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Because of their relatively simple structures, plastic greenhouses in southern China have
poor resistance to adverse external weather conditions. Adverse meteorological condition
inside the greenhouse is one of the main limiting factors for facility crop production in
southern China. Among them, high temperature and high humidity (HTHH) often co-
occurred in greenhouses, inducing great losses. Tomatoes (Lycopersicon esculentum
Mill.) are grown under protected environment worldwide. Here, characteristics of HTHH
inside plastic greenhouses in southern China were analyzed and tomato was chosen as
the sample facility crop to study the effects of HTHH. Daily maximum temperature and
average relative humidity (RH) inside plastic greenhouses were simulated using the
extreme learning machine (ELM) method to identify HTHH events. The results showed
that the plastic greenhouse HTHH events mainly occurred from June to September in
southern China, especially in the southernmost region. During 1990 and 2019, the
occurrence times and accumulative days of the HTHH events showed a downward
trend at 0.3 times/decade and 2.6 days/decade, respectively, which is mainly due to their
reduction in July. HTHH affected the growth of tomato, in which high temperature plays a
more important role than high RH. Days of flower bud differentiation was more sensitive to
HTHH stress than other physiological indexes of tomato. With the increase of the return
period of HTHH events, the corresponding losses of physiological indexes of tomato
increased, except for the western region, where HTHH events rarely occurred. The results
in this study could provide guidance for production and layout of greenhouse-grown
tomato, and the research approach can also be applied to other greenhouse-grown crops
and meteorological disasters.

Keywords: high temperature and high humidity, tomato seedling, flower bud differentiation, southern China,
machine learning, return period

INTRODUCTION

Tomatoes (Lycopersicon esculentumMill.), originated in South America, are widely grown worldwide
(Viuda-Martos et al., 2014). The optimal air temperature for tomato is between 18.5 and 26.5°C, and
relative humidity (RH) is between 50% and 70% (Jones, 2013; Harel et al., 2014; Shamshiri et al.,
2018; Zheng et al., 2020). China is one of the main producers of tomato, which produced
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125,739,004 t in 2019, ranking first worldwide (FAOSTAT, 2021).
In China, ~38% of vegetables are produced under protected
cultivation. Among them, solar greenhouses and plastic
greenhouses are the two basic types, accounting for 30% and
67% of the total area of protected cultivation, respectively, and the
remaining 3% are mainly multi-span greenhouses (Wang et al.,
2020). The main planting areas are located in northern China for
solar greenhouses and southern China for plastic greenhouses.
Southern China is the hottest and most humid area in the entire
country; RH commonly exceeds 70% in summer, and extreme
heat increased during the past decades (Wang et al., 2014; Fan
et al., 2016; Li and Zha, 2018). High temperature combined with
high humidity (HTHH) put more stress on human health (Guo
et al., 2019), crop growth, and developing seeds (Wang et al.,
2012; Zhao, 2020; Zheng et al., 2020) than a univariate
perspective. However, studies on HTHH events at the regional
scale and their impacts on protected agriculture are not sufficient.

Temperature is one of the most important environmental
factors affecting the growth of tomatoes (Shamshiri et al., 2018).
As a result of global warming, high temperature outside the
greenhouse frequently occurs (Wang et al., 2014). For protected
cultivation, it can be 20–30°C hotter inside greenhouses than
outside if there is no microclimate controller (Kittas et al., 2005;
Shamshiri et al., 2018). In China, over two-thirds of the protected
cultivation were under low-tech facilities. Hence, their ability to
regulate and resist adverse meteorological conditions is poor (Li
et al., 2017; Li et al., 2019). High temperature can induce low seed
setting rate of tomato, and seriously affect yield and quality (Sato
et al., 2000; Adams et al., 2001; Mulholland et al., 2003). In many
studies, 32°C was taken as the threshold of high temperature for
tomato. For instance, Pressman et al. (2002) found that the
number and viability of pollen grains of tomato significantly
decreased as temperature exceeded 32°C. Sato et al. (2004)
indicated that the proportion of aborted flowers significantly
increased and the fruit setting rate decreased when
temperature was higher than 32°C. Excessive temperature in
plastic greenhouses can also cause additional risks and
production costs (Shamshiri et al., 2018). These facts indicate
that the high temperature-related disasters are a concern in the
production of greenhouse-grown tomatoes.

