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Drought is regarded as one of the most intangible and creeping natural disasters, which
occurs in almost all climates, and its characteristics vary from region to region. The present
study aims to investigate the effect of differentiation operations on improving the static and
modeling accuracy of the drought index time series and after selecting the best selected
model, evaluate drought severity and duration, as well as predict future drought behavior, in
Semnan city. During this process, the effect of time series on modeling different monthly scales
of drought index was analyzed, as well as the effect of differencing approach on stationarity
improvement and prediction accuracy of the models. First, the stationarity of time series data
related to a one-month drought index is investigated. By using seasonal, non-seasonal, and
hybrid differencing, new time series are created to examine the improvement of the stationarity
of these series through analyzing the ACF diagram and generalized Dickey—Fuller test. Based
on the results, hybrid differencing indicates the best degree of stability. Then, the type and
number of states required to evaluate the models are determined, and finally, the best
prediction model is selected by applying assessment criteria. In the following, the same stages
are analyzed for the drought index time series data derived from 6-month rainfall data. The
results reveal that the SARIMA (2,0,2) (1,1,1)s model with calibration assessment criteria of
MAE = 0.510, RMSE = 0.752, and R = 0.218 is the best model for one-month data from
seasonal differencing series. In addition to identifying and introducing the best time series
model related to the six-month drought index data (SARIMA (3,0,5) (1,1,1)s seasonal model
with assessment criteria of MAE = 0.430, RMSE = 0.588, and R = 0.812), the results highlight
the increased prediction accuracy of the six-month time series model by 4 times the correlation
coefficient in the calibration section and 8 times that in the validation section, respectively,
relative to the one-month state. After modeling and comparing the results of the drought index
between the selected model and the reality of the event, the severity and duration of the
drought were also examined, and the results indicated a high agreement. Finally by applying
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the best six-month drought index model, a predicted series of the SPI drought index for the

next 24 months is created.

Keywords: differencing, time series, drought index, forecasting, standard precipitation

INTRODUCTION

Drought, as a natural disaster, causes terrible damage to natural
ecosystems and human life and is considered as a climatic anomaly.
Furthermore, drought is one of the most destructive climatic
phenomena, which can occur in almost all climatic regimes.
Among various definitions of drought, a more recognized and
logical definition is that drought can be caused by a period of
severe scarcity of water resources with respect to normal
conditions corresponding to the place and time or a period of
abnormal dry conditions that last long enough to create an
imbalance in the hydrological condition. Regarding the
involvement of factors such as rainfall, snow, runoff,
evapotranspiration, and other indicators of water resources in the
occurrence of drought, different indicators have been defined to
monitor drought, each of which measures only one or several
parameters involved in the occurrence of drought (Karamouz and
Araghinejad, 2010). These indicators are generally expressed as a
single number together with the raw data for designers and planners
to make decision. Drought indicators show drought information in
the region by summarizing drought information periodically
(Hejazizadeh and Javizadeh, 2010). Some indicators of drought
include the Percent of Normal Precipitation Index (PNPI), China-
Z Standard Index (CZI), Deciles Index (DI), Rainfall Anomaly Index
(RAI), and the Standard Precipitation Index (SPI). In recent years, a
large body of research has been conducted on the relationship
between the forecast of droughts in Iran and other parts of the
world, aiming to obtain sufficient information about this natural
disaster and develop effective and efficient steps to correctly manage
and address this phenomenon (Karimi et al., 2019; Sobhani et al.,
2019; Malik et al., 2020; Mehr et al., 2020; Sadeghian et al., 2020; Xu
et al,, 2020). In this regard, modeling and forecasting drought index
time series are of great importance. By using rainfall data, Niknam
etal. (2013) studied 19 climatic indices and previous values of the SPI
and employed a fuzzy neural model to predict autumn drought in
Zahedan city with different time delays. The results indicated that
each input variable had certain ability to predict autumn drought at
different time delays. Bahrami et al. (2019) studied the seasonal
Standardized Precipitation Index (SPI) drought index and time series
models to predict seasonal drought using climate data of 38 Iranian
synoptic stations. Cryer and Chan (2008) intend to discover a suitable
ARIMA model using dust storm data from northern China from
March 1954 to April 2002. Poornima and Pushpalatha, (2019) used
long short-term memory in recurrent neural network to predict the
drought indices which handle the real-time nonlinear data well and
good that can help authorities better prepare and mitigate natural
disasters.

