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The North Pacific subtropical gyre (NPSTG) redistributes heat and moisture between low
and high latitudes and plays a key role in modulating the global climate change and
ecosystem. Recent evidence suggests intensification and poleward shift of the subtropical
gyres over the last decades due to global warming, but insufficient observations have
hampered insight into the integrated effects of ocean-atmosphere interactions at longer
timescales. Here we present the first high-resolution (~12 years) grain-size record from
Core CF1 in the Okinawa Trough, western subtropical North Pacific, to reconstruct the
evolution of the western boundary Kuroshio Current (KC) of NPSTG during the Late
Holocene. Our results indicate the KC slow-down during 4.6–2.0 ka, followed by quick
enhancement after 2.0 ka, with centennial-scale variabilities (500–700 years)
superimposed on the long-term trend. Over millennial timescales, gradually increased
pole-to-equator thermal gradient, due to orbital forcing mechanisms, resulted in long-term
enhanced KC, whereas solar activity triggered phase changes in the tropical Pacific mean
state and controlled KC anomalies on centennial timescales. We suggest that both forcing
mechanisms resulted in ocean-atmosphere feedback provoking concurrent changes in
mid-latitude westerly and subtropical easterly winds over the North Pacific, alternating their
dominance as source regions causing the dynamic changes of KC at different timescales.
Our findings offer insight into the role of external forcing mechanisms in the NPSTG
changes before the Anthropocene, which have profound implications for the deeper
understanding of changes in ocean gyres under global warming scenarios.
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INTRODUCTION

As one of strong wind-driven western boundary currents (WBCs)
of the North Pacific Subtropical Gyre (NPSTG), the Kuroshio
Current (KC) originates from the northward branch of the North
Equatorial Current (NEC), enters the Okinawa Trough off
northeastern Taiwan, and then flows along the continental
slope of East China Sea (ECS) before turning eastward
through the Tokara Strait (Figure 1). The KC transports
substantial amounts of heat and moisture poleward and thus
plays an essential role in global climate change and heat balance
(Hu et al., 2015). Despite recent progress in understanding the
seasonal and interannual variabilities of the KC, which are
generally related to El-Niño–Southern Oscillation (ENSO),
Pacific Decadal Oscillation (PDO), and East Asian monsoon
systems, there is ongoing debate concerning the KC dynamics
over longer time scales (Nakamura, 2020). For ENSO, during La
Niña events, the zonal sea surface temperature (SST) gradient
across the equatorial Pacific Ocean enhances, strengthening the
Walker Circulation with the easterly wind prevails, and the NEC
bifurcation latitude (NBL) occurs at its southernmost position,
the transported volumes of the KC increases; and the opposite
occurs during El Niño events (Hu et al., 2015). Previous studies
demonstrated that the variability of the KC along the margin of
the East China Sea at interdecadal scales is more closely with PDO
than with ENSO, and the KC generally decelerated during
negative PDO with enhanced trade winds and weakened
westerlies, and vice versa (Andres et al., 2009; Wu, 2013; Wu

et al., 2019). Recently, the potential effects of global warming on
the KC and other WBCs have raised significant concerns,
suggesting that a stronger warming trend occurred over the
KC during the past century, possibly associated with a
synchronous poleward shift and/or intensification of WBCs
(Wu et al., 2012; England et al., 2014; Hu et al., 2015; Yang
et al., 2016; Yang et al., 2020). Reconstruction of the response of
KC intensity to different forcing mechanisms at longer timescales
will thus aid in better quantifying future changes in the WBCs.

Sedimentary records from the Okinawa Trough, under the
influence of the KC, are ideally located to reveal the oceanic-
atmospheric dynamic influences that originated in both the
tropical and high latitudes of North Pacific (Jian et al., 2000;
Zheng et al., 2014; Zheng et al., 2016; Lim et al., 2017; Jiang
et al., 2019; Li et al., 2019; Li et al., 2020). Although many
studies have illustrated changes in the KC intensity and its flow
path since the last glacial maximum (LGM), the different forcing
mechanisms driving these changes are still debated. Specifically,
most available records are adequate for characterizing long-term
trends of the KC, e.g., the Holocene, but do not capture the short-
term climate oscillations, largely due to the scarcity of robust proxy
and/or low resolution of climate archives (Yamazaki et al., 2016).
Here, we present a well-dated and high-resolution grain-size record
from the middle Okinawa Trough that documents the evolution of
the KC intensity during the last 4.6 kyr. The aim of this study is to
characterize the long-term trend and centennial periodicity of the
KC during the Late Holocene and to discuss the forcingmechanisms
that caused them.

