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In this study, a new tool for quantitative, data-driven susceptibility zoning (SZ) is presented.
The SZ plugin has been implemented as a QGIS plugin to maximize its operational use
within the geoscientific community. QGIS is in fact a commonly used open-source
geographic information system. We have scripted the plugin in Python, and developed
it as a collection of functions that allow one to pre-process the input data, calculate the
susceptibility, and then estimate the quality of the classification results. The susceptibility
zoning can be carried out via a number of classifiers including weight of evidence,
frequency ratio, logistic regression, random forest, support vector machine, and
decision tree. The plugin allows one to use any kind of mapping units, to fit the model,
to test it via a k-fold cross-validation, and to visualize the relative receiving operating
characteristic (ROC) curves. Moreover, a new classification method of the susceptibility
index (SI) has been implemented in the SZ plugin. A typical workflow of the SZ plugin is
described, and its application for landslide susceptibility zoning in Northeast India is
reported. The data of the predisposing factors used are open, and the analysis has been
carried out using a logistic regression and weight of evidence models. The corresponding
area under the curve of the relative ROC curves reflects an optimal model prediction
capacity. The user-friendly graphical interface of the plugin has allowed us to perform the
analysis efficiently in few steps.

Keywords: SZ plugin, susceptibility, Northeast India, QGIS, landslide

1 INTRODUCTION

The measure of how much a specific area is prone to natural hazards is called susceptibility. It does
not evaluate when or how often the given hazard may occur (Guzzetti et al., 2006), but it provides the
expected locations where such processes may take place in the future. Mathematically, the
susceptibility is the estimation of the likelihood of spatial occurrence of natural hazard evaluated
on the basis of terrain and environmental conditions (Brabb, 1985). In most cases, this likelihood can
be obtained via rigorous probabilistic models, although other tools are also able to convey similar
information without relying on complex multivariate statistics (e.g., Ciurleo et al., 2017; Lombardo
et al., 2020a). All these methods fall under the definition of data-driven models, and they empirically
classify a landscape, labeling it as prone or not prone to slope failures. The way a classifier specifically
works is to weigh the contribution of each predisposing factor to the occurrence of natural hazards,
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taking into account the presence/absence proportion of past
records, given other predisposing factors in the model. The
basic idea behind data-driven models is that “the past is the
key to the future” (Carrara et al., 1995). Thus, an area that has
been affected by natural hazards in the past under certain
circumstances may undergo similar environmental stresses and
suffer from analogous hazards in the future. Therefore, the
statistical analysis of susceptibility is based on a spatial dataset
of past events, which acts as the dependent variable of any given
model, together with a set of geo-environmental factors acting as
explanatory variables.

This study presents the susceptibility zoning (SZ) plugin, a
new tool for susceptibility analysis integrated within one of the
most common open-source GIS platforms, QGIS (QGIS
Development Team, 2022). Specifically, the SZ plugin is a
collection of functions implemented as a QGIS plugin,
supporting a number of preprocessing requirements, as well as
the susceptibility mapping and validation itself. Moreover, the
plugin is equipped with a series of plotting routines aimed at
exploring and interpreting each model components as well as
estimating the predictive ability of the model when dealing with
unknown data.

A number of tools for susceptibility zoning are already
available in the literature, including LSAT (ArcGIS toolbox)
(Torizin, 2012; Polat, 2021), BSA tool (ArcMap tool) (Jebur
et al., 2015), LAND-SE (R script) (Rossi and Reichenbach,
2016), frmod (Python script) (Dávid, 2021), and GeoFIS
(standalone) (Osna et al., 2014). The SZ plugin, to our
knowledge, is the first tool that enables susceptibility routines
within QGIS.

This study describes in detail the SZ plugin graphical user
interface together with all its functions and provides a sample
application to landslide susceptibility in Northeast India. A
previous version of this plugin (v0.1) was already published in
2020 by Titti and Sarretta (2020), but here we have extended the
available options encompassing other modeling approaches
within the same plugin, and we have equipped the SZ plugin
with a suite of plotting and performance evaluation tools. The
current version (v1.0) is available in the following GitHub
repository CNR-IRPI-Padova/SZ.

