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The key to dealing with extreme problems at watershed or region scales in the context of
climate change is the “de-extremalization” of hydrological processes. The foundation lies in
how to optimize the allocation of ecological restoration on slopes to mitigate the extreme
impacts of climate change on hydrological processes and improve ecological service
functions. Previous studies focused on analyzing the direct effects of slope land use,
vegetation distribution, or historical pattern of ecological restoration on runoff processes.
This study developed a slope ecological restoration evaluation system to evaluate the
naturalness, functional types, and functional coordination of slope ecological restoration at
different historical stages and quantitatively identified the mitigation effect on climate
change in the future, which was applied to the Huangshui River Basin (above Minhe
County) in Qinghai Province, China. Based on the land suitability evaluation methods, a set
of layout schemes were constructed. The runoff mutation and ecological function of
different schemes under climate change were evaluated, and the highly suitable scheme
was selected as the optimal scheme. Compared with the current situation, the coupling
coordination degree index of the scheme would increase from 0.32 to 0.59. Meanwhile,
the runoff and coefficient of variation would decrease by 30% and 60%, respectively,
during the wet season under the high-emission scenario RCP8.5. This study closely links
the ecological construction of slopes with the response to extreme climates, which
provides technical methods and practical support for the optimization of regional
ecological patterns and scientific water governance modes.
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1 INTRODUCTION

In the context of climate change, the frequency and intensity of extreme drought and flood events in
most mid-latitude terrestrial and tropical humid regions around the world have shown an increasing
trend (IPCC, 2014). The key to dealing with large-scale extreme problems in watersheds or regions
lies in the “de-extremalization” of hydrological processes (Yan et al., 2017; Zhang et al., 2020), as well
as repairing the terminal governance and process separation problems in traditional water
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governance modes (Yan et al., 2020), and improving the
mitigation capacity of slope measures to extreme hydrological
processes. Slope ecological restoration is an important measure
for the construction of Nature-Enriched-Attributes-
Coordinated-Watershed (Yan et al., 2017; Yan et al., 2020).
On the one hand, it directly affects vertical hydrological
processes such as the atmospheric water vapor flux
(Fathizadeh et al., 2017; Ghimire et al., 2017; Liu J. et al.,
2018b), soil water movement (Wu et al., 2017; Huang et al.,
2017; Yu et al., 2018; Bo et al., 2021; Xu M. et al., 2021), and
evapotranspiration (Li et al., 2016; Wang et al., 2018). On the
other hand, the canopy structure and community succession of
vegetation indirectly affect the horizontal hydrological processes
such as runoff generation and confluence on the slope (Amenu
and Kumar, 2008; Yang et al., 2010; Dong et al., 2021) by
changing the underlying surface conditions and the surface
roughness. Aiming at mitigating the extreme impacts of
climate change on hydrological processes and improving
ecological service functions, how to optimally allocate
ecological restoration on slopes has become one of the key
scientific issues in the intersecting fields of climatology,
ecology, and hydrology.

At present, the evaluation index of ecological restoration
focused on the regulation of ecological function and
hydrological process (Nunes et al., 2016; Li et al., 2018;
He Z. et al., 2019), such as peak reduction of the runoff,
landscape pattern, and ecological service value. Most
researchers evaluated ecological restoration, respectively,
from the above two aspects. A comprehensive index
system, which includes scale, composition, pattern, and
eco-hydrological function at the basin scale is needed.
Allocation of ecological restoration was based on ecology
theory, which was mainly conducted at the rural and urban
scales (Li Y. et al., 2017; Zhang and Chen, 2017; Liu J. et al.,
2018b), with the common optimization goals of urban
pattern, storm water resource management, and ecological
service function improvement (Li and Li, 2019b; Liu J. et al.,
2018b; Liu, 2019; Jiang et al., 2021), using traditional
landscape ecology methods, geographic information
technology, and morphological pattern analysis methods
(Li and Li, 2019b; Liu, 2019). However, few studies
focused on the impacts of the optimal layout of large-
scale slope ecological restoration on extreme hydrological
processes. Regarding the research of the mitigation effect of
slope ecological restoration construction on climate change,
scholars mainly adopt three kinds of methods. The first one
is the theoretical derivation method based on the law of
conservation of mass. This method mainly reveals the
climate impact from the macro-mechanism level, while it
is difficult for this method to accurately quantify the
historical distribution of slope vegetation or the extent
and magnitude of the influence of ecological restoration
(Zhou and Wang, 1999). The second method is the
statistical relationship analysis method based on prototype
observation, reanalysis data, and remote sensing
interpretation (Li X. et al., 2017; Wang et al., 2019; Jin
et al., 2020). This method is relatively convenient, but the

limitation of data sequence length and spatial accuracy leads
to uncertainty in the analysis of mitigation effects. The third
one is land surface-hydrological numerical simulation
method based on climate models (López-Bravo et al.,
2018; Zheng et al., 2020), which uses land use change or
forest and grass cover scenarios to simulate and analyze
runoff changes under climate change (Yang et al., 2019; Li
et al., 2009; Bai et al., 2020; Wang et al., 2020) or feedback of
the land cover on local climate (Hua et al., 2015; Li et al.,
2017; Zheng et al., 2020). The above methods focused on
analyzing the direct effects of slope land use, vegetation
distribution, or historical pattern of ecological restoration
on runoff processes under the impact of climate change. Few
studies investigated the mitigation effect of optimizing the
layout of slope ecological restoration on climate change.