FIGURE 1 | Location of Core CF1 and referenced sites with surface oceanic circulation and climatic systems over Asia and the western Pacific. EAWM, East Asian Winter
Monsoon; EASM, East Asian summerMonsoon; ISM, Indian summer Monsoon. NEC, North Equatorial Current; NECC, North Equatorial Counter Current, KC, Kuroshio Current;
TWC, Tsushima Warm Current; YSWC, Yellow Sea Warm Current; KCE, Kuroshio Current Extension; KCI, Kuroshio Current Intrusion; OC, Oyashio Current.
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MATERIALS AND METHODS

Sediment Core and Chronology
Gravity Core CF1 (water depth 1,180m; 127.43°E, 28.42°N)
(Figure 1), with a length of 351 cm, was retrieved from the
western slope of the middle Okinawa Trough during a cruise in
2012. The core was sliced into 1-cm-thick subsamples after the cruise.
The lithology of Core CF1 consists of homogeneous gray silty clay.
No obvious depositional hiatus or turbidite layers were found within
Core CF1. The planktonic foraminiferal species Neogloboquadrina
dutertrei from the >150 μm size fraction of eight layers were picked

up for accelerator mass spectrometry radiocarbon (AMS 14C) dating
at Beta Analytic Inc.(Florida, United States) (Figure 2).

Considering the top segment of Core CF1 was damaged and lost
during the sampling process, the age model of Core CF1 between 8
and 348 cm (Figure 2A) was constructed using the recently
published age-depth modeling routine “Undatable” (Lougheed
and Obrochta, 2019). The deterministic routines of Undatable,
with a positive sedimentation rate prior and bootstrapping, result
in median and mean age-depth models with age error estimates of
non-normally 68% and 95% percentiles (Lougheed and Obrochta,
2019). Here, the AMS 14C ages were calibrated to a calendar age

FIGURE 2 | Age model of Core CF1 using the recently published age-depth modeling routine “Undatable” (Lougheed and Obrochta, 2019). Age error estimates of
nonnormally 68 and 95% percentiles are also shown.

TABLE 1 | Accelerator mass spectrometry (AMS) radiocarbon (14C) dates of Core CF1 samples.

BETA No. Samples Depth/cm Conventional Age ±
error/yr BP

2σ-Range/cal. yr BP Median Probability/cal.
yr BP

491946 CF1-1 8–10 1,040 ± 30 302–565 456
491947 CF1-2 48–50 1,300 ± 30 534–789 665
491948 CF1-3 98–100 1,810 ± 30 1,032–1,305 1,181
491949 CF1-4 148–150 2,230 ± 30 1,463–1,781 1,620
491950 CF1-5 198–200 2,730 ± 30 2056–2,377 2,231
491951 CF1-6 248–250 3,670 ± 30 3,223–3,541 3,383
491952 CF1-7 298–300 4,080 ± 30 3,717–4,075 3,898
491953 CF1-8 348–350 4,620 ± 30 4,437–4,796 4,615
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before 1950 CE (cal BP) using the Marine20 calibration curve
(Heaton et al., 2020) and the ΔR value of 29 ± 18 a (Table 1).
Default values for bootstrapping percentage and sedimentation
rate uncertainty were set to 20% and 0.1 cm yr−1, respectively. The
sedimentation rate of Core CF1 varied from 45 cm/kyr to 190 cm/
kyr, with an average value of ~90 cm/kyr.