2 PLUGIN DESCRIPTION

The SZ plugin has been developed specifically for landslide
susceptibility zoning; however, it can be used to map any kind
of susceptibility. The code has been written in Python and
developed as a QGIS plugin. QGIS is a software for geographic
information system (GIS) that is completely open-source and
supported by a large community of users and developers. A
positive consequence of this open approach is that anyone can
develop their own plugin to address specific needs. Hundreds of
plugins are freely available from official and non-official
repositories, but none has focused on susceptibility modeling.

In order to better integrate the plugin with the graphical user
interface (GUI) of QGIS and simplify its usability, the SZ plugin
can be accessed from the QGIS processing toolbox, the main

element of the processing GUI. In detail, the SZ plugin is a
collector of QGIS processing scripts. Some functions can pre-
process data according to the asset required by the core model
functions, which can estimate and validate the susceptibility using
a suite of possible models. These include the following: weight of
evidence (WoE, Hussin et al., 2016), frequency ratio (FR,
Arabameri et al., 2019), logistic regression (LR, Lombardo
et al., 2020b), random forest (RF, Catani et al., 2013), support
vector machine (SVM, Lin et al., 2017), and decision trees (DT,
Yeon et al., 2010). The evaluation of the results and the
classification of the final map proposed are based on the
receiving operating characteristic (ROC) curves (Section 3.2).

Workingmainly with vector layers, the SZ plugin allows one to
use any shapes or form of the mapping unit. In landslide
susceptibility, the most common ones consist in grid cells
(Reichenbach et al., 2018), terrain units (Van Westen et al.,
1997), unique condition units (UCU, Ermini et al., 2005),
slope units (Alvioli et al., 2016), geo-hydrological units (Zêzere
et al., 2017), topographic units (Eeckhaut et al., 2009), and
administrative units (Lombardo et al., 2019).

Figure 1 shows the GUI of the plugin inside QGIS, listing the
implemented functions, which are separated into four groups:
Data preparation, SI, SI k-fold, and Classify SI.

“Data preparation” includes pre-processing functions for
vector data. “SI” and “SI k-fold” are the core groups, which
allow users to choose among a number of possible statistical
models. “SI” and “SI k-fold” allow one to fit or cross-validate (CV)
the selected model. If a cross-validation is selected, the “SI”
function uses a binomial sampler splitting the dataset
randomly into train and test samples, while, the “SI k-fold”
function uses the k-fold cross-validation (Section 3.1) method
where the user can choose the number of subsamples. “Classify
SI,” instead, provides performance metrics to evaluate the
goodness-of-fit or predictive skills in case of cross-validation.
The former case returns a single performance value, whereas the
latter provides summary statistics for the number of cross-
validations opted by the user.

It must be stresses that to maximize the model performance,
its assessment offers a new ROC-based classification method
which selects the cutoffs required to build the ROC curves to
maximizes the relative area under the curve (AUC). Details are
reported in Section 3.2.

2.1 Functions’ Description
The sub-section of the SZ plugin called “Data preparation” is
useful to pre-process and set the data to be used by the “SI” and
“SI k-fold” functions. These functions are as follows:

• Clean points by raster kernel value: it is a filter function that
removes all the points of a layer that do not satisfy the
minimum value selected in a fixed neighborhood. The
values of the neighborhood are collected from an
overlapping raster layer.

• Attribute table statistics: this function detects, field by field,
the unique values and lists the ID of the feature which
reports the same value. Moreover, it produces histograms of
the unique values frequency using the Plotly library.
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• Points kernel statistics: it calculates the effective, maximum,
minimum, standard deviation, sum, average, and maximum
range value of the point neighborhood.

• Points kernel graphs: the results of the previous function are
plotted by this function as frequency graphs.

• Points sampler: this function randomly samples the vector
points according to the train/test scheme selected by
the user.

• Classify field by file.txt: to apply the WoE or FR method, the
covariates should be cut in a number of classes. This
function classifies the vector fields according to the bin
limiting values that the operator may choose. These need to
be reported in a text file.

