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Studying a large number of volcanic eruptions is a way to decipher general characteristics
related to volcano dynamics but also on external forcing influencing it, such as solid Earth
and ocean tides. Many studies have tackled this tidal influence on the onset of volcanic
eruptions and more generally, on volcanic activity. However, the interplay between this
quasi-permanent forcing and volcanic systems is still poorly understood. With the present
study, we propose to consider a global viewpoint to address this interaction. We analyzed
the number of monthly volcanic eruptions and the global mean sea level between 1880 and
2009 using the Singular Spectrum Analysis time-series analysis technique to evaluate the
existence of common periodicities. We found multi-decadal components of similar
periodicities present in both time-series which we link to those already recognized in
the polar motion. Its multi-decadal variations result in a mass reorganization in the oceans
whose associated stress changes may impact processes generating volcanic eruptions
worldwide. Our results show the influence of global processes on volcanic activity and
open many questions to further investigate these multi-scale interactions.

Keywords: external forcing, volcanic activity, global mean sea level, solid Earth and ocean tides, eruption triggering,
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INTRODUCTION

The triggering of volcanic eruptions represents the ultimate stage of a series of non-linear physico-
chemical processes. Although the conditions that make a volcano ready to enter in eruption are still
elusive, deciphering those that participate in the destabilization of metastable systems could provide
new insights on the processes leading to eruption triggering. Knowledge of how volcanic systems
work has been mainly gained from studies on individual volcanoes first based on specific
methodologies and more and more on multi-method approaches (e.g., McNutt, 1996; Newhall
and Punongbayan, 1996; Battaglia et al., 2006; Dzurisin, 2006; Sigmundsson et al., 2015;
Gudmundsson et al., 2016). Despite of the high variability of volcanoes illustrated in particular
by their eruptive activity, internal structure, or chemical composition, common processes drive
volcanic activity (Cashman and Biggs, 2014). Studies on a large number of volcanoes have allowed to
provide more constraints on global processes controlling their dynamics and evolution as for
instance, the magnitude-frequency relationship of large explosive eruptions (e.g., Deligne et al.,
2010), the link between deformation and eruption (e.g., Biggs et al., 2014), as well as the role of
external forcing on the eruption triggering such as tectonic earthquakes (Seropian et al., 2021), the
sea level and climate variations (e.g., Laskar et al., 2004; Mason et al., 2004; Kutterolf et al., 2013;
Satow et al., 2021) and Earth tides (Mauk and Jonhston, 1973).

Actually, the variations of the sea level, climate and Earth tides are all related, taking part of a
global dynamics as pieces of a giant puzzle. The Liouville-Euler equations link the redistribution of
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mass at Earth’s surface, and in particular that of the fluid
envelopes to the movement of the Earth’s rotation axis
through a system of linear equations and excitation functions
(Lambeck, 2005; Lopes et al., 2021). These movements take place
at different time scales ranging from a few days to at least 18.6
years, as revealed by the study of the length-of-day variations, a
global parameter whose fluctuations on short-term capture the
mass redistribution on Earth through their impact on Earth’s
rotation velocity (Le Mouël et al., 2019). The revolution of the
Earth around the Sun and the variations of the Earth’s rotation
axis that are associated with seasons and Milankovitch cycles
modulate this force andmass movements and interfere with those
induced by plate tectonics, ocean and atmospheric currents (e.g.,
Lambeck, 2005; Le Mouël et al., 2021a,b; Zaccagnino et al., 2020).

The idea of tidal influence on volcanic activity has persisted
over the last century (e.g., Jaggar et al., 1924; McNutt and
Beavan, 1987; Emter 1997; Sottili et al., 2021). Statistical
approaches have shown that the onset of volcanic eruptions
at global scale (e.g., Mauk and Johnston, 1973) as well as at local
scale (e.g., Johnston and Mauk, 1972; Filson et al., 1973;
Golombek and Carr, 1978; Dzurizin, 1980; Martin and Rose,
1981) could be related to the Moon and in particular, its
alignment with the Earth and the Sun, known as the
fortnightly cycle. Similar observations of preferred periods
for eruption onsets have been made with ocean tides for
submarine, coastal and insular volcanic systems (e.g., McNutt
and Beavan, 1987; McNutt, 1999; Mason et al., 2004; Tolstoy,
2015). In coastal environment, the tidal deformation coupled
with the ocean loading, which corresponds to the movement of
surface water mass, induce variations in the compressional
stresses that can promote squeezing out magma (e.g., McNutt
and Beavan, 1987; McNutt, 1999). At time scales of hundreds of
thousands years, pronounced sea level variations related to ice
melting and more generally long-period climatic and
astronomical variations have also been associated with pulses
of volcanic activity, e.g., Mason et al. (2004); Andrew and
Gudmundsson (2007); Pagli and Sigmundsson (2008);
Kutterolf et al. (2013); Watt et al. (2013); Satow et al. (2021);
Sottili et al. (2021).