2.2 Grain Size Analysis
Grain-size analysis was conducted using a Mastersizer-2000 laser
particle-size analyzer at Qingdao Institute of Marine Geology,
China Geological Survey, with ameasurement range of 0.02–2,000 μm
and a size resolution of 0.01ϕ. The measuring error was within 3%.
Before the grain-size analyses, the samples were pretreated with 10%
H2O2 and 0.5mol/L HCl for 24 h to remove organic matter and
biogenic carbonate, respectively. The high-resolution analysis provided
a resolution of ~12 years on average, with a lower resolution of
~22 years for the interval between 2,400 and 3,460 years BP.

Varimax-Rotated Principal Component
Analysis
Varimax-rotated Principal Component Analysis (V-PCA) is a
statistical procedure that uses orthogonal transformation to

convert a set of possibly correlated variables into a set of
linearly uncorrelated variables called principal components.
This method allowed us to separate out orthogonal modesand
independent grain-size spectra from the grain size matrix that are
related to potential input functions and sensitive to specific
transport mechanisms (Darby et al., 2009; Hu et al., 2012; Yi
et al., 2012; Zheng et al., 2014; Zheng et al., 2016). It has been used
to successfully identify the transport mechanisms of the Yellow
Sea (Hu et al., 2012) and the Okinawa Trough (Zheng et al., 2014;
Zheng et al., 2016). In this study, V-PCA was applied to temporal
variation of Core CF1 grain size spectrum with the input grain
size matrix ranging from 0.41 to 707 μm. The mode of each
extracted grain size component is defined as the grain size sets
with largest factor loading, which is most representative for the
grain size spectra (Figure 3).

FIGURE 3 | (A) PC1, PC2 and PC3 represent the components of V-PCA
procedures and their variances are displayed. (B) Temporal variation of PC1
loading which is interpreted as an indicator of the KC (See discussion in
Chapter 3.1).

FIGURE 4 | Results of time-series analysis of the PC1 loading for
Core CF1.
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Ensemble Empirical Mode Decomposition
The ensemble empirical mode decomposition (EEMD) method is
based on the noise-assisted data analysis, which takes the average
value of multiple measurements and obtains the ensemble means
of corresponding intrinsic model functions (IMFs) as the results
(Wu and Huang, 2009). EEMD is implemented through a sifting
process that uses only local extrema. A complete sifting process
stops when the residue becomes a monotonic function from
which no more IMFs can be extracted. The total number of IMFs
of a data set is lose to log2N (N is the number of total data points).
Detail process and explanation can be found in the MATLAB
EEMD code program instructions (Wu and Huang, 2009). Before
performing the EEMD, the PC1 loading of Core CF1 is linearly
interpolated at a 10-years interval. Eight IMFs are generated from
our data by the EEMDmethod and spectral analyses is applied to
determine the periodicities and periodic stabilities using the
PAST software (details can be found in https://palaeo-
electronica.org) (Figure 4). We aim to quantify the relative
contributions of both the long-term trend and centennial-scale
oscillations. Considering the sample resolution used in this study,
the IMF1 and IMF2 components with periodicity less than
100 years are thus considered as decadal-scale noise
(Figure 5A). At the same time, the IMF3, IMF4, and IMF5
components exhibit centennial-scale cyclic oscillations with a
total variance of 39% (Figure 5B), while the IMF6, IMF7, and
IMF8 components are regarded as millennial variability or long-
term trend, contributing altogether 29% to the total variance
(Figure 5C).