• Classify field in quantiles: if the operator does not wish to
provide the bin limiting values, the vector fields can be
classified according to any quantile representation
(i.e., deciles, quartiles).

“SI” and “SI k-fold” functions applies WoE, LR, DT, RF, or FR
to calculate susceptibility. They require a polygonal layer which
includes one field per each covariate and one field with the
dependent variable (number of landslides, tornado, and floods)
per mapping unit. The “SI” function allows to cross-validate the
results selecting the sample percentage of training and test or
allowing one to fit the model to the whole dataset, whereas the “SI
k-fold” function allows to cross-validate the results with a k-fold
method (Section 3.1) or also fit the model to the whole dataset.

The functions produce vectors of training/testing or fitting
results and report in a text file the relative weights or regression
coefficients (depending on the model the user has chosen). Also,

it produces a graph of the ROC curves with the associated AUCs.
The close the AUC is to 1, the higher the capacity of the given
model is to suitably classify the study area into stable or unstable
conditions. The ROC analysis as well as all the probabilistic
models available within the SZ plugin (LR, DT, RF, and SVM) is
based on the library Scikit-learn (Pedregosa et al., 2011). As for
bivariate statistical models (WoE and FR), they have been
implemented manually and added to the collection because
they are largely used in the literature from many years (van
Westen et al., 2000).

The last group of functions is “Classify SI” which includes “01
Classify vector by ROC,” “02 Classify vector by weighted ROC,”
and “03 True/False”. Using genetic algorithms (GA) the 01 and
02 “Classify SI” functions classify the susceptibility index (SI) into
the indicated number of classes through the reconstruction of the
segmented ROC curve in order to maximize the AUC (for more
details Section 3.2).

The only difference between the “01 Classify vector by ROC”
and the “02 Classify vector by weighted ROC” is the use of
weighted ROC curve. The weights can be established among the
input vector fields.

“03 True/False” produces a map of mapping units labeled as
follows: True Positive, True Negative, False Positive, and False
Negative according to a selected cutoff of the susceptibility index.

2.2 Software Availability
The SZ plugin has been implemented in Python 3. It requires
many dependencies such as: Numpy, Scipy, GDAL, Scikit-learn
(Pedregosa et al., 2011), Pandas (The pandas development team,
2019), Matplotlib (Hunter, 2007), and Plotly (Inc., 2015). The

FIGURE 1 | SZ plugin GUI.
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version of SZ plugin used in this study is the v1.0 (Titti et al.,
2021b). The latest version of the SZ plugin is always available on
the GitHub repository CNR-IRPI-Padova/SZ.

The plugin has been tested with QGIS 3.16 on Ubuntu 20.04
and Windows 11. To support and increase the usability of the
plugin a video tutorial has been published at: https://www.
youtube.com/watch?v=XpsiCkVF11s (last access 2022/02/03).

3 BACKGROUND

To understand the functionalities of the plugin, the explanation
on how the plugin handles the cross-validation, performance
assessment, and susceptibility index is reported hereafter.
Moreover, the Section 4 shows the application of the tool to
landslide susceptibility zoning using the WoE and LR.

3.1 Cross-Validation
Validation routines involve the test of the performance of a data-
drivenmodel with respect to unknown data. Ideally, the unknown
data should belong to a temporal replicate of themodeled process.
However, geomorphological studies often lack of multitemporal

inventories. Thus, testing the model performance most of the
times requires the implementation of cross-validation routines.
These are commonly performed by splitting the entire input
dataset into two subsets, one used for training the given data-
driven model and the other one to test. This structure revolves
around considering a subsample of the whole dataset in the same
way as one would consider future landslide occurrences, thus
offering the chance to compare locations labeled to be stable/
unstable with respect to a set of actual stable/unstable instances.