Negaresh and Aramesh (2012) predicted drought of Khash city
by applying climatic elements of rainfall, relative humidity,
temperature, and climatic indicators affecting drought in the
region, as well as considering neural and regression network

models for three periods, namely, 1 month, 3 months, and 1 year.
Overall, 3-month drought prediction with the neural network (after
diffusion) model showed the best performance. The results also
showed that climatic indicators failed to have any effect on
improving the performance of models in monthly forecast of
drought. By analyzing rainfall statistics of Liqvan station and
applying methods such as artificial neural network, adaptive
neuro-fuzzy inference system (ANFIS) modeling without
clustering (C-mean), and clustering-based ANFIS, Komasi et al.
(2013) predicted drought in the Liqvan Chay catchment and
introduced the clustering-based ANFIS model as the best model.
Barua et al. (2012) simulated drought in the Yarra catchment in
Victoria, Australia, by using the nonlinear aggregated drought index
(NADI), statistical models (ARIMA), and artificial neural network
(RMSNN/DMSNN). The results revealed that neural network
models performed better than ARIMA models. By using rainfall
statistics of Ajabshir station (southeast of East Azerbaijan),
Shirmohammadi et al. (2013) utilized ANN and ANFIS models
and applied wavelet transform in developing hybrid models of
wavelet-ANN and wavelet-ANFIS, aiming to evaluate these
models in predicting drought. The results showed that the use of
wavelet transform in input data processing improved the
performance of models and the wavelet~-ANFIS model had the
best performance compared to other models. Jalili et al. (2013)
computed SPI time series by addressing monthly rainfall and
temperature statistics in 701 selected stations in Iran. Then, they
predicted drought using three drought indices, namely, the
normalized difference vegetation index (NDVI), vegetation
condition index (VCI), and temperature condition index (TCI)
with neural network models (multilayer perceptron (MLP), radial-
basis function (RBF), and support vector machine (SVM)). The
output of these models was the SPI. Evaluating these models
indicated a better performance of the MLP model with TCI input.
By utilizing rainfall data of 39 synoptic stations located in the
northwest of the country, Montaseri et al. (2016) determined the
time series of drought and wet seasons based on the Standardized
Precipitation Index (SPI) and rainfall anomaly index (RAI). Then,
they examined the trend of changes in drought and wet periods
using a non-parametric Mann-Kendall trend test and eliminating
the significant effect of all autocorrelation coefficients with
different delays. The results showed that both SPI and RAI
drought indices could be used solely to determine the trend of
changes in drought and wet periods, due to the high correlation
between the two drought indices in assessing and determining the
variation trend of drought and wet seasons. Sadeghian et al. (2018)
presented appropriate models to predict drought in Semnan city,
Iran, using time series, ANFIS, and artificial neural networks (MLP
and RBF). The results showed that, among these models, the
ANFIS model showed appropriate performance at each stage of
training and testing. Vaziri et al. (2018) used the 40-year daily
discharge data of the Tajan River in Iran to determine the best
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hydrological drought assessment index. They selected the best
statistical distribution of both drought duration and severity
variables according to goodness of fitting tests and five
functions fitted to the data. The results showed that the
Galambus function was selected as the best copula function.
Malik and Kumar (2020) used heuristic approaches including
the co-active neuro-fuzzy inference system (CANFIS), multiple
linear regression (MLR), and multilayer perceptron neural network
(MLPNN) for prediction of meteorological drought based on the
Effective Drought Index (EDI) in Uttarakhand State, India. The
results of their study showed that the CANFIS and MLPNN
models outperformed the MLR models at study stations. Malik
et al. (2021a) hybridized the SVR (support vector regression)
model with two different optimization algorithms, namely,
Particle Swarm Optimization (PSO) and Harris Hawks
Optimization (HHO), for prediction of the Effective Drought
Index (EDI) at different locations of India. The results indicate
that the SVR-HHO model outperformed the SVR-PSO model in
predicting the EDI. Malik et al. (2021b) studied the capability of
support vector regression (SVR) integrated with two meta-
heuristic algorithms, ie., Grey Wolf Optimizer (GWO) and
Spotted Hyena Optimizer (SHO), in predicting the EDI
(Effective Drought Index). For this objective, the two hybrid
SVR-GWO and SVR-SHO models were constructed and the
EDI was computed in the study regions by using monthly
rainfall data. A comparison of results demonstrates that the
hybrid SVR-GWO model outperformed the SVR-SHO model
for all study stations.