RESULTS AND DISCUSSION

Paleoenvironment Implications of
End-Members
Previous studies suggested the Okinawa Trough has multiple
potential terrigenous sediment sources, mainly including the
large rivers in China (Yellow and Yangtze Rivers) and small
mountain rivers in Taiwan and Kyushu Islands, all of which
display large temporal-spatial variations influenced by sea-level
fluctuations, oceanic circulations, and East Asian monsoons over
the last glacial-interglacial cycles (Dou et al., 2010; Dou et al.,
2012;Wang et al., 2015; Dou et al., 2016; Beny et al., 2018; Li et al.,
2019; Xu et al., 2019; Hu et al., 2020). Based on the results of
previous studies, the sediment source-to-sink process in the ECS-
Okinawa Trough since the LGM can be broadly summarized as
follows: During the glacial periods marked by the low sea level
(e.g., about 135 m below the present sea level during the LGM),
the paleo-channels of Yellow and Yangtze Rivers were located on
the YS and ECS shelves and may have directly entered the
northern and middle regions of the Okinawa Trough,
respectively. In contrast, Taiwan-derived sediments are
confined to the southern region of the Okinawa Trough due
to the weak or even absent KC during the glacial periods.
Subsequently, sea level gradually rose from -135 m to -40 m
during the deglaciation period (22–10 ka), resulting in the YS
and ECS shelves being flooded by seawater along with the paleo-
mouths of Yellow and Yangtze River which retreated quickly
towards the YS shelf. During the process of sea level rise,
terrigenous sediment supply became trapped on the shelf,
although more intense continental erosion occurred resulting
from the strengthened East Asian Summer Monsoon (EASM).
Meanwhile, deglaciation transgression caused some reworked
materials to be released from the ECS shelf into the Okinawa
Trough, forming a broad tidal sand ridge covering the ECS
middle-outer shelf. Conversely, the mainstream of the KC
gradually deflected to the west of the Ryukyu Islands due to
the rapid sea-level rise and then delivered the Taiwan Rivers
sediment northward during this period. Provenance proxies
indicated a significant change from a dominance of the paleo-
Yangtze or paleo-Yellow River to an increased influence from
Taiwanese rivers after 9–10 ka or ~7 ka, associated with the
establishment of a “water barrier” of strong KC intensity and
a modern circulation pattern since then. Combining the results of
previous studies, it can be found that the sea level has stabilized or
changed very little and the ocean circulation system of ECS has
been formed since the Late Holocene. At that time, the sediment
transport dynamics affecting the middle Okinawa Trough are
mainly controlled by changes in the strength of the KC.

For Core CF1, results of the V-PCA analyses on the grain-
size matrix are shown in Figure 2A. Three principal grain-size
components (PC1: 69%, PC2: 16%, and PC3: 10%) were
identified for Core CF1, which totally account for 95% of
the variance. The first mode (PC1) has a broad negative
peak at 4–16 μm and a positive peak at 32–148 μm
(Figure 2A). The second mode (PC2) has a positive peak at
0.4–3.2 μm and a trough around 18–26 μm (Figure 2A). The
third mode (PC3) has a strongly positive peak at 297–707 μm

FIGURE 5 | (A) Decadal-scale noise (IMF1 + 2), (B) Centennial-scale
cyclic oscillations (IMF3 + 4 + 5), and (C)Millennial variability or long-term trend
(IMF6 + 7 + 8) of KC intensity.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8452285

Ding et al. Solar Forcings of Kuroshio Current

https://palaeo-electronica.org/
https://palaeo-electronica.org/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


(Figure 2A). Two nearby cores A7 and OKI02 gave the same
modes with a consistent grain size structure, and such
consistency strongly indicates that there must be identifiable
mechanisms to account for these specific modes (Zheng et al.,
2014; Zheng et al., 2016). As suggested by Zheng et al. (2014,
2016), three PCs of the Okinawa Trough cores (A7 and OKI02)
were interpreted as KC silt (PC1), bottom nepheloid clay (PC2),
and turbidity sand (PC3), respectively. Sr-Nd isotopic
compositions of 5–18 μm fractions from Core AF2/OF3 were
further compared with the potential endmembers (the Yangtze
River, Yellow River, and rivers of Taiwan Island) to assess the
provenance, which clearly indicated that the 5–18 μm fractions
originated from rivers of Taiwan Island and are transported by,
and sensitive to, the strength of the KC (Zheng et al., 2016).
Specially, sea level has stabilized or changed very little and the
ocean circulation system of ECS has been formed since the
Middle Holocene, and at that time, the sediment transport
dynamics affecting the middle Okinawa Trough are mainly
controlled by changes in the strength of the KC (Zheng et al.,
2014; Zheng et al., 2016). These lines of evidence support the
interpretation of PC1 loading of Core CF1 as a dynamic proxy
for the KC intensity.