The literature reports few ways to extract the testing subset.
The most common in the geomorphological literature is to
extract a random sample from the full dataset. Most of the
times this is done just once (Arabameri et al., 2020); in this
case, most of the variability of a study area is disregarded. In other
cases, the random samples are extracted, without any constraint, a
large number of times with the purpose of depicting the potential
variability of a test site (Amato et al., 2019). In fewer cases, the
variability of a given study area is accounted for by extracting
samples that are constrained to be selected just once across
replicates, leading to two-fold (Yeon et al., 2010), five-fold
(Dang et al., 2019), or ten-fold (Lombardo and Tanyas, 2021)
cross-validations. All the examples mentioned before adopt a
cross-validation scheme where the extraction, constrained or
unconstrained, is randomized in space. However, this
operation is statistically appropriate only if one assumes that
the presence/absence label assigned to a given mapping unit of
choice is independent from the labels of the surrounding
mapping units. In other words, these procedures assume that
there is no spatial structure in the data other than the one
captured by the selected explanatory variables. This is an
acceptable assumption for medium (e.g., slope units) to large
(e.g., catchments) mapping units, but it is not valid for fine
mapping units such as grid-cells. In such cases, the most
appropriate way to implement cross-validation routines is to
constrain the testing subsets in space, each one being
representative of a specific sector of the study area. In turn,
this operation ensures that any residual spatial structure in the
data, not captured by the explanatory variables, would not affect
the validation estimates. In other words, the testing is free or as
free as possible from any spatial effect that may bias the
performance toward results that are forcefully better than what
they should be. This operation is commonly referred to as spatial-
cross validation (e.g., Petschko et al., 2014).

Out of the cross-validation schemes described above, the
current version of the SZ plugin offers two options. The first
is a cross-validation where the train/test split is performed just
once as per the majority of cases in the geoscientific literature
(“SI” functions). This is achieved by using the train_test_split
function in Scikit-learn. The second is a k-fold cross-validation
where from the whole dataset, the test data is randomly extracted
according to number (k) of mutually exclusive subsets (“SI
k-fold” functions). The training data is represented by the
complementary subsets. In other words, if k is equal to 10,
then ten non-overlapping test sub-samples (each one made of
10% of the total mapping units) are created to test the prediction
skill of the model and the ten complementary 90% subsets are
used to calibrate the model instead. Thus, the union of the ten

FIGURE 2 | Workflow of GA-based classifier functions.
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10% subsets returns the whole study area, in such case the
resulting susceptibility map would have been generated by
fully predicted instances. Any test sample is balanced in terms
of presence/absence. The presence/absence proportion of the test
sample is equal to the proportion of presence/absence of the
complete dataset. The spatial-cross validation is not implemented
in the current version of the SZ plugin, but it is part of the
development plan for the subsequent versions.

3.2 Performance Assessment
The model performance is evaluated via the receiving operating
characteristic (ROC) curves and their relative AUC (Chung and
Fabbri, 2003; Fawcett, 2006).

Each mapping unit of a susceptibility map can be labeled as
True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) unit (Rahmati et al., 2019) according to the

presence/absence of the dependent variable (landslides in our
application) and to positive/negative (stable/unstable) label
assigned. After sorting the susceptibility index by descending
order, the spectrum of susceptibility values can be split into two
categories, prone or not, to the occurrence of the hazard. The
susceptibility cutoffs, which assign the binary label (stable/
unstable), are assigned continuously until the lowest value of
susceptibility. The ROC curve then plots the relation between
TPrate and FPrate as follows:

TPrate � TP

TP + FN
FPrate � FP

FP + TN
. (1)

3.3 Susceptibility Index Classifier
In the literature, several methods have been used to segment
the susceptibility index into discrete classes. The continuous
spectrum of susceptibility values has been sliced into
quantiles; other cases report their classification on the
number of landslides per class or on the ratio between the
landslide area and the surface area of each class in
comparison to the entire study area (Lombardo et al.,
2020a). The SZ plugin proposes a new genetic algorithm-
based classifier.