To solve the aforementioned key scientific issues, this study took
the Huangshui River Basin (above Minhe County) in Qinghai
Province, China, as the study area. An evaluation index system for
slope ecological restoration was constructed, which includes the
naturalness, functional types, and functional coordination of slope
ecological restoration in different historical stages. A set of layout
schemes was acquired based on the land suitability evaluation
method. The runoff mutation and ecological function of different
layout schemes in the context of climate change were evaluated
based on the distributed hydrological model (WEP) (He S. et al.,
2019) and geographic information technology, and the optimal
layout schemes were selected. This study closely links the ecological
construction of slopes with the mitigation to extreme climates,
which provides technical methods and practical support for the
optimization of regional ecological patterns and scientific water
governance modes.

2 MATERIALS AND METHODS

2.1 Study area
Huangshui River is a first-degree tributary of the upper reaches of
the Yellow River, which rises in the Haibei Tibetan Autonomous
Prefecture of Qinghai Province. Huangshui River Basin lies in the
transition zone between the Qinghai–Tibet Plateau and the Loess
Plateau with a typical feature of ecological fragility. The study site
covers most of the Huangshui River basin from the upper reaches
of the Yellow River to Minhe County. The main stream length of
the region is 278 km with a drainage area of 15,558 km2 (Figure 1).
The terrain of the region is lower in the southeast and higher in the
northwestern, which has an elevation change of 3,107 m from the
river source to the mouth (Liu F. et al., 2020). The region
experiences an arid and semi-arid continental climate with the
mean average precipitation of 381.1 mm (1960–2017 records), and
the mean average air temperature from 3.1°C to 7.9°C (1960–2017
records) (He S. et al., 2019). The mean annual runoff at the Minhe
hydrological station (the outlet of the basin) was approximately
2,053 million m3 (1956–2000 records). According to the land use
classification results of 2017, forest was the main type of land use,
followed by grasslands and cropland, occupying 92.91% in total.
The main vegetation types were forests, temperate shrubs,
grasslands, and meadows (Feng et al., 2013).
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2.2 MATERIALS

The basic data required for this study include topography data,
meteorology data, soil data, administrative division data, land use
data, hydrological data, and future climate scenario data
(Table 1). This study uses three main future climate change

scenarios in the IPCC-AR5 report: high-emission scenario
RCP8.5, medium-emission scenario RCP4.5, and low-emission
scenario RCP2.6 (IPCC, 2012; Xu and Xu, 2012). Five general
circulation models provided by ISI-MIP (The Inter-Sectoral
Impact Model Intercomparison Project) were selected,
including GFDL-ESM2M, HADGEM2-ES, IPSL-CM5A-LR,

FIGURE 1 | Location of the Huangshui River Basin.

TABLE 1 | Data type, source, and description.

Data type Parameters Source Description

Topography Digital elevation model (DEM) National Geomatic Centre of China Spatial Resolution of 90 m × 90 m

Meteorology Surface temperature China Meteorological Data Service Centre Daily observations of six
Meteorological Stations (1960–2017)Relative humidity

Wind speed
Precipitation
Sunshine duration

Soil Types and physical properties China Soil Data Survey, China Soil database Reclassification according to soil
category of soil database in China

Administrative
divisions

Municipal and county administrative divisions National Geomatic Centre of China /

Land use Land use type National Geomatic Centre of China and
Department of Nature Sources of Qinghai
Province, China

Land Use in 1980, 2005, and 2017

Hydrology Location of hydrological station and reservoirs, runoff
volume

Water Resources Department of Qinghai Province,
China

Monthly Runoff Volume of the Four
Hydrological Stations (1965–2017)

Future climate
scenario

Precipitation, average temperature, average relative
humidity, near-surface average wind speed, and total
solar radiation

Intergovernmental Panel on Climate Change
(IPCC);

Daily data from 2021 to 2050

Inter-Sectoral Impact Model
Inter-Comparison Project (ISI-MIP)
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MIROC-ESM-CHEM, and NORESM1-M (Piani et al., 2010;
Warszawski et al., 2014). The involving meteorological
parameters are precipitation, average temperature, average
relative humidity, near surface average wind speed, and total
solar radiation. The time range is from January 1, 2021 to
December 31, 2050.

