al. (2014)). Erosional weathered sediments
from Taiwan may be the main source of detrital materials in
the slope of NSCS (Wan et al., 2010; Liu et al., 2013; Liu et al.,
2014; Huang et al., 2016). The Pearl River is the third largest
river in China, which transports about 80 × 106 ton/yr of
sediments into the western part of the SCS (Milliman and
Farnsworth, 2011). Although the rivers originated from
southwestern Taiwan have relatively small drainage areas
compared to the Pearl River, their annual sediment load
can reach 70 × 106 ton/yr, which falls within a considerable
range with the Pearl River (Milliman and Meade, 1983; Wang,
2003). Thus, terrestrial sediments derived from Taiwan play an
important role in the deposition of the NSCS. A recent study
about sediment traps suggests that sediments of Taiwan origin
can be transported to the Xisha Trough over 1,000 km (Liu
et al., 2014).

The modern current circulation system of the SCS provides
favorable transportation conditions for the import of sediments
from Taiwan in the study area. The westward Guangdong coastal
current and coastal current can bring a large amount of Taiwan-
sourced sediments into the study area during the period of
prevailing northeast monsoon caused by the high atmospheric
pressure over Central Asia (Fang et al., 2012). Moreover, driven
by the perennial SCS branch of the Kuroshio (SCSBK) and SCS
warm current, Taiwan-derived sediments are transported
southwest to the Dongsha Islands and Shenhu area (Liu et al.,
2010a; Liu et al., 2010b). Previous studies have also proposed that
sediments from Taiwan were delivered to the slopes of the
Dongsha Islands through the Luzon Strait by deep-water
bottom currents (Shao et al., 2001; Lüdmann, 2005; Liu et al.,
2010b; Wan et al., 2010). A recent study emphasized the
importance of surface-generated mesoscale eddies for the
transport of island-derived sediments from Taiwan to the
NSCS (Zhang et al., 2014c).

To further confirm our conclusions, studies concerning the
sources of detrital materials around the Shenhu area were
summarized, which mainly used clay minerals and major
and trace element composition. Different tectonic settings,
source rock types, and climate conditions can conjunctively
generate distinctive weathering intensities and therefore
diverse weathering products. Ascribed to the stable craton
along with warm and humid climate conditions, the widely
exposed granites in South China undergo strong chemical
weathering (high chemical index of alteration (CIA),
Figure 6A) and produce clay end-members dominated by
kaolinite (Figure 6B) (Liu et al., 2007b). Under the
background of rapid uplift since the Pliocene, the exposed
tertiary rocks in Taiwan experienced intense and rapid
physical weathering (low CIA, Figure 6A), resulting in the
clay end-member dominated by illite and chlorite (Figure 6B)
(Liu et al., 2008; Liu et al., 2010b). Moreover, the Cenozoic
eruptive basaltic andesites in the Luzon Arc formed a large
amount of smectite through chemical weathering (Figure 6B)

FIGURE 5 | Cross-plots of (A) N/C ratio versus δ13C, (B) δ15N versus C/N ratio, and (C) δ15N versus δ13C, modified from Yang J.-Y. T. et al. (2017). The gray
shaded areas indicate marine source (Mar. source) organic matter (Liu K.-K. et al., 2007; Kao et al., 2012). The blue shaded areas represent the organic matter from the
Pearl River estuary (PRE) (Hu et al., 2006; Liu K.-K. et al., 2007; Gaye et al., 2009; Zhang et al., 2014b). The pink shaded areas symbolize organic matter from the Taiwan
mountainous river (TW Moun. river) (Kao et al., 2006; Gaye et al., 2009; Yang J.-Y. T. et al., 2017).
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(Liu et al., 2009). The distinct weathering intensity and clay
mineral composition assist us to identify the sources of
sediments in the SCS. For the Shenhu area, published clay
mineral composition of the upper slope (DLW3101), middle
slope (surface sediment), and lower slope (SH7B, SH2B) all
indicates a comparable contribution from Taiwan and the
Luzon Island which have a comparable content of smectite
and illite + chlorite (Figure 6B). Nevertheless, the ZHS 176 site
(eastern part of Shenhu) and KNG5 (western part of Shenhu)
are also from around the Shenhu area but show a temporal
change, with contribution from Taiwan–Luzon being relatively
higher during the Holocene high sea-level period, while the
contribution from South China (Pearl River) increases during
the low sea-level period, especially in the Last Glacial
Maximum (Figure 6B). Moreover, the latest data on rare
earth elements (REEs) also show that the provenance of
Shenhu area has been contributed by the Taiwan end-
member (Xiao et al., 2021).