The influence of solid Earth and ocean tides has also been
suggested on shorter time scales through periodic behavior
detected in various physical parameters measured at volcanoes,
e.g., seismic tremor, earthquake rate, gas fluxes. Actually, tidal
constituents have been identified at volcanoes independently of
their phases of activity including quiescence, unrest and eruptions
(e.g., Jaggar et al., 1924; McNutt and Beavan, 1981, 1984;
Shimozuru, 1987; Leandro and Alvarado 1988; Rydelek et al.,
1988; Caltabanio et al., 1994; Kasahara et al., 2001; Custódio et al.,
2003; López et al., 2006; Roult et al., 2012; Sottili and Palladino,
2012; Yakiwara et al., 2013; Bredemeyer and Hesteen, 2014;
Conde et al., 2014; Contadakis et al., 2017; Dinger et al., 2018;
Girona et al., 2018; Patrick et al., 2019; Dumont et al., 2020, 2021;
İçhedef et al., 2020; Miguelsanz et al., 2021). Most of these
parameters express the transfer of fluids, either melt or/and
hydrothermal fluids, from deeper layers towards and at the
Earth’s surface. At the quiescent and hydrothermally active
caldera of Campi Flegrei (Italy), studies have demonstrated

that tidal modulation can take place according to a complex
coupling mechanism that affects both crustal structure and
hydrothermal fluids (e.g., Bottiglieri et al., 2010; De Lauro
et al., 2012, 2013, 2018; Petrosino et al., 2018, 2020; Ricco
et al., 2019; Caputo et al., 2020; Cusano et al., 2021; Petrosino
andDumont, 2022). At erupting volcanoes, increase in explosions
or seismic activity as well as second-order variations of
geophysical time-series were also attributed to tides (e.g.,
Mauk and Kienle, 1973; Golombek and Carr, 1978; Martin
and Rose, 1981; Jentzsch et al., 2001; Williams-Jones et al.,
2001; Dumont et al., 2020, 2021).

Despite all these observations, not all volcanoes show a
sensitivity to solid Earth and ocean tides, and the cause-effect
relationship is still elusive (e.g., Sparks, 1981; Neuberg, 2000).
Actually, past studies have mainly focused either on short or very-
long time scales, from hours to a few years on one hand, or over
several kyr on the other hand. However, the interaction between
tidally-generated movements and volcanic systems is expected to
occur on all time scales on which this external forcing acts.
Therefore, should we not expect a possible response of
volcanoes at all these time-scales?

We address these questions by exploring the link between
ocean tides and volcanoes from a global viewpoint over a
~130 years time interval. Oceans as all fluid and solid
envelopes on Earth respond to external forcing induced by
lunisolar tidal potential. They participate in a significant
redistribution of mass through ocean loading, and therefore
stresses at Earth’s surface over different time scales.
Considering that most volcanoes lie near, within or beneath
the oceans (Figure 1), we can raise the question of whether
the tidally-induced ocean movements and therefore stresses can
participate in changing the dynamical systems and so the
destabilization of volcanoes on decadal timescales. This is what
we tackle with this paper, by analyzing the common periodicities
which may exist in the number of worldwide volcanic eruptions
and the global mean sea level using the Singular Spectrum
Analysis (SSA) technique.