Long-Term Trend of Kuroshio Current
During the Late Holocene and Potential
Influences Mechanisms
To quantify the relative contributions of long-term trend and
centennial-scale oscillations of the KC, we performed a noise-
assisted data analysis EEMD on the PC1 loading of Core CF1
after linearly interpolated at a 10-years interval. Based on the
results of the EEMD, we combined the IMF6, IMF7 and IMF8
components (IMF6+7 + 8) to reveal the millennial variability or
long-term trend of KC intensity (Figure 6A). Our
reconstruction of the KC intensity contradicts recent
inferences based on low-resolution magnetic parameters and
paired organic paleothermometers (Li et al., 2019; Li et al.,
2020), but is consistent with several other lines of evidence. For
example, abundance of P. obliquiloculatata (Jian et al., 2000; Lin
et al., 2006; Xiang et al., 2007), sediment mercury (Hg)
enrichment factor (Lim et al., 2017), and sediment
provenance changes (Jiang et al., 2019; Xu et al., 2019), as
well as SST variations in the South Yellow Sea (Wang et al.,
2011; Jia et al., 2019) (Figure 6B). Within the age uncertainty
estimates, our IMF6+7 + 8 record of Core CF1 is broadly
consistent with the abovementioned proxy evidence and
suggests a slow-down of the KC during the period of
4.6–2.0 ka, followed by quickly enhanced KC and attaining
the highest level at approximately 0.5 ka (Figure 6A).
Additionally, climate records from the Taiwan Island
(Selvaraj et al., 2007; Wang et al., 2015; Ding et al., 2020),

FIGURE 6 | Temporal variations of paleorecords. (A) The long-term
trend of KC intensity (IMF6 + 7 + 8) (this study, gray line is the original data). (B)
SST of Core ZY2 (Wang et al., 2011). (C) ESNO events per 100-years (Moy
et al., 2002). (D) Sand (%) of El Junco Lake (Conroy et al., 2008). (E)
PDO-like variability (Chen et al., 2021). (F,G) Stacked normalized magnetic
susceptibility (MS) and mean grain size (MGS) for EASM and EAWM,

(Continued )

FIGURE 6 | respectively, (Kang et al., 2020). (H) Fine quartz flux deposited at
Cheju Island (Lim and Matsumoto, 2006, 2008). (I) Standardized, average
mid-latitude (30°N–50°N) net precipitation (Routson et al., 2019).
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Cheju Island (Park et al., 2016; Park, 2017) and Northeastern
Asia (Hong et al., 2005; Zhao et al., 2021) reflect gradual
precession-driven cooling/drying since the Early-Middle
Holocene with rapid climate amelioration since ~2.0 ka.
Their similarity to the KC intensity evolution suggests the
KC transports huge amounts of latent heat and water vapor
to the atmosphere along its path and plays an important role in
modulating surrounding climate change.

What, then, explains Late Holocene KC evolution? Firstly,
although a few uncertainties remain with respect to the Holocene
ENSO activities, most of the records support a strong relationship
between ENSO variability and the Equatorial Pacific mean state
and suggests more frequent El Niño events during the Late
Holocene (Figures 6C,D) (Moy et al., 2002; Conroy et al.,
2008; Koutavas and Joanides, 2012; Sadekov et al., 2013; Gill
et al., 2016; Barr et al., 2019). Enhanced El Niño activities during
the Late Holocene, characterized by weakenedWalker circulation
and northernmost position of NEC bifurcation latitude, is not
conducive to KC reinforcement at that time.

Secondly, the variability of the KC along the ECS margin at
interdecadal scales is more closely related to PDO than to
ENSO, and KC generally decelerated during the negative
PDO phase, and vice versa (Andres et al., 2009; Wu, 2013;
Wu et al., 2019). Recent study shows that PDO-like pattern
shifts from a positive to a negative phase at ~2 ka based on
ΔSSTE-W between Cores MD01-2,412 and ODP1019C
(Figure 6E) (Chen et al., 2021). Similar results are also found
in the PDO record from the Santa Barbara Basin over the last
2,700 years (Beaufort and Grelaud, 2017). Commonly, negative
PDO phase since ~2 ka, characterized by decreased negative
wind stress curl (WSC), should decelerate the southward
Sverdrup flow in the subtropical gyre and thus weaken return
flow (i.e., KC), which conflicts with the KC records from the
Okinawa Trough.