2.3 Methods
An evaluation index system for slope ecological restoration was
constructed to evaluate the naturalness, functional type, and
functional coordination. Evaluation criteria and comprehensive
evaluation methods were proposed for the evaluation of slope
ecological restoration in different historical stages in the
Huangshui River Basin. A set of slope ecological restoration
layout schemes was developed as the underlying surface
scenarios based on the improved land suitability evaluation
method. Different climate model data and underlying surface
scenarios were adopted to drive the distributed hydrological
model (WEP) to obtain runoff processes under different
composite backgrounds. The impacts of climate change on the
volume and variability of runoff under different slope ecological
restoration layout schemes were quantitatively analyzed. The
overall mitigation effects of slope ecological restoration on
climate change were identified. Additionally, considering the
evaluation results of the slope ecological restoration under

different layout schemes, the optimal layout schemes were
selected (Figure 2).

2.3.1 Historical evaluation of slope ecological
restoration
(1) Evaluation index system
Based on the ArcGIS platform, the slope ecological restoration scale at
different construction stages (1980–2000, 2000–2017, 1980–2017)
were acquired and used for subsequent evaluation (He S. et al.,
2019). Focusing on the concept of Nature-Enriched-Attributes-
Coordinated-Watershed (Yan et al., 2020), based on the principles
of respecting and conforming to nature, ecological restoration
evaluation index system involving naturalness, functional types, and
functional coordination was developed. The naturalness is commonly
defined as the divergence of the ecosystem’s biodiversity or current
state from its natural steady state (Eichner and Tschirhart, 2007;
Winter, 2012). In this study, we evaluated the naturalness from the
scale, composition and the quality of the slope ecological restoration.
Meanwhile, the evaluation index system aims to evaluate the
hydrological adjustment function, ecological support function,
climate regulation function, and ecological service function (serving
the economy and society) of the whole watershed. The hydrological
adjustment function mainly focused on the plant transpiration and
runoff variation. The ecological support function referred to the water
conservation, wind prevention, and sand fixation function. The climate

FIGURE 2 | Workflow for the optimal allocation of slope ecological restoration for the climate change mitigation and natural function improvement.
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TABLE 2 | Index system for evaluation of slope ecological restoration.

First level
indicator

Second level indicator Interpretation Equation Parameter description

Naturalness Slope ecological
restoration scale

Green area ratio Percentage of slope
ecological restoration
area

G � S w/S S w is slope ecological
restoration area, S is the total
area of the basin

Slope ecological
restoration
composition

Biological
abundance index

Abundance of species
per unit area

S i � A bio × ∑5
i�1(aipxi) A bio is the normalization

coefficient with a references
value of 511.26 Ministry of
Ecology and Environment,
People’s Republic of China,
(2015), ai is the typical parameter
for different land uses, xi is the
proportion of the area of different
land uses

Quality of slope
ecological
restoration

Ecological integrity 15 landscape pattern
indexes

The indexes are percentage of landscape,
number of patches, largest patch index, edge
density, average patch area, area-weighted
mean patch fractal dimension index,
contagion index, aggregation index, Shannon
diversity index, Shannon evenness index on
patch metrics and landscape metrics

The lower the degree of
landscape fragmentation, the
higher the ecological integrity

Functional
types

Hydrologic
regulation
function

Annual plant
transpiration per unit
area

/ ETave � ETsim/Area ETsim is the simulated plant
evapotranspiration by WEP
model, Area is the study area

Annual runoff
variation coefficient

/ CV � SD/MEAN SD is the standard deviation of
runoff, MEAN is the mean runoff

Ecological
support function

Water conservation
function

Water conservation
amount calculated based
on the water balance
method

W � (R − E)*A W is the water conservation
amount, R is the precipitation, E
is the average
evapotranspiration, A is the total
area of the basin

Wind prevention and
sand fixation
function

Compared with the
condition of no ecological
restoration, the
percentage of the area
converted from forest
land

The area of cultivated land converted into
woodland and grassland is obtained
combining the land use transfer matrix

/

Climate
regulation
function

The total value of
ecological services
for climate regulation

Estimated based on the
value of ecosystem
services per unit area

CRV � ∑∑(Ak*CRfk) Ak is the area of the kth land use
type, CRfk is the value of
ecosystem service function of
the kth land use and fth function
for climate regulation

Ecological
service function
serving the
economy and
society

The value of
ecosystem services
that serve the
economic and social
aspects

/ ESV � ∑∑(AkpVCfk ) Ak is the area of the kth land use
type, VCfk is the value of
ecosystem service function of
the kth land use and the fth
function for economic and social
aspects

Functional
Coordination

Coupling and
coordination

The coordination
level among different
functions

/ D � �����
C · T√

D is the coupling and
coordination, C is the
coordination, T is the
hydrological
regulation–ecological support
comprehensive evaluation index,
F(x) is the comprehensive
evaluation index of hydrological
regulation function, G(y) is the
comprehensive evaluation index
of ecological support function,
k = 2, α � β � 0.5

C � {F(x)G(y)/[(F(x) + G(y))/2]2̂}k̂
T � αF(x) + βG(y)
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regulation function and ecological service function were calculated
based on different types of land use. The functional coordination was
evaluated from the degree of coordination between the functional types
(Table 2). The classification of coupling and coordination levels is
shown in Table 3 (He S., 2020). According to the entropy method, the
normalization and weight determination were carried out, and the
overall naturalness, functional types, and comprehensive evaluation
index of the slope ecological restoration at different stages were
obtained.