INVESTIGATING THE LINK BETWEEN THE
GLOBAL MEAN SEA LEVEL AND
WORLDWIDE VOLCANIC ACTIVITY
Data and Method
We considered volcanic eruptions worldwide reported by the
Smithsonian Institution through the Global Volcanism Program
(2013) spanning a 129-year period from 1 January 1880 to 31
December 2009. This data series counts 3,781 confirmed
eruptions with known Volcanic Explosivity Index (VEI,
Newhall and Self, 1982), associated to 514 volcanic systems
(Figure 1C). We built a number of volcanic eruptions (NVE)
using a median filter with a 12-months sliding window applied to
the number of monthly eruptive events (Figure 1A). We
performed a similar analysis for eruptions with VEI≥2 to test
the stability of our results with respect to the catalog
completeness. We also classified these volcanic systems
according to their environment, i.e. continental, insular or
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submarine, and for the first two settings, we calculated their
distance to the coastline (Figures 1C,D, Supplementary
Figure S1).

We used the reconstruction of the Global Mean Sea Level
(GMSL) by Church and White (2006). The GMSL time-series is
derived from data acquired from both worldwide-distributed tide
gauges and different altimeter satellites. It has a monthly-
sampling which was only corrected for Glacial Isostatic
Adjustment (Figure 1B).

We analyzed both time-series, e.g. that of volcanic eruptions
and that of GMSL, using SSA. This technique has been widely
applied on various geophysical data sets (Carniel et al., 2006;
Bozzo et al., 2010; Lopes et al., 2021; Dumont et al., 2020, 2021;
Petrosino and Dumont, 2022), including sea level (LeMouël et al.,
2021a,b). This time-series analysis technique allows to
decompose any time-series into a sum of physical components
corresponding to slowly-varying components such as trend,
regular and modulated oscillations and noise (e.g., Golyandina
and Zhigljavsky, 2013). First, the cross-lagged correlation matrix
was built from embedded vectors of lengths adapted to each time-
series [561 for GMSL, 2,682 for NVE (all eruptions) and 1,416 for
NVE (VEI≥2)]. Then, the singular value decomposition was
applied resulting in eigenvectors and eigenvalues that were
identified as non- or pseudo-oscillatory components and

whose periods were estimated using Fourier Transform. We
only considered the first five eigenvalues which are the
strongest components of the original signal (Supplementary
Figure S2).

Results
The number of reported volcanic eruptions increases over the
whole time interval (Figure 1A), which does not represent a
global increase of volcanic activity on Earth but rather more
systematic reports on eruptions around the world over the 20th
century. A significant drop appears, around 1940, due to the
second world war, followed by a sharp increase up to
~1950–1960. Then, the period ~1960- late 1990 was
characterized by a slow decrease of volcanic activity which
preceded a strong increase that culminated around 2005. Very
similar variations are observed for VEI≥2 eruptions. Over the
1880–2009 period, the variations of the GMSL (Figure 1B)
appear more regular, with a global increase of ~2 cm
punctuated by shorter variations of low amplitude (<0.5 cm).

Three of the first five eigenvalues of the NVE (all eruptions and
VEI≥2) appear to be very similar, and within uncertainties, to
those detected in the GMSL (Figure 2 and Supplementary
Figures S2, S3). They are characterized by a period of 52.5
years, 37.9 ± 8.9 years and 19.8 ± 2.2 years (56.9 ± 20.4 years,

FIGURE 1 |Global volcanic activity and global mean sea level from 1880 to 2009. (A) Curves showing the number of confirmed monthly volcanic eruptions since 1
January 1880 to 31 December 2009 for all and VEI≥2 eruptions (Global Volcanism Program, 2013). These eruptions are associated with 514 volcanic systems shown in
(C). The color of the triangles corresponds to submarine (blue), island (red) or continental (orange) volcanic systems whose proportions are indicated in the top inset (C).
(B)Curve of the global mean sea level from January 1880 to December 2009 after Church andWhite (2006). (D)Histogram showing the distance to the coastline for
the 161 continental and 284 island volcanoes (total: 445).
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33.3 ± 6.5 years and 19.2 ± 1.8 years for VEI≥2). The
corresponding periods extracted in the GMSL are of 56.9 ±
15.2 years, 31.8 ± 5.3 years and 19.5 ± 2 years. To further

investigate their link, we compare their waveforms (Figure 2).
The first periodicity of ~50–60 years appears in phase for the
NVE and GSML although the uncertainties are relatively