A certain range of RH can alleviate the adverse effects of high
temperature on tomato. Plants may also need higher RH if they
are suffering from high temperature (Kittas et al., 2005; Shamshiri
et al., 2018). For instance, Harel et al. (2014) found that tomato
pollination was enhanced as RH reaches 70%. However, excessive
RH can enhance high-temperature stress by affecting the
transpiration, causing plants to wilt due to the inability of the
roots of the plants to acquire sufficient water (Shamshiri et al.,
2018), affecting plant photosynthesis (Yang et al., 2018). At
present, studies on HTHH stress on greenhouse-grown plants
are rare. Weng et al. (2021) used plant height, stem diameter,
chlorophyll (Chl), and photosynthetic parameters to analyze the
physiological response of melon to HTHH stress at the seedling
stage. Zhao (2020) found that tomato fruit size and quality
significantly decreased when exposed to HTHH during the
fruit expansion period. Flower bud differentiation is a critical
indication of final fruit production and quality (Wan et al., 2018),

which is the key period from vegetative growth to reproductive
growth, and environmental stress at the seedling stage can greatly
affect flower bud differentiation (Li et al., 2019). However, after
suffering from HTHH stress at the seedling stage, response
characteristics for the flower bud differentiation of tomato
remain unclear, which is of great significance for the early
prediction of tomato fruit production and quality.

Physiological indexes, such as Chl content, stem diameter,
stem height, dry mass of seedlings, endogenous hormones, and
days of flower bud differentiation, among others, were usually
measured to show the response of plants to environmental stress
(Zheng et al., 2020; Weng et al., 2021). Chlorophyll is a green
pigment in chloroplast thylakoids used for photosynthesis
(Fiedor et al., 2008), and the decrease of Chl content in leaves
is the main feature of leaf senescence (Rossi et al., 2017). Indexes
of stem diameter, stem height, and dry mass of seedlings are used
to evaluate the health of plant. In previous studies, these indexes
are integrated to construct a composite index to describe the plant
health comprehensively (Liu et al., 2015; Li et al., 2020). Abscisic
acid (ABA) is an endogenous hormone in plants, which has risen
significantly under abiotic stress to regulate its physiological
activities (Ng et al., 2014). However, when the ABA content in
plant is at a high level, it will cause some negative effects, such as
male sterility, resulting in a decline in plant final yield and quality
(Singh and Sawhney, 1998). With the increase of abiotic stress,
the rate of flower bud differentiation decreased and the days of
flower bud differentiation prolonged. In addition, the number of
flower buds is lower and they have a smaller size under abiotic
stress, leading to the reduction of fruit yield and quality (Tsuchida
and Jomura, 2020). Overall, monitoring these indexes is useful to
show plant responses to abiotic stresses, an indication of the final
fruit yield and quality, especially at the flower bud
differentiation stage.

It should be noted that HTHH is one of the main restricting
factors in the production of greenhouse-grown tomato in China.
However, the distribution characteristics of greenhouse HTHH
events at the regional scale are rarely reported, as well as the
response characteristics of tomatoes after suffering from HTHH
stress in the critical growth period. Hence, the objectives of this
study were (1) to simulate the daily maximum temperature and daily
average RH in typical plastic greenhouses by using outdoor
meteorological observations; (2) to analyze the temporal and
spatial variation of HTHH events inside plastic greenhouses; (3)
to construct a comprehensive intensity index of HTHH events using
the analytic hierarchy process (AHP) method so as to detect the
response of tomato suffering fromHTHH in seedling stage; and (4) to
study the spatial distribution of greenhouse-grown tomato potential
losses caused by HTHH. The results can provide essential
information in guiding the layout of plastic greenhouses and early
prediction of tomato losses when suffering from HTHH stress.