The genetic algorithm (GA) is an iterative meta-heuristic
algorithm based on the numerical reproduction of Charles
Darwin’s natural selection theory (Chatterjee et al., 1996). The
meta-heuristic algorithms are designed to explore the search

FIGURE 3 | Study area and relative slope units of the SZ plugin application to landslide susceptibility (Map data panel c ©Google). Panel b shows in white and red
the slope units investigated after the exclusion of the alluvial plains. The red zones represent the unstable slope units, whereas the white zones represent the stable ones.

TABLE 1 | Predisposing factors and their acronyms (see more details at the end of
Section 4).

Data type Layer Pixel size Data source

1 Morphology Raster 30 × 30 m SRTM (Farr et al., 2007)
2 Geology Vector — USGS
3 Land cover Raster 300 × 300 m ESA 2010 and UCLouvain
4 PGA Raster 90 × 90 m CHIRPS (Funk et al., 2015)
5 Precipitation Raster 5 × 5 km IMRG (Huffman et al., 2019)
6 NDVI Raster 30 × 30 m Landsat 7 C1 Tier 1
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space from several points of view and to get the solution as near as
possible to the optimal (Said et al., 2014).

A GA near-optimal solution is reached through the iterative
delineation of the best object selected from a group of admissible
solutions which are evolved by operators such as crossover,
mutation, inversion, and others (Chatterjee et al., 1996). The
quality evaluation of the solutions is indicated by the fitness
function that assigns a score or fitness determining the minimum
requirement for potential solutions (Mitchell, 1995). During the
iterations, the best subsequent population is selected and the
worst excluded to avoid future reproduction (Razali, 2015). The
result may be an exception of the population (as unexpected
genetic mutation) or the effect of continuous and slow
improvements.

The idea behind the newGA tool featured in the SZ plugin is to
classify the SI into a number of classes, by optimizing their
respective boundaries. These represent cutoffs necessary to
build the ROC curve and to maximize the relative AUC.
Maximization of the AUC of the segmented ROC is the fitness
function of the iterative meta-heuristic algorithm. Figure 2 shows
the classifier workflow. The ROC curve maybe weighted or none.

4 APPLICATION TO LANDSLIDE
SUSCEPTIBILITY

The SZ plugin was born from the necessity of specific functions
not available in QGIS with the goal of producing a landslide
susceptibility map of South Asia using the WoE method (Titti
et al., 2021a) in the context of the Belt and Road Initiative (Lei

et al., 2018). After that, several other applications have supported
the SZ plugin development. Among these, in Titti et al. (2021c),
the classifier (“Si classify” functions) of the plugin was built to
reclassify the landslide susceptibility in Tajikistan. Subsequent
experiments have then stimulated the development of additional
functions, leading to the current version of the SZ plugin.

Here, we present the current set of functionalities offered
through the SZ plugin in the context of landslide susceptibility,
although we recall that these can be used even outside the
geomorphological context. The selected study area
corresponds to the north-eastern sector of India, including
Assam, Manipur, Meghalaya, Mizoram, Nagaland, and
Tripura (Figure 3). This area has been selected because it
appears to be one of the areas most susceptible to landslides in
South Asia, according to the analysis conducted by Titti et al.
(2021a). In their study, the authors’ goal was to highlight
regions mostly prone to landslides across countries involved
into the Belt and Road Initiative. The application presented
here and the analysis conducted in Tajikistan (Titti et al.,
2021c) follow an analogous criterion.

All the data used in the application presented here are open-
data. The landslide inventory used for the analysis was provided
by the Geological Survey of India and is available at the Bhukosh
website (https://bhukosh.gsi.gov.in, accessed 15 November 2021).
It is an open database developed to evaluate the spatial
distribution of natural hazards in India. In the selected study
area, it includes 5,759 Landslide Identification Points (LIP). The
catalog includes landslides triggered by rainfall, anthropogenic
activity, road/slope cut, quarrying, toe erosion, and ground
motion.