FIGURE 2 | Examples of common long-period components extracted using SSA in the global mean sea level (blue) and volcanism (orange for all eruptions and
dotted brown for VEI≥2 eruptions) with that of (A) ~50–60, (B)~30, and (C) ~20 years.
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significant. Thus, when the global mean sea level is high, the
volcanic activity is also globally high on Earth. For the ~20-year
components, the NVE and GMSL appear in phase opposition,
while for the ~30 years a phase delay is detected between GMSL
variations and volcanic activity. In the NVE, we also found a
component of ~85 years (~90 years for VEI≥2) that is not well
resolved due to the duration of the time interval considered.
Although not found in the GMSL analyzed in this paper, previous
studies of sea level data have found a similar cycle of ~90 years,
known also as the Gleissberg cycle (cf. Gleissberg, 1939; Le Mouël
et al., 2021b).

DISCUSSION

Our analysis, performed for both the whole eruption catalog and
VEI≥2 eruptions, shows the existence of consistent multi-decadal
periodicities not only for low and non-explosive eruptions but
also for explosive-dominated phenomena as already suggested for
sulfur rich tropical eruptions (Ammann and Nadeau, 2003), and
despite a catalog completeness which has kept improving over the
20th century (Siebert et al., 2015). Although some of the
uncertainties are significant, very comparable periodicities
were found in the GMSL. These different periodicities form
the larger contributions in each time-series representing more
than 90% of the original signals, once considered together with
the trend (Supplementary Figures S2, S3, S4). Moreover, a
specific link between these multi-decadal components
extracted in the NVE and GMSL is observed (in phase, phase
shifted/opposition). All together, these results lead us to consider
that these multi-decadal periodicities in the NVE and GMSL
time-series are related.

Most volcanic eruptions considered in this study, e.g. ~70%,
occur on volcanoes located either on islands or sea floor,
indicating a prime link of spatial order between volcanic
systems and oceans, knowing that the submarine eruptions are
by far underestimated (Figures 1C,D). Moreover, for volcanoes
situated on continents or islands, about 54% of them are located
within 50 km to the coast (Figure 1D, Supplementary Figure
S1). Water, which is ubiquitous on Earth, is not only present at
Earth’s surface but also as groundwater, penetrating beneath the
islands and far into the continents.Water also accumulates within
intraplate regions (e.g., Gleeson et al., 2016; Craig et al., 2017;
MacMillan et al., 2019; Jasechko et al., 2020). All fluid layers
redistribute water masses from the microscopic scale through
pore-fluid pressures to the global scale via their loading, by
oscillating at periods ranging from few hours to multi-decades
in response to tidal forces and pole motion (e.g., Lambeck, 2005;
MacMillan et al., 2019; Le Mouël et al., 2021b; Lopes et al., 2021).
These two different ways by which water can interfere with
dynamical systems have not only been suggested for
volcanoes, but also for fault systems where tidal stresses may
enhance the long-term tectonic loads (Thomas et al., 2009; Neves
et al., 2015; Ide et al., 2016). Considering that both faults and
volcanoes share some commonalities in their driving processes,
we believe that taking into account their response to external
forcing could improve understanding of how this interplay works.

Past studies spotted that long periods (>6 months) of the
hydrological cycle can influence eruption onsets at volcanoes
located nearby the coast (e.g., McNutt and Beavan, 1987; McNutt,
1999). This idea seems to be confirmed by our study and the work
of Mason et al. (2004) based on worldwide catalog of eruptions
who showed a correlation between eruption rates and annual sea
level variations. Besides, it is well known that bathymetry and
boundary effects associated with coastlines have a major impact
on the local amplitudes of semi-diurnal, spring, and neap tides
(Supplementary Figure S5). Likewise, sea level variations over
longer time scales, like the ones highlighted in this study, have
different amplitudes and larger loading depending on geographic
location. As long periods of hydrological loading redistribute
more water masses than shorter periods, it could explain why
long periods and multi-decadal periodicities would have more
impact on unstable and dynamical systems.