All the above data indicate that the sedimentary pattern of
Shenhu area is quite complex, but one thing we can be sure of is
that the contribution from the Taiwan-Luzon end-member
cannot be ignored in the deposition of Shenhu area. The clay
mineral and REE composition of the upper canyon
(DLW3101) or inter-canyon (SH2B, SH7B, and surface
sediment) all declare that it is entirely possible that the
sediments of Shenhu area partially originated from the
Taiwan Island.

5.3 Indications of Methane Seepage
Pyrite in sediments is generally formed by SRB via OSR in normal
marine sedimentary environments (Eq. 1, (Jørgensen (1982)).
Reactive iron, labile organic matter, and dissolved sulfate are the

main factors controlling the content of authigenic pyrite during
this process (Berner, 1982; Jørgensen, 1982; Berner, 1984):

CH2O + SO2−
4 → 2HCO−

3 +H2S (1)
Under these conditions, there will be a prominent positive

correlation between TS and TOC in the sediments, and the S/C
ratios are relatively constant around 0.1–0.5, with an average of
0.36 (Berner, 1982; Berner, 1984). The amount of formed pyrite is
usually limited in this case because the formation rate is relatively
low and the amount eventually formed usually depends on the
labile organic matter content. During the OSR, 32S is
preferentially utilized than 34S, resulting in 34S-depleted
sulfides and 34S-enriched residual sulfates. As mentioned
before, the δ34S value of sulfide can be 66‰ lower than that
of seawater sulfate (+20.3‰) at the initial stages of OSR, which is
calculated to be around -45‰ (Sim et al., 2011; Borowski et al.,
2013; Wing and Halevy, 2014).

In contrast, in hydrate-bearing sediments, the dissociation
of gas hydrate will release large quantities of methane and
enhance the SD-AOM (Eqs 2, 3), which generates additional
HS− for the formation of pyrite and results in the enrichment
of the pyrite in the SMTZ (Boetius et al., 2000; Peckmann et al.,
2001; Jørgensen et al., 2004; Peketi et al., 2012; 2015).
Simultaneously, this process will increase the TS content
and the S/C ratio of the sediment and make TS and TOC
lose their linear relationship in OSR (Boetius et al., 2000; Hill
et al., 2004; Hill et al., 2011; Joseph et al., 2013):

CH4 + SO2−
4 → HCO−

3 +HS− +H2O (2)
HS− + Fe2+ → FeS → FeS2 (3)

The SD-AOM occurring within the SMTZ consumes down-
diffused sulfate, which preferentially metabolizes 32S, thereby

FIGURE 6 | Compilation of major element composition (A) and clay mineral proportion (B) of sediments from the Shenhu area, SCS. Data of the Shenhu surface
sediment from XuW. et al. (2014); SH2B and SH7B from Lu et al. (2009); DLW3101 from Hu et al. (2021); ZHS 176 fromGe et al. (2010) and Hu et al. (2021); KNG5 from
Huang et al. (2011), Huang et al. (2016), and Liu et al. (2017); and MD12-3429 from Hu et al. (2021).
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enriching 34S in the residual sulfate (Jørgensen et al., 2004;
Deusner et al., 2014; Antler et al., 2015). In general, the
34S-enriched sulfide presented in the later SD-AOM
dominated stage after 34S-depleted pyrite derived from OSR
has formed (Lin et al., 2016; Shawar et al., 2018; Liu et al.,
2020). In hydrate-bearing environments, the occurrence of
34S-enriched pyrite in the formation usually can be used as an
indicator of significant SD-AOM fueled by continuous methane
release to the SMTZ and to discern the paleo-SMTZ (e.g., Peketi
et al. (2012); Borowski et al. (2013); Peketi et al. (2015)).