FIGURE 4 | Flowchart of the data collection and preprocessing using the SRT (GEE) and QGIS.
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Slope units have been used as the reference mapping unit.
A slope unit is a terrain unit derivable from a DEM, under the
constraint of internal aspect homogeneity in areas defined
between ridges and streamlines (Alvioli et al., 2020). The
shapes have been calculated using r.slopeunits, a tool
developed in GRASS GIS by Alvioli et al. (2016). In this
case, we parameterized r.slopeunits with a flow accumulation
threshold of 5,000,000 m2, a minimum unit area of
500,000 m2, and a circular variance of 0.3. The alluvial
plains have been excluded from the analysis because
considered not susceptible a priori. As a result, 124,553
slope units were generated with a maximum surface

extension of 27 km2, a mean of 1 km2, and a standard
deviation of 1.1 km2.

All the data used as a predisposing factor are also open data.
They consist of lithology, land cover, slope, plan curvature
(tangent to the contour line), profile curvature (tangent to the
slope line), relative relief (maximum elevation range in a circular
neighborhood of 1 km of radius), peak ground acceleration
(PGA), annual rainfall, Normalized Difference Vegetation
Index (NDVI), and area of each mapping unit (Table 1 for
the respective data sources).

The landslide susceptibility zoning of the study area is carried
out using Weight of Evidence (WoE) and Logistic Regression

FIGURE 5 | Step by step flowchart of the functions used form the SZ plugin.
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(LR) methods. The Weights of Evidence technique is a bivariate
statistical approach (Bonham-Carter et al., 1988; Bonham-Carter,
1990). It quantifies how prone an event occurrence is according to
the proportion of presence/absence for each predisposing factor
class. The WoE assigns two weights per class: W+ and W−. The
weights represent, respectively, the positive and negative
influence of the predisposing factors on a potential natural
hazard. They are calculated by the following:

W+ � ln
M1

M1+M2

M3
M3+M4

, (2)

W− � ln
M2

M1+M2

M4
M3+M4

, (3)

Wf � W+ −W− (4)
where M1 is the number of mapping units where both the factor
class and the event are present; M2 is the number of mapping
units where the factor class is absent, while the event is present;
M3 is the number of mapping units where the factor class is
present, while the event is absent; M4 is the number of mapping
units where both the factor class and the event are absent. The

weight contrast (Wf) is the final weight assigned to each class
factor. It evaluates the relation between the spatial distribution of
the causes and the spatial distribution of the events (Dahal et al.,
2008).

The local sum of the factor weight contrasts produces the
Susceptibility Index (SI), as follows:

SI � ∑
n

i�1
Wfi (5)

The second model tested is the logistic regression. It is an
extension of the classical linear regression analysis. The latter
commonly requires a continuous target variable (y), whose
estimation is achieved as a linear combination of n input
covariates (x), as follows:

y � β0 +∑
n

i�1
βixi, (6)

where β0 is the intercept and βi are the covariate coefficients.
However, the above scheme is not suitable to model a discrete

target variable. In such cases, and specifically for a target variable

FIGURE 6 |Results of the functions “03 Points kernel statistics” and “04 Points kernel graphs.” (A)Cumulative effective LIP PGA value; (B) cumulative average PGA
value in a LIP around of 5 km × 5 km.

FIGURE 7 | ROC curves of the 10-fold cross-validation. (A) ROC of the WoE cross-validation and (B) ROC of the LR cross-validation.
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that can take only two discrete values, a logistic regression
represents the most common solution. Its structure takes a
vector (y) reporting a series of zero and one. The zero
conventionally conveys the absence of a given process in
space, time or both, whereas one conveys the opposite case
where the process is present. The model still linearly regresses,
this time the odd ratio (Szumilas, 2010), with respect to n input
covariates x. The use of the logit link function, which then
transforms this quantity into a probability (Menard, 2002),
commonly referred to the actual occurrence of the process of
interest, as follows:

P y � 1( ) � 1
1 + exp − β0 +∑n

i�1βixi( )( )
(7)

As a result, one can interpret an increase in the
estimated regression coefficients as a linear increase or
decrease of the probability P(y = 1), determined by the
sign of βi.

The application and validation of the WoE and LR results are
described in detail by the schema in Figure 5. The data preprocess,
instead, is described in Figure 4. Flowcharts outline step by step
how the SZ plugin functions have been used to carry out the
landslide susceptibility map of the Northeast India.