In previous research, mainly the comparison of intelligent
methods in forecasting the drought index has been carried out.
However, in this study, the improvement of the time series of the
SPI drought index under the influence of differentiation operations is
studied. Also, in some previous research studies, various indicators
were used for drought index prediction due to the nature of some
intelligent methods, while in this research, drought has been studied
only by using the precipitation parameter in the SPI drought index.
As mentioned, drought prediction with different intelligent
methods has been the interest of many researchers, among
which the use of time series has been very useful due to its
capabilities. Time series forecasting first analyses time series
data using statistics and in the next step, performs modeling to
predict and inform strategic decisions. The main aim of this
research is to improve the forecasting accuracy of SPI monthly
series taking advantage of the differencing property for the
improvement of stationarity and prediction results. For this
purpose, seasonal, non-seasonal, and one-time combined
differencing are conducted on one- and six-month SPI data
related to Semnan city in a 48-year (1973-2020) period. Finally,
by comparing the forecast accuracy of different models, the best
model is selected to forecast drought in the next 24 months.

MATERIALS AND METHODS
Data and Study Area

Semnan city, the capital of Semnan Province and Semnan County, is
one of the cities of Iran, which is located in the south of the Alborz
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mountain range and the north of the Kavir plain on Tehran-to-
Khorasan road. This city is located at 216 km from Tehran between
Damghan and Garmsar cities at 53° 23’ east longitude and 35° 34'
north latitude, with an average altitude of 1,130 m above sea level.
The climate of this city is hot in summer and cold in winter. The
rainfall of this city is mostly in the cold seasons of the year, and its
average annual rainfall is 140 mm. The average annual temperature
is 17.01°C, while the maximum, absolute temperature is 43.5°C and
the absolute minimum is —8.4°C. The synoptic meteorological
station of Semnan city was established in 1965. This station is
located at 53° 23’ east longitude and 35° 34’ north latitude, with an
altitude of 1,130.8 m above sea level. The climatic identities and
statistical yearbooks of the province are used to derive statistical
information of the station. Figure 1 illustrates the location of the
meteorological station in Semnan city. Given the geographical
location and the completeness of the measured information,
data related to precipitation in Semnan city were used, which
are taken from rainfall statistics from 1973 to 2020 and
recorded in the synoptic meteorological station of Semnan
city. Statistical data of annual rainfall are given in Table 1.

Standardized Precipitation Index
To study meteorological drought, various indicators have been
developed. One of the most famous indicators is the
Standardized Precipitation Index (SPI), which was introduced in
1993 by McKee et al. from the Colorado Climate Center, regarding
different effects of rainfall shortage on groundwater, reserves, and
surface water resources, soil moisture, and canal flow. This index is
obtained based on the difference of precipitation (P) from the
average for a specific time scale (P) and then dividing it by the
standard deviation (Sd) (SPI = %). Indeed, precipitation is the only
effective factor in calculating the Standardized Precipitation Index.
In calculating this index, first the appropriate statistical
distribution should be fitted to long-term precipitation data and
then the cumulative distribution function should be converted to
the normal distribution using equal probabilities. Experience has
shown that the precipitation probability distribution often follows
the gamma probability distribution. The density function of the
gamma distribution probability is as follows:

1 x
f(x) == x* e, (1)
a

where a > 0 is the shape parameter, > 0 is the scale parameter,
x > 0 is the amount of precipitation, and I'(«) is the gamma
function as follows:

I'(a) = j: y“’le’ydy. 2)

To fit the distribution parameters, & and f3 are estimated from

the sample data:
a= L 1+4/1+ A (3)
C4A 3 )

x
p= o 4)

where X is the mean precipitation and A is given by
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FIGURE 1 | Location of Semnan synoptic meteorological station.
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TABLE 1 | Statistical data of annual rainfall time series (1973-2020).

Skewness Std. dev. (mm)

-0.01 42.94

A= ln(i) - % ()

For a given month and time scale, the cumulative probability
G(x) of an observed amount of precipitation is given by

1
BT ()

Since the gamma function is not defined for x = 0 and the rainfall
data always contain a large number of observations with zero rainfall,
the cumulative probability of rainfall is calculated as follows:

H(x) =q+ (1-9)G(®x), (7)

where q is the probability of zero rainfall in the data series, which
is obtained by dividing the number of zero data by the
total number of data. By calculating the cumulative probability
of rainfall and using Equations 8-11, a normal distribution (Z)
with a mean of zero and a standard deviation of one will be
obtained.

G(x) = J: £ (x)dx = J: et dx. ©)

Minimum (mm)

Maximum (mm) Mean (mm)

222.5 138.77

Co+ Cit+ Gyt
Z=SPl=-|t— 0<H <0.5, 8
[ 1+d1t+d2t2+d3t3:| (X) ( )

Co+ Cit+ Gyt
Z=SPl=+|t— 0.5<Hx)<1, (9
+[ 1+d1t+d2t2+d3t3] (x) ©)

1
t= ln(I_I(X)2>,0<H(X)S05, (10)

t= ln<12>,0.5<H(X)S1, (11)
(1-H(x)
where C,, C;, C,, d;, dy, and d; have constant coefficients of Cy =
25165, C, = 0.8029, C, = 0.0103,d , = 1.4328, d, = 0.1893, and d,
0.0013, respectively. Thus, the normalized SPI is converted to a
normal Z, which reflects the amount of deviations above or below
the mean. This index can be computed in short-term (1, 3, 6, and
9 months) and long-term (12, 24, 48, and 72 months) time scales.
Drought index with different time scales has been used in various
articles and research studies (Hosseini-Moghari and Araghinejad,
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TABLE 2 | Classification of Standardized Precipitation Index assessment.