Finally, the East Asian monsoon systems, including the
southeasterly EASM and the northwesterly East Asian Winter
Monsoon (EAWM), are another important factor influencing
the variation of KC intensity (Jian et al., 2000; Zheng et al.,
2016). High-resolution reconstruction of EASM and EAWM
from three loess sections in the Loess Plateau display
continuously weakened EASM (Figure 6F) and persistently
strengthened EAWM during the Late Holocene (Figure 6G)
(Kang et al., 2020). These situations would trigger less negative
or even positive WSC over the North Pacific subtropics,
suppressing the KC intensity, which also contradicts the
enhanced KC since ~2.0 ka.

Overall, low-latitude processes (e.g., East Asian monsoons
and/or changes in ENSO/PDO-like phases) should be a
secondary factor or negligible for the long-term trend of
the KC intensity on millennial timescale during the Late
Holocene.

Westerly Driven North Pacific Subtropical
Gyre Variations During the Late Holocene
As discussed earlier, forcings other than low-latitude processes
are required to explain the long-term trend of the KC intensity

during the Late Holocene. Indeed, the KC is driven by a basin-
scale negative WSC over the North Pacific, depending on the
combined effects of subtropical easterly andmid-latitude westerly
winds (Seager and Simpson, 2016). Enhanced negative WSC over
the North Pacific forces stronger southward Sverdrup flow in the
inner ocean, which is compensated by strengthened northward
flow of the KC at the western boundary (Seager and Simpson,
2016). Accordingly, we hypothesize that the mid-latitude
Westerly Jet (WJ) and its associated WSC in the North Pacific
play a dominant role in the long-term trend of KC intensity since
the Late Holocene. Recent studies have highlighted
teleconnections between North Pacific atmospheric and
oceanic circulations over the glacial-interglacial cycles, with
equatorward (poleward) and intensified (weaker) WJ during
the glacial (interglacial) periods, coupling with the expansion
and strengthening of circulation gyres during cold periods and
vice versa (Gray et al., 2018; Gray et al., 2020; Abell et al., 2021).

Moreover, dust records from the Tarim Basin (Han et al.,
2019), the Cheju Island (Lim and Matsumoto, 2006, 2008), and
the Japan Sea (Nagashima et al., 2013) suggested strengthening
and southward shift of WJ occurred during the Late Holocene
(Figure 6H), which is further confirmed by Holocene
spatiotemporal precipitation patterns (Figure 6I) and climate
model simulations (Chen et al., 2019; Herzschuh et al., 2019;
Routson et al., 2019; Zhou et al., 2020). The forcing mechanism
may be that seasonal difference between the winter and summer
insolation across the latitudes results in gradually increased pole-
to-equator thermal gradient during the Late Holocene (Chen
et al., 2019; Routson et al., 2019). Thus, we provide direct
evidence for the predominance of accelerating and southward
shift of mid-latitude WJ, rather than low-latitude processes,
causing more negative WSC over the North Pacific and thus
stronger KC since ~2 ka.

FIGURE 7 | Results of cyclicity analysis of the original PC1 record.
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Solar Forcing of Centennial-Scale
Variability of Kuroshio Current
Superimposed on the long-term trend of the KC is significant
centennial-scale variability, which displays a larger amplitude and
a longer anomaly duration after ~2.5 ka (Figure 5B). We found a
periodicity of ~1,800-years (at the 95% significance level), ~700-
years (at the 90% significance level) and ~500-years (at the 95%
significance level) of the original PC1 record from Core CF1 by
the PAST software (Figure 7). However, it seems inappropriate to
determine the 1,800-years cycle as one of the credible climate
oscillations due to their insufficient temporal length of the
original PC1 records. We therefore consider only the 500–700-
year cycles because of underlying solar forcing. Moreover, we also
performed wavelet power spectrum analyses on the IMF3+4 + 5

record and reflected statistically significant centennial
periodicities on approximately 500-years and 700-years (>90%
confidence level) (Figure 8). Similar periodicities are also found
in the solar activity records and exhibit strong power after ~2.5 ka
(Wanner et al., 2008; Steinhilber et al., 2012). This further
suggests a link between the KC variability and solar activity on
a centennial-scale, with reduced solar activity corresponding with
weak KC intensity (Figure 9). Not all KC weakening events
covary with sunspot number (SN) on a centennial-scale for the
Late Holocene, which may stem from age model uncertainties
and sampling resolution.