As described in Figure 4, the average per mapping unit of
slope, plan curvature, profile curvature, relative relief, annual
precipitation, and NDVI have been calculated using a script
implemented by us in Google Earth Engine (GEE) (Gorelick
et al., 2017) called the spatial reduction tool (SRT). Using the

TAGEE package for terrain analysis developed by Safanelli et al.
(2020), the SRT allows to calculate terrain variables that are DEM
derived such as slope, elevation, aspect, northness, eastness, mean
curvature, Gaussian curvature, minimal curvature, maximal
curvature, shape index, horizontal curvature, and vertical
curvature. Moreover, the SRT allows one to calculate the
relative relief and collect data from various databases such as
precipitation, temperature, and NDVI. Finally, the SRT spatially
reduces the pixel based variables into their mean and standard
deviation per selected mapping unit. Notably, any shape can be
used as a reference mapping unit (Titti and Lombardo, 2022).

As regards other predictors, themajority of the continuous variable
(PGA) and the majority of the categorical variables (lithology and
land cover), per mapping units, have been calculated using QGIS
basic functions and aggregated in one vector layer.

The next steps are described in Figure 5. To verify the quality
of the landslide inventory and to avoid mistakes related to the
landslides survey, the landslide catalog has been filtered using the
function “01 Clean points by raster kernel value” assuming a
minimum slope degree of 8°in a neighborhood of 500 m of radius.
One landslide only has been deleted. Then the resulting inventory
attributes has been investigated using the following functions: “02
Attribute table statistics,” that is, to know the landslide triggers;
then “03 Points kernel statistics” and “04 Points kernel graphs” to
plot the frequency distribution of the effective, maximum,
minimum, standard deviation, sum, average, and maximum
range value for a specific thematic map of the LIP
neighborhood. To provide an example of the functions “03

FIGURE 8 | Boxplots from the WoE 10-fold cross-validation weight contrast of (A) slope, (B) relative relief, (C) area, and (D) annual precipitation.
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FIGURE 9 | Boxplots from the LR 10-fold cross-validation regression coefficients of (A) continuous covariates, (B) lithology, and (C) land cover.

FIGURE 10 | True-positive, true-negative, false-positive, and false-negative mapping units with respect to a cutoff value equal to the median of the LR susceptibility
index.
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Points kernel statistics” and “04 Points kernel graphs,” Figure 6A
shows the cumulative effective PGA value across LIPs, whereas
Figure 6B depicts the cumulative average PGA value in a LIP
around of 5 km × 5 km.

The landslide susceptibility zoning of the study area is carried
out using the methods WoE and LR. To apply the WoE, the
variables need to be classified. This step is done by using the
functions “06 Classify field by file.txt” and “07 Classify field in
percentile”. The slope has been classified in eight classes: 0°, 1 + 3°,
4 + 6°, 7 + 10°, 11 + 15°, 16 + 20°, 21 + 30°, and > 30°, whereas the
other continuous factors, in deciles.

After that, the susceptibility can be modeled with WoE. At the
beginning the reference map has been built fitting the entire
dataset with an AUC equal to 0.79, then the model has been 10-
fold cross-validated. The relative ROC curves are visible in

Figure 7A with an AUC mean equal to 0.8 and variability
measured with a standard deviation equal to 0.07. Both the
runs were tested by using “SI k-fold: 01 WoE Fitting/
CrossValid,” selecting different input parameters. The weight
contrasts of the slope, relative relief, area and annual precipitation
resulting from the cross-validation are reported in Figure 8.

To apply the LR method, the categorical covariates have
been processed to generate one variable per category,
measuring the percentage of surface covered by each
category with respect to the extent of each slope units.
Then to avoid multi-collinearity issues (the sum of all
percentage classes always returns 100%, thus being a linear
combination by definition), the most representative class
across all slope units has been removed. This operation
should sufficiently perturb the dependence structure among

FIGURE 11 | Landslide susceptibility maps classified using the WoE and the LR model. (A) Classifier has maximized the AUC of the ROC curve derived from the
WoE map; (B) classifier has maximized the AUC of the area-weighted ROC curve derived from the WoE map; (C) classifier has maximized the AUC of the ROC curve
derived from the LR map; (D) classifier has maximized the AUC of the area-weighted ROC curve derived from the LR map.
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the remaining classes, ensuring that a linear combination of
their respective values would not yield the same result.