Drought situation SPI
Extremely severe drought <-2
Severe drought -1.99-1.5
Moderate drought -1.49--1.0
Weak drought -0.99-1.0
Normal 0
Weak wet year 0-0.99
Moderate wet year 1.0-1.49
Intense wet year 1.5-1.99
Extremely intense wet year 2>

2015; Tan et al., 2015; Lee et al., 2017; Spinoni et al., 2017; Brito et al.,
2018; Pramudya and Onishi, 2018; Diani et al., 2019; Mahmoudi et al.,
2019). After having extracted rainfall data in different monthly or
annual scales, a data homogeneity test is carried out and a time series
is formed in the mentioned scales. Then, the cumulative probability of
cumulative precipitation values is computed at each time scale using
the gamma distribution. These values are converted to a normal
standard random variable with a zero mean and a variance of one,
which is the SPI value. Table 2 presents different classes of drought in
this index.

To determine the onset, end, and severity of drought from the SPI
drought index according to the classifications presented in Table 2, SPI
less than —1 indicates the beginning of a drought, which continues as
long as this index is less than —1. On the other hand, SPI greater than 1
represents the beginning of a wet year period. The advantages of SPI
include ease of computation, multipurposity to monitor drought
conditions from meteorological and hydrological points of view,
normal distribution, flexibility to different time scales, independence
from soil moisture, and the possibility of use in all months of a year
(Hejazizadeh and Javizadeh, 2010). This index has been used in several
studies (Sobral et al., 2018; Tirivarombo et al., 2018; Marini et al., 2019;
Wang et al., 2019; Zhang et al,, 2019; Azimi and Moghaddam, 2020;
Bhunia et al,, 2020; Bong and Richard, 2020; Li et al., 2020; Won et al,
2020). The present study seeks to first compute the monthly drought
index by using the abovementioned method for 576 steps, among
which 460 initial data, which are equivalent to 80% of the data, are used
for calibration and 116 final data are used to validate the time series
model. Figure 2 shows the time series diagram of the SPI drought
index (one month) in Semnan.

Generally, it is possible to use a moving average for determining
the drought index and selecting wet and drought periods such that
the correct selection of the time base allows specifying wet and
drought periods better. Hence, in addition to raw statistics of SPI

Evaluation of Time Series Models in Simulating

data, this study evaluates SPI statistics computed from 6-month
rainfall data to predict the time series of the drought index. Figure 3
provides the 6-month SPI time series discussed in this research. The
six-month time scale for long-term forecasting of the drought is
selected based on the fact that rainfall occurs in Semnan in cold
seasons similar to most parts of the country, thus addressing the
ombrothermic diagram of Semnan synoptic station (Figure 4).

Time Series Stationarity

If the mean, variance, and covariance are constant in a time series over
certain periods (Equations 12-15), the time series is static. On the
other hand, the time series will be strictly static if the joint distribution
of x(t;) to x(t,) is similar to the joint distribution of x (¢, + h) to
x (t, + h) for time points of t; to t; at any time delay h [8]. In other
words, the basic concept of stationarity is that the probabilistic rules
governing the process do not change over time and, therefore, the
process remains in statistical equilibrium (Johnson et al., 1977).

E(x(t)) <ot eZ (12)
E(x(t)) =mj,teZ (13)
Var (x(t)) = my, t € Z (14)
Y. (r,8) =y (r+ts+t),{rst}€Z (15)

where x(t) represents time series, E and Var indicate the
mathematical expectation and variance functions, y, shows the
time series autocovariance function, and m; and m, are constant
numbers.

The existence of a trend in data is one of the main causes of
stationarity. Most climatic and hydrological parameters are
seasonal, and the seasonal fluctuations complicate the trend.
For this purpose, the seasonal Mann-Kendall test (Equations
16-20) was used to determine the trend in the data.