Previous studies highlight that solar variability (500–700-year
cycles), amplified by low-latitude oceanic-atmospheric
interactions (e.g., ENSO), could have played an important role
in regulating centennial-scales climate variations (Liu et al., 2014;
Zhu et al., 2017; Xu et al., 2019; Xu et al., 2020). Model
simulations suggest that the ENSO system acts as a mediator
of solar activities on the climate system’s low-latitude heat
engine (Emile-Geay et al., 2007). This has been further
confirmed by paleoclimate reconstructions, which show that
the tropical Pacific mean states shift in response to the solar
activities of the last 1,500 years (Mann et al., 2009), for the early-
middle Holocene (Marchitto et al., 2010), as well as the entire
Holocene (Ersek et al., 2012). In addition, solar irradiance
variations can also trigger changes in the strength and
direction of WJ across the North Atlantic via a “top-down”
mechanism (Ineson et al., 2011), with the southward migration
and enhanced intensity of WJ responding to lower solar
irradiance (Olsen et al., 2012; Wirth et al., 2013; Lan et al.,
2020). Nonetheless, if some direct (though amplified) solar
forcing of the WJ was the dominant control on the KC
intensity, we would expect enhancement of KC intensity
correlated with reduced solar activity, conflicting with the
fact observed (Figure 3). Taken together, we can conclude
that, since the Late Holocene, weak solar irradiation makes
the tropical Pacific to be an El Niño-like state, associated with
weakened easterly trade winds and attenuated EASM, which

FIGURE 8 | (A) The wavelet power spectra and (B) global wavelet spectrum for IMF3 + 4 + 5 record was obtained after interpolation to evenly spaced data (10a)
The shape of the mother wavelet was set to Morlet. High (low) power is indicated by red (blue) color. The confidence level at 95% is depicted with black lines, and areas
beyond the cone of influence are shaded.

FIGURE 9 | Comparison of the KC intensity with sunspot number. (A)
The IMF3 + 4 + 5 record of Core CF1 representing the centennial-scale
variations of KC. (B) Sunspot number as a solar activity proxy (200–1,000a
Band-pass filter) (Wu et al., 2018).

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8452288

Ding et al. Solar Forcings of Kuroshio Current

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


overwhelms the enhanced intensity of mid-latitude WJ and
contributes to the decreased KC intensity on centennial-scale.

SUMMARY

New 1-cm contiguous grain size data from Core CF1 provide new
insights into Late Holocene millennial-to centennial-scale KC
variability. We interpret the long-term trend of the KC as a
response to the strengthening and southward shift of WJ during
the Late Holocene, resulting from gradual enhanced pole-to-
equator thermal gradient forced by orbital forcing mechanisms.
However, the waxing and waning of solar activities, via changes in
Walker circulation and ENSO of the tropical Pacific, have an
overwhelming influence on the centennial-scale changes of the
KC intensity. Our findings thus, highlight those two regions, the
high-mid latitude and tropical Pacific, alternate their dominance
as source regions causing the dynamic changes of the KC at
different timescales.

Recent evidence suggests that the WBCs have strengthened
and shifted toward the poles due to global warming during the
past few decades, which is consistent with the centennial-scale
changes of KC intensity forced by solar activity. However, if
global warming continues, especially with the Arctic
amplification, we hypothesize that the WBCs may be in turn
decrease once the threshold is breached, as shown by the long-
term trend of KC during the Late Holocene. Further
comprehensive climate model research is necessary to
understand how the KC responds to different forcing

mechanisms under a continuous global warming scenario,
which is crucial to the reliable prediction of the future climate
changes in East Asia.
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