Finally, the susceptibility can be modeled, first by fitting the
complete dataset (AUC = 0.81) and then through a 10-fold cross-
validation (AUCmean equal to 0.81 and standard deviation equal
to 0.06). Both analyses have been carried out via the “SI k-fold: 03
LR Fitting/CrossValid”. The ROC curves of the cross-validation
are shown in Figure 7B, whereas the regression coefficients are
reported in Figure 9.

To make the maps suitable for stakeholders and end users
involved in land planning, the final maps have been classified into
four classes by using the “01 Classify vector by ROC” (Figures
11A,C) and “02 Classify vector by weighted ROC” functions
(Figures 11B,D). The latter classification has been weighted
according to the slope units’ area.

Figure 10 shows the result of the function “Classify SI/03 True/
False” which maps the distribution of the true-positive, true-
negative, false-positive, and false-negative mapping units respect
to a cutoff value equal to the median of the LR susceptibility index.

In Figure 11, it is evident that the susceptibility patterns
produced by WoE and LR are quite similar. Differences
become more visible when using the weighted and non-
weighted classifiers. In both models (WoE and LR), the “very
high” class covers a larger area in the non-weighted-classified
map than in the weighted ones. The “very high” class in the WoE
non weighted-classified map covers the 31% of the total surface
mapped (130,736 km2) and the 14% in the weighted ones. The LR
classified maps have given a similar response to the classification:
31 and 12% of the total surface mapped for the non-weighted-
classified map and weighted-classified map, respectively.

We reported additional references about the predisposing factors
and landslide inventory as follows: lithology (https://catalog.data.gov
accessed 2021-08-23), land cover (http://due.esrin.esa.int, accessed
2021-04-15), PGA (https://sedac.ciesin.columbia.edu, accessed
2021-04-15), annual precipitation from Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS), and NDVI
from Landsat Seven Collection 1 Tier 1 composites for 32-day
period provided by U.S. Geological Survey, landslide inventory
(https://bhukosh.gsi.gov.in, accessed 2021-11-15).

The effective reduced data and the outputs of the application
described above are downloadable from the GitHub repository
CNR-IRPI-Padova/SZ.

5 CONCLUSION

A new plugin for landslide susceptibility zoning is introduced
here. The SZ plugin is a collection of processing scripts in

Python which runs as part of the QGIS platform. This
framework has been chosen to maximize the accessibility to
our plugin. QGIS is the most widely used open-source GIS
environment.

The implemented functions have been organized into four
groups: “Data preparation,” “SI” (susceptibility index), “SI
k-fold,” and “Classify SI,” which allow one to carry out a
complete susceptibility analysis from the data preprocessing
and the prediction analysis to the reclassification of the
susceptibility index. The susceptibility can be generated
using six different classifiers: weight of evidence, frequency
ratio, support vector machine, decision tree, random forest,
and logistic regression. The statistical models may be applied
to fit the input dataset or cross-validate the final map. In
particular, the latter can be done by a simple random split in
test/train samples or by a k-fold method. Both are completed
by a receiving operating characteristic (ROC) analysis for
performance assessment. Finally, a GA-based (genetic
algorithms) classifier has been implemented to classify the
susceptibility index.

Many libraries in R and other libraries such as Scikit-learn
in Python are probably the best solutions to perform
susceptibility with statistical models, but they require a
good knowledge in coding. Overall, the tool proposed can
simplify the access to statistical assessments of susceptibility
for users who are not familiar in coding or for those who wish
to achieve results rapidly.

In this study, the version 1.0 of the SZ plugin has been
presented to the geoscientific community. Several
improvements and new functionalities are under development
which will be uploaded with the further versions of the plugin.
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