(2) Evaluation standard
According to the meanings of various indicators and the goal of
slope ecological restoration construction, the evaluation criteria
of various indicators of naturalness, function type, and function
coordination were determined (Table 4).

2.3.2 Configuration of slope ecological restoration
based on watershed land suitability evaluation
According to the land suitability evaluation system promulgated
by the Food and Agriculture Organization of the United Nations

in 1976 (Food and Agriculture Organization, 1976), an evaluation
index systemwas established by considering factors such as DEM,
precipitation, air temperature, soil, irrigation conditions, slope,
and roughness. The weight and score of each index was
determined and calculated based on the analytic hierarchy
process. Combined with the geo-statistical classification
method, the land suitability evaluation grade of each plot unit
on the slope was obtained. Specifically, the evaluation methods of
forest land and residential construction sites were as follows.
According to the distribution of natural forest land, artificial
forests and grasses (the sum of which are slope ecological
restoration), the evaluation criteria, and grade of forest land
were modified. Considering the urbanization process, the
distribution range of counties and cities, the traditional
evaluation criteria, and grade of residential construction sites
were adjusted. Based on the evaluation results of the current
status of land suitability, following the principles of “livability,
cultivated land protection, forest protection, and grass
regulation,” the layout schemes of slope ecological restoration
belonging to three suitability grades of general suitable (SLow),

TABLE 3 | Classification of coupling and coordination levels.

Grades 0–0.39 0.4–0.49 0.5–0.59 0.6–0.69 0.7–0.79 0.8–0.89 0.9–1

The coordination
level

Maladjustment On the verge of
maladjustment

Constrainedly
coordinated

Elementarily
coordinated

Moderately
coordinated

Well
coordinated

Extremely
coordinated

TABLE 4 | Evaluation criteria for ecological restoration indicators on slopes.

First level
indicator

Second level indicator Evaluation criteria (compared
with the stage

where slope ecological
restoration construction has

not yet been
carried out)

Naturalness Green area ratio The larger the green area ratio, the larger the scale of slope ecological restoration, and
the more conducive to the improvement of naturalness

Biological abundance index The larger the biological abundance index, the higher the biodiversity and the more
perfect the ecological restoration composition of the slope

Ecological integrity The landscape pattern indices generally develop toward decreasing trend of
landscape fragmentation indicating that the ecological integrity is enhanced, and the
ecological restoration quality is improved

Functional types Annual plant transpiration per unit area Calculate the annual average plant transpiration per unit area from 1965 to 2017 and
compare it with the frequency of incoming water to discover whether the ecological
restoration construction on the slope can effectively improve the transpiration during
the wet and dry years and enhance the effectiveness of hydrological regulation

Annual runoff variation coefficient The decrease in the variation coefficient of annual runoff from 1965 to 2017, reflecting
the enhanced controllability of hydrological regulation functions

Water conservation function The larger the changes in water conservation amount, the stronger the water
conservation function than before

Wind prevention and sand fixation function The greater the percentage of forest land conversion area, the stronger the wind-proof
and sand-fixing function than before

The total value of ecological services for climate regulation The greater the value of the climate regulation function, the stronger the climate
regulation function

Estimate the value of ecosystem services that serve the
economic and social aspects

The greater the value of the ecological service function, the stronger the function

Functional
coordination

The coordination level among different functions Evaluate the coupling coordination index of slope ecological restoration in different
periods through the classification standard
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moderately suitable (SMed), and highly suitable (SHigh) were
constructed with the goal of eliminating unsuitable plots and
minimizing the area of critically suitable plots.

2.3.3 Identifying the mitigation effects of different
layout schemes on climate change
Previous studies (Peng et al., 2015; Zhou et al., 2018; Li et al.,
2019; Liu H. et al., 2020; Yang et al., 2020; Wang et al., 2021)
verified the applicability of WEP model in different regions of
China including the Huangshui River Basin (He S. et al., 2019).
The meteorological data from the five general circulation models
were integrated to a set of comprehensive climate model data
based on an aforementioned research (He S. et al., 2019). The
comprehensive climate model data and underlying surface
scenarios were adopted to drive the distributed hydrological
model (WEP) to obtain monthly runoff processes from 2021
to 2050 under different RCP scenarios. The change rates (e.g.,
(SLow-S8017)/S8017) of runoff and coefficient of variation (CV) of
runoff under different layout schemes and current conditions
(S8017) were calculated in the whole hydrological period or in the
wet, normal, and dry seasons. The mitigation effect of layout
schemes of the slope ecological restoration on the extreme runoff
process under future climate change was quantitatively identified.

3 RESULTS

3.1 Historical evaluation of slope ecological
restoration
From the perspective of subfunctions, as the scale of slope
ecological restoration increased, naturalness showed a trend of
improvement, while the functional types decreased gradually
before 2000, leading to a lower comprehensive evaluation
index in 1980–2017 than that in 2000–2017. It may be due to
the slight decrease in water conservation function index. That is

because annual evapotranspiration in 2000–2017 was higher than
that in 1980–2017 (Table 5). This indicated that the current slope
ecological restoration needed to be further configured and
improved both for the comprehensive evaluation index and
the individual functions to ensure the improvement of overall
function of the basin. The results of the comprehensive evaluation
index showed that as the scale of slope ecological restoration
increases, the comprehensive functions were gradually improved,
especially after 2000 (Table 6).