$=)%,

‘1

(16)

where P demonstrates the total number of seasons and Kendall
statistics is related to season j (j=1,2,..., p) and computed
according to

nj nj-1

S=) Y sgn(x()-x(k)

i=1 k=i+l

(17)

In the absence of sequential correlations in data, the variance is
obtained from Eq. 18. If there is a sequential correlation in the time
series data, the variance can be computed from Eq. 19:

5 Calibration Period Validation
(460 Month) Period
3 (116 Month)

-3
1 37 73 109 145 181 217 253 289 325 361 397 433 469 505 541
Time(month)
FIGURE 2 | Time series of one-month SPI drought index in Semnan.
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FIGURE 3 | Semnan 6-month drought index time series.

Calibration Period
(460 Month)

73 109 145 181 217 253 289 325 361 397 433 469 505 541

Time(month)

Validation Period
(116 Month)

v Average Temperature ((f)

== Total Percipitation (mm)

Temperatu re((q)

30
25 E
0 %
2
®
ll
v
10 2
[
5

Time(Month)

FIGURE 4 | Ombrothermic curve of Semnan synoptic station (during the statistical period).
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o = iVar(SJ—) (18)
i1
p p-l p
oy = ZVar(Sj) + z z Ogh (19)
j=1 g=1 h=g+1

where oy, shows the covariance between Kendall statistics in
seasons g and h. With the assumption of data independence, it
can be assumed that cov (Sg, Sy) = 0. Finally, a statistic named 7’
is obtained from the following relationships:

§'-1
oy
Z=405=0 (20)
S'+1
oy
If the probability value Z computed according to Eq. 20
is less than 5%, it indicates the existence of a trend in the time series.

Since the time series stationarity is a fundamental assumption
in modeling and predicting the stationarity, it is possible to use
the differencing approach to make series static as much as
possible. In this research, an augmented Dickey-Fuller (ADF)
test is used to determine how much the mentioned series become
static after non-seasonal, seasonal, and combined differencing.
This test (Equations 21-24) acts based on the presence or
absence of a single root to specify the stationarity of the time
series by examining the absence of a single root.

Ax(t) = a+ B, t+ Bt + yx(t— 1) £+ d,Ax(t— 1) +...

+¢p_le(t—p+l)+s(t) (21)
T= i (22)
0y
Ho:y=0 (23)
H]Z y<0 (24)

where A represents the first-order differential operator and a, f3,,
and 3, indicate a constant value and coefficients of the linear and
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quadratic trends, respectively. Furthermore, ¢; is the i-order
autocorrelation coefficient, p is the maximum self-correlation,
7 is the augmented Dickey—Fuller test statistic, y is the estimated
coefficient or root, 0; is the estimated standard error, Hy is the
null hypothesis indicating the existence of a single root, and Hj is
the alternative hypothesis that implies the lack of existence of a
single root.

After computing the parameter 7, if this statistic is less than the
critical value in the Dickey-Fuller distribution, the null
hypothesis is rejected, meaning that there is no single root and
the series is static. Each of the values «, f;, and B, can be
considered as zero, according to which different states such as
without constant and trend state, only constant, constant and
linear trend, and the quadratic trend will be tested.

Since the augmented Dickey-Fuller test fails to consider the
effect of the periodic component on instationarity of the series, it
is necessary to use other tests for seasonal series. In this way,
drawing a correlogram and examining it intuitively is one of the
methods to retest the stationarity. This diagram shows the values
of autocorrelation function (ACF) for different time steps. If the
time series is static, this diagram will damp to zero exponentially
or oscillating [9]. In this diagram, the value of data
autocorrelation coefficient (p) will be plotted for different
steps. The value of autocorrelation coefficient for step h is
obtained from

Yo (x(t) = X) (x(t - h) - %)

h =
p(h) S, (x () - %)

h=1,2,,.,n/4 (25)

Time Series Models

Given the existence of different time series models based on
Box-Jenkins theories, this research utilizes ARIMA models and
their general form, multiplicative seasonal ARIMA, to predict the
drought index. The multiplicative seasonal ARIMA model is
presented with the following relationships (Salas et al., 1980):

SARIMA (p,d, q) (P, D, Q): @ (B“)¢(B)(1 - B*)" (1 - B)*x(t)

= O (B“)8(B)e(t)
(26)
®(B°) = (1 - ®,B - ®,B* — ... - ©pB™) 27)
¢(B) = (1-¢,B-¢,B>—... - ¢,B") (28)
®(B®) = (1-©,B° - @,B* ... - ©oBY) (29)
6(B)= (1-6,B-0,B" —.. - 6,B) (30)

where x(t): drought index time series, £(t): residual series, p:
non-seasonal autocorrelation parameter order, gq: non-seasonal
moving average parameter order, P: seasonal autocorrelation
parameter order, Q: seasonal moving average parameter order,
w: period, ¢: non-seasonal autocorrelation parameter, 0: seasonal
moving average parameter, ®: seasonal autocorrelation
parameter, ©: seasonal moving average parameter, B:
differential operator, (1—B®)P: D-th seasonal differencing by
step w, and (1 — B)%: d-th non-seasonal differencing operation.