Detecting these decadal periodicities in both time-series
suggests as well that they relate to a global phenomenon.
Although the way these processes take place and interfere is
still puzzling, we note that four similar multi-decadal periods
were detected in the fluctuations of the pole motion, being of 21.6,
31.5, 57.3 and 92.2 years (e.g., Lopes et al., 2021). Yet, any
movement of the Earth’s rotation axis is accompanied by mass
movements according to Liouville-Euler equations (Lambeck,
2005; Lopes et al., 2021). This may be illustrated by the late
Pleistocene deglaciation, the concomitant sea level changes and a
secular drift present in the pole motion (Nakiboglu and Lambeck,
1980). This is what we observe through the common periodicities
extracted in the GMSL and the pole motion (Lopes et al., 2021).
We interpret the presence of these decadal periodicities in the
NVE as a consequence of this global mass redistribution
operating at similar time scales. The water masses transported
over these decadal periods induce pressure changes on crust that
adds to the local stresses, leading to a slow destabilization of
magma plumbing systems. In fact, the decadal cycles extracted in
the NVE do not properly trigger one eruption every ~50 or
~20 years as evidenced by the amplitude of the waveforms
extracted by SSA (Figure 2), although they participate to the
triggering process. Complementary approaches will be necessary
for better understanding this link, as for instance, numerical
modeling to investigate how tidal stresses can destabilize magma
chambers and fault systems (McNutt and Beaven, 1987; Ide et al.,
2016; Jonhson et al., 2017; Scholz, 2019). Moreover, the impact of
the fluctuations of the Earth’s rotation axis on volcanic eruptions
was also suggested locally and regionally (Kutterolf et al., 2013;
Lambert and Sottili, 2019).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Our study leads us to suggest that movements affecting globally
our planet over a wide range of time scales, e.g., lunisolar
gravitational forces, pole motion, may contribute to the
dynamics of volcanic systems. These considerations and results
raise also some more questions as for instance, are volcanoes
sensitive to all or just some of these periodicities and what may
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explain these differences? Could this forcing be viewed as a
background variation participating in the regular dynamics of
magma plumbing systems? We think that these decadal
variations together with short and very long periodicities
deserve to be more explored and investigated as they might
reveal global conditions and space-time patterns favorable to
eruption triggering.

These results represent an avenue to explore how the mass
redistribution acting at global scale participates in the processes
leading to the triggering of volcanic eruptions as already
suggested by Mason et al. (2004) or Sottili et al. (2021).
Deciphering the link between global and local scale is critical
to understand how external forcing acts on different time scales
and how it can disrupt dynamical systems like volcanoes. We
think that assessing these processes at multiple scales will allow to
provide more constraints on the parameters and conditions that
make volcanoes sensitive to small environmental changes (e.g.
Canon-Tapia, 2014; Caricchi et al., 2021).

Singular SpectrumAnalysis, in addition to be a robust time-series
analysis technique that has been applied to a large variety of Earth
sciences data, allows to extract trends and periodic components
without an a priori model, which has some advantages when
analyzing signals integrated at various time scales such as tides
and whose modulation may vary over time as in case of seismic
tremor in a highly heterogeneous medium (e.g., Petrosino and
Dumont, 2022). Similar analyses could provide new insights on
studied processes, including cause-effect relationships between
parameters as well as what makes some volcanoes sensitive to
quasi-permanent external forcing and why (e.g., Dumont et al.,
2021). All active volcanoes do not respond to solid Earth and ocean
tides (e.g., Neuberg, 2000) and that sensitivity may be related to
inherent properties of volcanoes, their location on Earth or the plate
boundaries conditions (e.g., Mauk and Johnston, 1973; Dzurisin,
1980; Dumont et al., 2021). Many studies have also reported an
increase of the sensitivity to tidal forcing when plumbing systems are
approaching a critical state coinciding for some volcanoes to pre-
eruptive periods (e.g., Filson et al., 1973; Berrino and Corrado, 1991;
De Lauro et al., 2013; Girona et al., 2018; Miguelsanz et al., 2021).
More systematics observations are required to unravel these critical
conditions.

Technique plays an important role in the road to findings, but
data, as all the ingredients in a recipe, play an equally
fundamental role. The data availability and quality are of great
importance to advance in the comprehension of the interplay
between external and internal processes at volcanoes. The role of
volcano observatories and initiatives such WOVOdat (Newhall
et al., 2017) or the Global Volcanism Program (2013) have been
primordial to tackle these questions and many others. Revisiting
past volcanic activity together with recent volcanic events, from
global to local scale using time-series analysis, may help to
advance in this direction.
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