3.2 Optimal allocation of slope ecological
restoration
3.2.1 Evaluation of current land suitability in the
watershed
In general, the proportions of highly suitable, moderately suitable,
generally suitable, critically suitable, and unsuitable areas in the
Huangshui Basin were 14.3%, 21.1%, 40.9%, 21.2%, and 2.5%,
respectively. In terms of spatial distribution, the valley areas in the
middle and lower reaches of the main stream of the Huangshui
River Basin belonged to highly suitable, moderately suitable, and
generally suitable grades. The mountainous areas on both sides
and the southwestern mountainous areas were mainly classified
as critically suitable and unsuitable grades (Figure 3). From the

TABLE 5 | Results of secondary evaluation indicators for slope ecological restoration at different construction stages.

First level
indicator

Second level
indicator

S80 S8000 S0017 S8017

Naturalness Green area ratio 0.1826 0.1829 0.4224 0.4226
Biological abundance index 105 105.1 124.4 124.9
Number of patches 5,155 5,119 39,930 42,069
Largest patch index 17.82 17.81 12.03 12.03
Edge density 28.28 28.25 42.69 43.45
Average patch area 301.80 303.93 38.96 36.98
Area-weighted mean patch fractal dimension index 1.28 1.28 1.26 1.26
Contagion index 58.27 58.28 53.75 53.49
Shannon diversity index 1.19 1.19 1.23 1.23
Shannon evenness index 0.66 0.66 0.69 0.69

Functional types Annual plant transpiration per unit area 0.0109 0.0116 0.0115 0.0118
Annual runoff variation coefficient 0.32 0.32 0.33 0.33
Change ratio of water conservation amount 0 0 0.03 0.01
Percentage of converted forest land 0 0 0.24 0.24
The total value of ecological services for climate regulation 20.96 20.98 28.87 28.85
Estimate the value of ecosystem services that serve the economic and social aspects 45.57 45.59 60.31 60.39

Functional coordination The coordination level among different functions 0.09 0.12 0.30 0.41

Note. S80, S8000, S0017, and S8017 represent the slope ecological restoration in 1980, from 1980 to 2000, from 2000 to 2017, and from 1980 to 2017 respectively.

TABLE 6 | Comprehensive evaluation index results of slope ecological restoration
at different construction stages.

Evaluation index S80 S8000 S0017 S8017

Naturalness 0.25 0.25 0.38 0.38
Functional types 0.04 0.03 0.31 0.27
Functional coordination 0 0.01 0.03 0.05
Comprehensive evaluation index 0.29 0.28 0.72 0.70

Note. Optimal allocation of slope ecological restoration
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perspective of land use, the high suitability grade area of forest
land accounted for 17.27% of the total area; followed by
residential and construction land, and grassland for 16.37%
and 15.42%, respectively. The proportion of high suitability
grade area of cultivated land was only 7.2%, and the sum of
general suitability and critical suitability accounts for 97.92%.

3.2.2 Layout scheme of slope ecological restoration
Compared with the evaluation results of 2017, the forestland area
increased by 3,450.73 km2, and the grassland area decreased by
3,450.73 km2 in the highly suitable scheme (SHigh). The forestland
increased by 1,735.06 km2, and the grassland decreased by
1,735.06 km2 in the moderately suitable scheme (SMed). The
forestland decreased by 554.213 km2 and the grassland
increased by 554.213 km2 in the generally suitable scheme
(SLow) (Figure 4).

3.3 Evaluation of layout schemes of slope
ecological restoration
Compared with S8017, most indices of the naturalness and
functionality of the three slope ecological restoration layout
schemes were enhanced. The coupling coordination degree
indices showed growing trends, especially the SHigh scheme
with an increase by 84.3%. According to the evaluation
criteria of the coupling coordination degree, the
coordination between functional types of the three

schemes were close to the constrainedly coordinated
(Table 3). The complete imbalance state of current
situation was changed, and the overall functional
coordination was enhanced (Table 7).

3.4 Mitigation effect of layout schemes on
climate change
The simulated runoff at Xinachuan, Qiaotou, Xining, and Minhe
Stations matched well with the observation. The Nash coefficients
exceeded 0.55, the correlation coefficients exceeded 0.75, and the
relative errors were about 15% during the calibration period. The
Nash coefficients were above 0.5, the correlation coefficients were
about 0.7, and the relative errors were about 15% during the
verification period (He S. et al., 2019). The simulated runoff by
the WEP model was used for further analysis.