The maximum order of parameters of the mentioned models
in the relations (26) to (30) (p, g, P, Q) can be identified from

Evaluation of Time Series Models in Simulating

the ACF diagram. If the orders required for parameters of each
model are p ={0,1,....,1}, g =1{0,1,....,m}, P=1{0,1,....,n}, and
Q=10,1,....,0}, then the number of required models (NOM) is
obtained according to the probability rule and based on

NOMSARIMA = (1 + 1)(m + 1) (n + 1) (O + 1) (31)

Models Assessment Criteria

To achieve the most accurate model, valid assessment criteria are
fitted on the desired time series. In this study, criteria of
correlation coefficient (R), root mean square error (RMSE),
and mean absolute error (MAE) are used to evaluate and
analyze the model results. These criteria are shown as follows:

= 5-2) )

R= (32)

\]2?:1<X? - )E°>ZZ?:1<X§ - )ZP)Z
RMSE = L i (= - X?)2 (33)
MAE = %zl| (" — )| (34)

where x? represents the observational values, x! indicates the
predicted values, x° shows the mean observational values, and X
is the mean predicted values. Based on the results, it can be said
that the closer the RMSE and MAE values are to zero, the better
the performance of the model will be. The value of the correlation
coefficient, which varies between -1 and 1, is close to zero in a
superior case.

After reviewing assessment criteria and selecting the best
model, the suitability of residues from the results is examined
and if approved, the model is selected. Finally, using the
selected model, the drought index parameter can be
predicted in future.

Evaluating the Independence of Residuals
If a time series model is correctly specified, then the residues
obtained from the model fitting should approximately have the
characteristics of independent normal random variables with a
zero mean and a constant variance. In this study, the rest of the
selected fitted model is examined and analyzed to ensure its
accuracy. To this aim, the diagrams of the normal probability of
residuals, residuals versus fitted values, residuals over time,
residual histograms, and residual autocorrelation and partial
autocorrelation functions are plotted and interpreted. If the
selected model is identified correctly, it has signs among the
abovementioned diagrams. If the residuals are along a straight
line in the normal probability diagram, it indicates the normality
of residuals. If the residuals are around the zero horizontal plane
with a trendless rectangular scattering in the residual over time
diagram, have no structure in the residuals versus fits and residual
versus order plots, and have no special trend in ACF and PACF
diagrams and do not exceed its permissible limits, it is possible to
accept the constantness of variance and randomness and
independency of the residuals, respectively.
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TABLE 3 | Results of evaluating time series with the seasonal Mann—Kendall test.
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Index type Number of observations Minimum Mean Maximum Standard deviation T S’ p value
One-month SPI 576 -2.450 0.161 3.0 0.866 0.017 464 0.547
Six-month SPI 571 -3.310 0.069 2.780 1.0 0.008 207 0.787
TABLE 4 | Results of the augmented Dickey-Fuller test for drought index time series.
Test type Critical limit d=0,D=0 d=1,D=0 d=0,D=1 d=1,D=1
Results of the augmented Dickey-Fuller test for one-month SPI series -0.913 Stationary Stationary Stationary Stationary
-8.967 -12.957 —10.003 -14.780
Results of the augmented Dickey-Fuller test for six-month SPI series -0.893 Stationary Stationary Stationary Stationary
—-7.509 -11.604 -9.049 -14.780
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FIGURE 5 | Autocorrelation diagrams of different states of one-month drought index time series.
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TABLE 5 | Orders of parameter and number of models required for the six-month
drought index.

Series type P q P Q Number of
models
Without differencing 4 4 0 0 25
Non-seasonal differencing 1 1 1 1 16
Seasonal differencing 5 5 1 1 144
Combined differencing 1 1 1 1 16

In addition to graph methods, the Portmanteau test is used to
examine the suitability of the model. This test uses residual
autocorrelation to test the null hypothesis (H), i.e., the lack
of any correlation between model residues, using test statistics Q.
If the value of statistic Q is greater than the corresponding value
of the chi-square probability table (Xz), the hypothesis (Hy),
which is sometimes called the model adequacy hypothesis, is
rejected. It should be noted that the probabilistic values
corresponding to this test (p value) are evaluated for the

confidence level of 95% by assuming the independence of
residuals.

RESULTS AND DISCUSSION

This research seeks to study and compute two time series, one
related to SPI monthly drought index data and the other related to
six-month data of the SPI parameter, along with different
differencing time series.