Besides, HCO3
− produced from AOM subsequently reacted

with surrounding Ca2+ and Mg2+, forming authigenic carbonate
minerals such as aragonite and high-Mg calcite and dolomite
(Eq. 2) (Greinert et al., 2001; Feng et al., 2018). As a geological
archive of cold seepage events, seepage authigenic carbonate
minerals are generally characterized by extremely depleted 13C
composition inherited from methane (e.g., Rodriguez et al.
(2000); Peckmann and Thiel (2004); Ussler and Paull (2008);
Lu et al. (2018)):

Ca2+ + 2HCO−
3 → CaCO3 + CO2 +H2O (4)

Therefore, the abnormally high pyrite content, elevated S/C
ratios, 34S-enriched pyrite, and 13C-depleted TIC can be adopted
as proxies for discerning the position of current and paleo-SMTZ
in the sediment.

From the cross-plot of TS and TOC, we can see that the TS
of W03B has a good correlation with the TOC (R2 = 0.466) and
the slope of the fitting line (S = 0.248) approximates the typical
OSR value (Figure 4F). Besides, the S/C ratio (ca. 0.26),
δ34S-TS (ca. -21.48‰), and near-zero of δ13C-TIC
(Figure 3) without significant variation jointly imply that
W03B has no signal of methane seepage or the seepage is
too weak to leave geochemical indicators, and the sulfate
reduction at W03B may be mainly dominated by OSR.
However, the δ34S-TS (ca. -21.48‰) of this OSR-dominated
site exhibits a higher value than the lower range of pyrite due to
OSR (-45‰, assuming isotope fractionation up to 66‰),
which may be ascribed to the mixing of 34S-depleted pyrite
and 34S-enriched organic-bound sulfur. The organic sulfur in
marine sediments is enriched for 34S more than pyrite, and its
δ34S value is 5–15‰ higher than that of pyrite, with an average
value of 10‰ (Anderson and Pratt, 1995).

However, the TOC and TS of W01B and W02B have no
good correlation (Figure 4F) (R2 = 0.014; R2 = 0.059),
indicating that, for W01B and W02B, methane may have
been involved in the sulfate reduction. In addition, there are
negative excursions of δ13C-TIC near 120 mbsf and 167 mbsf
for W01B and 120 mbsf for W02B (Figure 3), suggesting the
presence of authigenic methane-origin carbonate in these
layers. Besides, the elevated S/C ratio and δ34S-TS
(Figure 3) are also consistent with this inference, indicating
the additional 34S-enriched pyrite generated by the SD-AOM,
further specifying the presence of paleo-SMTZ. These
phenomena associated with methane seepage or
hydrocarbon leakage are consistent with the discrepancies
of gas origin and hydrate saturation among the three sites.

It has been reported that the gas hydrate from W03B is
dominated by microbial gas (δ13C-CH4 ~ -65‰) with
relatively low hydrate saturation (<40%), while gases from
W01B and W02B are with considerable contribution from
deep thermogenic hydrocarbons (δ13C-CH4 ~ -47‰) with
high saturation (up to 60%) (Yang et al., 2017b; Zhang
et al., 2019). The coupled carbon–sulfur anomalies may be
ascribed to the deep hydrocarbon leakage, which provides
sufficient gases for hydrate formation and leaves
geochemical indicators in the surrounding sediments. More
hydrate-bearing sediments with different gas origins are
required for further investigation.

6 CONCLUSION

Multi-element and multi-isotope approaches are adopted to
study the sources of organic matter and biogeochemical cycle
in hydrate-bearing sediments from three long sedimentary
sites in the Shenhu area. The vertical variation and lateral
distribution of organic matter in sediments with generally low
δ15N and C/N ratios cannot be explained by the two end-
member (terrestrial input from the Pearl River and marine
input) mixing processes. Contribution from lateral
allochthonous organic matter from the mountainous river is
considered after excluding the possible effect of inorganic
nitrogen, diagenetic alteration, and methane metabolic
activities. The introduction of this end-member ingeniously
explains the results of this study and is supported by the
previous provenance analyses of detrital clastic fraction in
the Shenhu area. Moreover, the coupled carbon–sulfur data
(elevated S/C ratio, enriched 34S of TS, and negative excursion
of δ13C-TIC) reveal sustained occurrence of SD-AOM at sites
W01B and W02B but not at W03B. The discrepancies of C–S
responses might be related to the different origins of hydrate-
bounded gas and the distribution of hydrate concentration
among the three sites.
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