3.4.1 Relative change rate of runoff
From 2021 to 2050, the change rates of the runoff under different
layout schemes relative to S8017 were calculated (Figure 5). As
shown in Figure 5A, in the same RCP scenario, the annual
average runoff under the three layout schemes all increased by
about 10% compared with the current runoff volume. From the
perspective of different periods, the runoff during the wet season
can effectively be reduced by about 20% under the three layout
schemes. The reduction effects of SHigh scheme were particularly
obvious, and the effects were enhanced with the increase in

FIGURE 3 | Overall land suitability grade map of the Huangshui River Basin.
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emission concentration under different climate scenarios. The
runoff was reduced by about 30% under the scenario RCP8.5.
During the normal and dry seasons, the runoff increased
significantly, which effectively supplemented the insufficient
flow during the dry season under future climate change, and
improved the regional water conservation capacity.

3.4.2 Runoff variability
In the sameRCP scenario, theCVvalues of the annual runoff decreased
under the three layout schemes comparedwith that under current slope
ecological restoration at seven typical hydrological stations except for
Chaoyang Station, especially for the SHigh scheme with a reduction of
about 60% (Figure 6). Under different RCP scenarios, the CV value of
annual runoff under current slope ecological restoration gradually
decreased as the emission concentration increased at seven typical
hydrological stations except for Minhe Station.

In different hydrological periods, the influences of three layout
schemes on CV values of runoff varied. During the wet seasons, the
influences showed similar patterns with that in the annual scale. In

the normal seasons, the CV values of the runoff decreased under
the three layout schemes (compared with the current slope
ecological restoration) at all seven typical hydrological stations.
During the dry seasons, most stations showed the decreasing trend
of CV of runoff under the three layout schemes (compared with the
current slope ecological restoration) except for Baliqiao Station.

As for the influences under different climate scenarios, different
hydrological seasons showed different patterns (Figure 7). During the
wet seasons, the CV values of runoff under RCP 4.5 were the largest
compared with those under RCP 2.6 and RCP 8.5 at most stations. In
the normal seasons, the CV values of runoff under RCP 2.6 were the
largest compared with those under RCP 4.5 and RCP 8.5 at most
stations. During the dry seasons, the changes in CV values of runoff
under layout schemes were not the same with that under the current
slope ecological restoration. Under the current slope ecological
restoration, most stations showed the largest CV under RCP4.5
compared with those under RCP 2.6 and RCP 8.5, while under
the three layout schemes, the largest CV appeared under RCP2.6
compared with those of other climate scenarios at most stations.

FIGURE 4 | Different levels of layout schemes of slope ecological restoration: (A) generally suitable, (B) moderately suitable and (C) highly suitable.
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TABLE 7 | Evaluation results of individual indicators for different layout allocation schemes of slope ecological restoration.

First level
indicator

Second level
indicator

S8017 SLow SMed SHigh

Naturalness Green area ratio 0.42 0.37 0.53 0.66
Biological abundance index 124.9 115.9 126.4 134.7
Number of patches 42,069 4,166 3,631 3,381
Largest patch index 12.03 14.62 39.63 55.21
Edge density 43.45 14.28 12.73 11.28
Average patch area 36.98 373.46 428.48 460.17
Area-weighted mean patch fractal dimension index 1.26 1.22 1.24 1.24
Contagion index 53.49 58.18 60.32 65.02
Shannon diversity index 1.23 1.31 1.25 1.1
Shannon evenness index 0.69 0.73 0.70 0.61

Functional types Annual plant transpiration per unit area 0.01 0.01 0.01 0.01
Annual runoff variation coefficient 0.33 0.29 0.29 0.29
Change ratio of water conservation amount 0 0.14 0.22 0.22
Percentage of converted forest land 0 −0.07 0.07 0.19
The total value of ecological services for climate regulation 28.85 26.29 31.04 34.79
Estimate the value of ecosystem services that serve the
economic and social aspects

60.39 60.11 69.58 77.06

Functional coordination The coordination level among different functions 0.32 0.39 0.47 0.59

FIGURE 5 | Box diagram of the relative changes of annual average/seasonal runoff of different layout schemes in 2021–2050 in the Huangshui River Basin under
future climate scenarios: (A) represents annual pattern, (B) represents the pattern in wet season, (C) represents the pattern in normal season, (D) represents the pattern
in dry season. The small rectangles in purple, green and blue represent the 25% to 75% quantiles of relative changes of annual(seasonal) average runoff. I (range within
1.5IQR) represents one and a half times the quartile distance. The black solid box represents the mean value. Open squares indicate outliers.
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3.5 Selection of the optimal layout scheme
The SHigh scheme has the highest score in the comprehensive
evaluation index of all layout schemes (Table 8), which indicated
that this scheme meets the needs of a new mode for basin water

governance typically for naturalness and functional coordination.
Combined with analysis of different layout schemes for future
climate change mitigation, this scheme has the most obvious
effect on avoiding extreme hydrological events. Therefore, the

FIGURE 6 | Changes in the coefficient of variation (CV) values of annual runoff under different layout schemes and different climate scenarios.