The drought index has different time divisions, and for some
reason, one-month and six-month drought indexes are mostly
used in resources. The one-month SPI is a short-term drought
index and can be a better indicator of monthly percipitation for a
given region compared to other time steps. The 6-month SPI
shows medium-term percipitation trends and can be used to
represent percipitation in different seasons much more
effectively. The resulting information may also be related to
abnormal flows and water reservoir levels. Before modeling the
drought index time series, time series stationarity is examined
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TABLE 6 | Orders of parameter and number of models required for the one-month
drought index.

Series type P q P Q Number of
models
Without differencing 1 1 0 0 4
Non-seasonal differencing 3 3 0 0 16
Seasonal differencing 2 2 1 1 36
Combined differencing 3 3 1 1 64

using the seasonal Kendall test whose results are shown in
Table 3. According to coefficients obtained for each of the
series, the seasonal Mann-Kendall test reveals that both time

Evaluation of Time Series Models in Simulating

series are static. Furthermore, different types of non-seasonal (d =
1), seasonal (D = 1), and combined (d = 1, D = 1) differencing are
performed on both time series, resulting in forming new time
series. The role of different differencing operations in the time
series stationarity is determined by using the augmented
Dickey-Fuller (ADF) test. Results of the augmented
Dickey-Fuller test for drought index time series are provided
in Table 4. According to the results, it is observed how
differencing operation leads to better stationarity of time
series. Consequently, combined differencing shows the highest
degree of stationarity compared to other cases.

However, the Dickey-Fuller test sometimes presents a poor
performance in determining the stationarity of seasonal series.
Furthermore, no information is available on the exact seasonality
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TABLE 7 | Results of evaluating the best models in differencing states for the six-month drought index.

Model Calibration Validation Series type
R MAE RMSE R MAE RMSE

ARMA (404) 0.79 0.48 0.62 0.30 0.70 0.92 Without differencing
ARIMA (110) (100)g 0.77 0.49 0.66 0.24 1.138 1.36 Non-seasonal differencing
SARIMA (503) (111)s 0.81 0.43 0.59 0.34 0.69 0.91 Seasonal differencing
SARIMA (111) (111)g 0.80 0.44 0.60 0.28 0.75 0.95 Combined differencing
TABLE 8 | Results of evaluating the best models in differencing states for the one-month drought index.

Calibration Validation Series type
Model RMSE MAE R RMSE MAE R
ARMA (101) 0.76 0.52 0.17 0.84 0.61 0.05 Without differencing
ARIMA (111) 0.75 0.52 017 0.82 0.59 0.01 Non-seasonal differencing
SARIMA (202) (111)g 0.75 0.51 0.22 0.82 0.59 0.04 Seasonal differencing
SARIMA (112) (111)g 0.76 0.52 0.21 0.82 0.59 0.01 Combined differencing

TABLE 9 | Results of the Portmanteau test for the selected one- and six-month
drought index models.

Model Lag 12 24

SARIMA (202) (111)g Chi-square 8.3 25.2
SARIMA (202) (111)s p value 0.219 0.114
SARIMA (503) (111)g Chi-square 5 22.8
SARIMA (503) (111)s p value 0.081 0.064

of differenced data for the series studied in this research. Further
validation is performed by drawing autocorrelation diagrams and
the stationarity of different types of series without differencing
and with non-seasonal, seasonal, and combined differencing is
investigated with results as shown in Figures 5, 6. As observed,
none of the series is undamped and oscillating and has no
periodicity, and consequently, all series approach zero after a
few steps and are within the 95% confidence level, confirming the
stationarity of the series.

By using correlogram diagrams (ACF and PACF diagrams), it
is possible to determine the maximum number of parameters
required for time series models, in addition to stationarity. This
number, which is obtained based on steps with large values from
this diagram, along with the number of models required to
achieve the most accurate model is presented in Tables 5, 6.

Another issue that can be deduced from Figures 6, 7 and
Tables 5, 6 is the type of model suitable for modeling and
forecasting. Therefore, by placing different orders of P, Q, p,
and q, time series are modeled by different states and then
predicted and evaluated in the validation period.

Tables 7, 8 report the most accurate models, along with the
results of their assessment criteria, for both the calibration and
validation periods for one- and six-month drought index time
series. Accordingly, the seasonal SARIMA (202) (111)s model is
introduced as the selected model of one-month drought index,
while the seasonal SARIMA (503) (111)¢ model is chosen as the

selected model for the six-month drought index. Furthermore,
the results reveal that the ratio of increasing the accuracy of
forecasting the six-month drought index is highly significant
compared to the one-month drought index. It is also worth
mentioning that the comparison of drought index time series
modeling in the study area with other artificial intelligence
methods, such as the neural network or adaptive neuro-fuzzy
inference system, has already been performed to show the
superiority of the selected time series models in this field
(Sadeghian et al., 2020).