FIGURE 7 | The CV values of runoff in different hydrological periods under different layout schemes and different climate scenarios (A–C) represents the wet
seasons, the normal seasons, and the dry seasons, respectively. CV8017_26/45/85 represents the variation coefficient of runoff in each hydrological period with the
current slope ecological restoration under the emission scenarios of low-emission scenario (RCP2.6), medium-emission scenario (RCP4.5), and high-emission scenario
(RCP8.5), respectively; CVSLow_26/45/85 represents the variation coefficient of runoff in each hydrological period with the layout schemes of slope ecological
restoration at generally suitable grade under the emission scenarios of RCP2.6, RCP4.5, and RCP8.5; CVSMe_26/45/85 represents the variation coefficient of runoff in
each hydrological period with the layout schemes of slope ecological restoration at moderately suitable grade under the emission scenarios of RCP2.6, RCP4.5, and
RCP8.5; CVSHigh_26/45/85 represents the variation coefficient of runoff in each hydrological period with the layout schemes of slope ecological restoration at highly
suitable grade under the emission scenarios of RCP2.6, RCP4.5, and RCP8.5, respectively.
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SHigh scheme is determined as the optimal layout scheme for the
slope ecological restoration construction in the Huangshui River
Basin. The plan is to adjust the unsuitable grades of residential
construction sites and arable land to general suitable grades, and
the areas suitable for forestry and grass will be developed as
forest land.

4 DISCUSSIONS

4.1 Impact of slope ecological restoration
scale on historical evaluation
From the perspective of Naturalness, S8000 had no obvious impacts
on the indicators compared with S80. Compared with S80 and S8000,
the ecological restoration scale and the biological abundance index
under S0017 and S8017 increased. This is mainly concerned with the
implementation of a series of ecological restoration projects including
natural reserves, national forest park, and large-scale forest farms in
the Huangshui River Basin since the 1970s (Sun et al., 2015; Zhang Y.
et al., 2016; Forestry and Grassland Bureau of Qinghai, 2018; Treacy
et al., 2018; Feng et al., 2021). As the scale of ecological restoration has
increased significantly, the landscape pattern indices, such as number
of patches, edge density, Shannon diversity index, and Shannon
evenness index increased, and the largest patch index, average
patch area, area-weighted mean patch fractal dimension index, and
contagion index decreased. The overall naturalness of the basin
increased. While due to the discrete distribution and homogeneity
of such ecological restoration measures, the landscape pattern index
shows an increasing trend in number of patches, diversity, and
fragmentation.

Referring to the indicators of function types, S8000 had no obvious
impacts on them compared with S80. Annual plant transpiration per
unit area under S0017 and S8017 has slightly increase compared with
that under S80. The underlying mechanism maybe complex. On the
one hand, the study area experiences an arid and semi-arid continental
climate, and continuous drought in spring and summer occurs in 40%
of the years. The background value of evapotranspiration per unit area
is low (Zhang C. et al., 2016; Li et al., 2020). On the other hand, the
growth of vegetation in the study area depends on artificial irrigation,
and the local water resources are scarce, which limit the water used for
irrigation. The growth of vegetation is mainly restricted by artificial
irrigation along the river and from reservoirs, and snowmelt-runoff
irrigation (Kou et al., 2021).When the scale of ecological restoration is
expanded, annual plant transpiration per unit area will not increase
much. Annual runoff variation coefficient under S0017 and S8017 has
little changes compared with that under S80 and S8000. In normal
seasons, the runoff CV in most hydrological stations all decreased
except for the slight increase at the Baliqiao station. In dry seasons, the

runoff CV at the Xinachuan station increased slightly, with the rest of
the hydrological stations decreasing. The effects of slope ecological
restoration on runoff CV in wet seasons are spatially inconsistent.
Comprehensive influence of the three seasons explains the slight
change in annual runoff variation coefficient under S0017 and S8017
compared with that under S80 (He S. et al., 2019). Moreover, the
upstream areas of Qiaotou and Chaoyang Stations are alpine regions
and coveredwith snow and ice. After forest disturbances, greater snow
accumulation is estimated (melting earlier and faster) (Winkler et al.,
2005), and melt ice and snow during wet seasons replenish runoff,
which lead to the insignificant reduction in runoff variation coefficient.

With the expansion of scale of ecological restoration and
enrichment of composition, the structure and function of
ecosystems changed, and the water conservation function,
wind prevention, and sand fixation function, ecological
services for climate regulation and those serving the economic
and social aspects have been significantly enhanced, and the
function type indicators have been improved overall, which
were similar to the conclusions of other scholars (Tang et al.,
2014; Angela et al., 2015; Xu et al., 2019; Zhou 2019). Functional
types increased, functional coordination increased, and
comprehensive evaluation index increased significantly. We
also propose that increasing tree species diversity which will
positively affect soil functioning (e.g., soil biodiversity, nutrient
availability), the resilience of the forest ecosystem, and the
ecological service functions of watersheds (Vicente-Vicente
et al., 2019).

As the scale of slope ecological restoration increased (S8017
compared with S0017), the complexity of ecosystem composition
increased, the diversity of landscape patterns were enhanced, and
the degree of patch aggregation decreased. The overall functional
type index showed a decreasing trend after 2000. Two reasons
may be related to phenomenon. Ecological restoration measures
in the Huangshui River Basin were scattered, and the types of
artificial forests were homogeneous. Although the scale of
ecological restoration has expanded, the improvement of
ecological service functions was limited. After 2000, due to the
reduction in water conservation function and climate regulation
function, the overall function type index of S8017 was lower than
that of S0017. Although functional type index decreased,
functional coordination enhanced with the increase in slope
ecological restoration scale, which indicated that the
coordination between hydrological adjustment and ecological
support functions were improved. The comprehensive
evaluation index decreased. This phenomenon indicates that
the slope ecological restoration needs to further refine the
layout schemes and pay more attention to the simultaneous
improvement of the comprehensive evaluation index and the
individual evaluation index.

4.2 Mitigation effect of layout schemes on
climate change
Under RCP2.6, RCP4.5, RCP8.5 climate scenarios, the impacts of
layout schemes on relative change rate of runoff at different time
scales varied. The relative change rates of annual average runoff
and of runoff in the normal and dry seasons were positive, while

TABLE 8 | Comprehensive evaluation index results.

Evaluation index S8017 SLow SMed SHigh

Naturalness 0.26 0.26 0.28 0.37
Functional types 0.1 0.09 0.19 0.29
Functional coordination 0.01 0.02 0.03 0.06
Comprehensive evaluation index 0.37 0.37 0.50 0.71
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the relative change rates of runoff during the wet season were
negative. This phenomenon indicates that the layout schemes of
slope ecological restoration can effectively reduce the peak flow
and increase the dry season runoff under future extreme climate
scenarios. The impacts of slope ecological restoration on
reduction of runoff in wet seasons and supplement in dry
seasons can be demonstrated by relevant studies (Hou et al.,
2018; Takata and Hanasaki, 2020), which reduce flood potentials
in the wet season and drought severity in the dry season (Guo
et al., 2008). As Bosch J.M. and Hewlett J.D. (Bosch and Hewlett,
1982) inferred, coniferous forest, deciduous hardwood, shrub,
and grassland have (in that order) a decreasing influence on water
yield of the basin in which these covers are manipulated.
Therefore, regulation of forest land may be the key to the
optimal layout of slope ecological restoration.

At Chaoyang Station, there was little difference between the
CV values of the annual runoff under three layout schemes and
that under current slope ecological restoration, which indicated
that the three layout schemes have relatively less impacts on the
runoff variability at the Chaoyang Station. This may be due to the
fact that Chaoyang Station is located in the middle reaches of the
Huangshui River Basin, and the three layout schemes have
relatively small differences in the sub-basin area controlled by
Chaoyang Station. Hence, annual runoff variability is
significantly affected by climate change.

The differences in the CV value of annual runoff under current
slope ecological restoration at Minhe Station may be concerned
with its location. Minhe Station is located at the exit of the
Huangshui River Basin. Under the current slope ecological
restoration, its annual runoff CV increases with the increase in
the emission concentration of the climate scenario, while the
annual runoff CV under the three layout schemes decreases as the
emission concentration increases.

Except for Chaoyang and Baliqiao stations, the SHigh scheme
at most stations has significant reduction effect on the CV value
of annual runoff. We concluded that SHigh reduced the
occurence of extreme water conditions in wet and dry
seasons and effectively increased the stability of the annual
runoff (Xu Z. et al., 2021).

The decreasing trends of the three layout schemes in the wet
and normal seasons are similar with the results of Xu Z. et al.
(2021). In general, the three layout schemes of slope ecological
restoration have significantly reduced the variability of runoff
processes in the entire watershed, at different stations and in
different hydrological periods. The layout schemes have also
avoided extreme hydrological events, and effectively mitigated
the negative effects of climate change.

5 CONCLUSION

Based on the naturalness, functional types, and functional
coordination, the evaluation index system of slope ecological
restoration was constructed. The individual index at different
historical stages was analyzed, and the entropy method was used
to calculate the comprehensive evaluation index. The results
showed that as the scale of slope ecological restoration

increased, the comprehensive functions were improved
gradually, the naturalness and functional types were
gradually improved, and the functional coordination was
gradually better.

According to the evaluation results of the current status of
land suitability, following the principles of “livability, cultivated
land protection, forest protection, and grass regulation,” the
layout schemes of slope ecological restoration belonging to
three suitability grades of general suitable (SLow), moderately
suitable (SMed), and highly suitable (SHigh) were constructed
with the goal of eliminating unsuitable plots and minimizing
the area of critically suitable plots.

On the one hand, the optimized configuration of slope
ecological restoration will have the effect of “cutting peaks and
replenishing dryness,” which significantly reduce the extreme
impact of future climate change. On the other hand, it can also
exert the naturalness and functional coordination of slope
ecological restoration to provide reference for the future
watershed governance mode.

In this study, a comprehensive Evaluation Index System of
slope ecological restoration was developed, among which,
hydrologic regulation function and ecological support function
were considered. With the in-depth identification of the impact
mechanism of slope ecological restoration on the process of slope
runoff generation in the future, the evaluation system needs to be
further enriched and improved.
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