Evaluating Model Adequacy

To ensure the accuracy of the selected model, residuals of
the fitted model are analyzed. For this purpose, the
Portmanteau test is conducted for each selected model,
and then, various diagrams related to residuals are
examined. Table 9 provides the results of the
Portmanteau test.

As observed, the p value for delays is greater than 0.05 even up
to step 24, enabling us to accept the assumption that all
autocorrelations are Additionally, the graphs
obtained from residuals of the models mentioned
Figures 7, 8 indicate the suitability and adequacy of the
models. Figure 7 shows the analysis diagrams of the
residual of the selected model for one- and six-month
drought index time series (SP1-1 and SPI-6). Figure 8
shows the ACF and PACF diagrams of residual of the
selected model for one- and six-month drought index time
series.

Zero.
in

Forecasting

After reviewing the different models and reaching the best
selected model, the six-month model with the SARIMA
format (3,0,5) (1,1,1) and the resulting values of the model
along with the drought index values that occurred in
reality were plotted. As shown in Figure 9, the results of
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the model are in good agreement with the real situation
which the numerical indices of Table 7 had previously
emphasized.

By selecting the best proposed model, SARIMA (3,0,5)
(1,1,1)6, for the six-month drought index and addressing Eqs
26-30, the six-month drought index model is obtained
according to

(1+0.349B°) (1 — 0.561B — 0.627B* — 0.305B” + 0.552B*
+0.026B°) (1 - B)X(t)
= (1-0.979B°) (1 + 0.231B - 0.342B> - 0.607B)e(t), (35)
where B represents the differential operator and x(t) and €(t) are
the drought index and residual series, respectively. In order to

have a vision of the future, the selected model was used to evaluate
the situation for the next 24 months. Applying Eq. 35 to the

actual data of the six-month time series of the SPI drought index
for 24 months creates a predicted series which is marked with a
blue line in Figure 9.

Comparison Between Observed and

Predicted Drought Characteristics

After modeling with the best proposed model and comparing
the results of the drought index between the model and the
observed data, the severity, duration, and intensity of the
drought (SPI < -1) were also examined. Accordingly, the
graphs in Figures 10-12 show the comparison between
severity, duration, and intensity of the SPI during droughts,
respectively. As can be seen in these figures, there is a good
agreement in the direction of the 45-degree axis between the
points, which indicates the superiority of the proposed model.

CONCLUSION

Predicting hydrological variables, especially the drought index,
has long been considered by many researchers, and various
research studies have been conducted on this field, due to the
importance and widespread use of the SPI in topics such as
climate change and meteorology. The present study addresses
the initial stationarity of drought index time series taken from
rainfall statistics of Semnan meteorological station and then
evaluates the effect of different non-seasonal, seasonal, and
combined differencing on the time series stationarity, as well
as the results of their selected models. For innovation in the
research, we analyze the degree of increase in forecast accuracy
and the effect of differencing operators on six-month drought
index time series. The major findings can be summarized as
follows. 1. Although both one- and six-month drought index
time series are static, different differencing operations improve
their static degree so that series with the combined differencing
operator (non-seasonal and seasonal) provide the best
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stationarity degree based on the results of the augmented
Dickey-Fuller test. 2. Given the results of the ombrothermic
curve and according to the precipitation conditions of the
region, the seasonal period for modeling the drought index is
considered 6 months. The best models from one- and six-
month drought index time series are originated from seasonal
differencing. Accordingly, SARIMA (2,0,2) (1,1,1)s and
SARIMA (3,0,5) (1,1,1)¢ are the selected models for one-
and six-month drought index time series, respectively. 3.
The results indicate that the accuracy of models in
calibration is significantly higher than that of validation for
both selected series models resulting from seasonal
differencing of one- and six-month drought index.
Moreover, the six-month drought index has better modeling
than the one-month drought index for both models. 4. For the
selected time series model of one-month drought index
SARIMA (2,0,2) (1,1,1), the results of RMSE, MAE, and R
assessment criteria equal to 0.752, 0.510, and 0.218 in the
calibration stage and 0.823, 0.589, and 0.039 in the validation
stage, indicating poor performance of the time series in
modeling and predicting the one-month drought index
variable. 5. For the SARIMA (3,0,5) (1,1,1) model, the
results of RMSE, MAE, and R equal to 0.58, 0.430, and
0.812 in the calibration stage and 910, 0.689, and 0.341 in
the validation stage, respectively, highlighting a significant
improvement (about 4 times increase in correlation
coefficient in the calibration stage and 8 times in the
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