MATERIALS AND METHODS

Study Area andMeteorological Data Source
Southern China (18°10′–35°07′N; 97°21′–122°50′E) is selected as
the study region in this research. The geographic location and
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terrains are shown in Figure 1. Most of southern China has a
subtropical monsoon climate, with a mean annual precipitation
and an annual pan evaporation of 1,320 mm and 1,545 mm,
respectively, and an annual average maximum and minimum
air temperature of approximately 23 and 14°C, respectively (Fan
et al., 2016). Owing to these climate characteristics, this region is
prone to HHTH, especially in the summer. Greenhouse-grown
tomatoes in southern China are mainly grown in the winter half
year; seedlings are raised in July to August and fruits can ripen in
November. Therefore, HTHH mainly occurred in the seedling
stage of greenhouse-grown tomatoes. Data from 305
meteorological stations located in the study region during
1990–2019 are collected. The collected parameters included
daily outdoor maximum air temperature, minimum air
temperature, average RH, minimum RH, sunshine duration,
and average wind speed at 1.5 m above ground surface. These
meteorological data are maintained and rigorously quality
controlled by the China Meteorological Administration (http://
data.cma.cn/).

Definition of Plastic Greenhouse HTHH
Events
For tomato production, the optimal range of RH is between 50%
and 70%, and temperature exceeding 32°C will bring losses.
Hence, in this study, we defined a daily maximum
temperature of >32°C inside the plastic greenhouse as high
temperature, and an average RH of >70% inside the plastic
greenhouse is considered as high humidity. When high
temperature and high humidity co-occurred and lasted for
3 days or more, it can be defined as a plastic greenhouse
HTHH event.

Simulation of Daily Maximum Temperature
and Average RH in Plastic Greenhouses
There are no long-term historical microclimate data inside plastic
greenhouses in southern China. It is practical and valuable to

simulate microclimate inside greenhouses by using observations
from outdoor meteorological stations for studying
spatiotemporal characteristics of plastic greenhouse HTHH
events at the regional scale. Machine learning methods are
employed to simulate long-term daily maximum temperature
and average RH in typical plastic greenhouses. Based on the
existing literatures, we select six machine learning methods that
are most commonly used in the field of meteorology. The selected
models include multiple linear regression (MLR) (Lee et al.,
2019); support vector machine (SVM) (Bayat et al., 2020; Fan
et al., 2021), which is a kernel-based algorithm; two neural
networks algorithms, back-propagation neural network (BP)
(Sun, 2017) and extreme learning machine (ELM) (Feng et al.,
2020); and two tree-based ensemble models, random forest (RF)
(Jin et al., 2020) and extreme gradient boosting models
(XGBoost) (Fan et al., 2021).

In order to build the simulation models, daily maximum
temperature and average RH in three typical plastic
greenhouses were observed. The locations of the
greenhouses and the observation periods are shown in
Table 1. After abandoning the abnormal observations,
which accounted for 1.06% of the total observation, there
are a total of 2,230 daily maximum temperature records and
1,502 daily average RH records (the observations from
Liancheng were not used to build the RH simulation model,
because of RH inside this greenhouse is mainly controlled
artificially). The daily observations of nearby meteorological
stations are used as input independent variables to simulate
daily maximum temperature and average RH inside
greenhouses. The sample data are divided into two subsets,
the odd days are used to train model and the remaining are
used to evaluate the model.

After several variable combination attempts, eight
variables are selected to simulate daily maximum
temperature inside the plastic greenhouse: outdoor
maximum temperature of the day, outdoor average RH of
the day, outdoor minimum RH of the day, outdoor sunshine
duration of the day, outdoor maximum temperature of the
previous day, outdoor maximum temperature of the next day,
outdoor average RH of the next day, and outdoor minimum
RH of the next day. Seven variables are selected to simulate
the daily average RH inside the plastic greenhouse: day
sequence, outdoor average RH of the day, outdoor
minimum RH of the day, outdoor sunshine duration of the
day, outdoor minimum RH of the previous day, outdoor
average wind speed of the previous day, and outdoor
minimum RH of the next day.

The performances of the six machine learning methods were
evaluated using the coefficient of determination (R2) and root
mean square error (RMSE). The mathematical expressions of the
two statistical indicators can be found in a previous study (Dou
and Yang, 2018). R2 measures how well the model fits the data as
a proportion of total variation. RMSE measures the stability of
the model. Considering the two statistics together can provide a
more comprehensive evaluation of the model’s performance. The
lowest value of RMSE and R2 value close to one represent the best
model performance.

FIGURE 1 | Geographic location of study area and meteorological
stations.
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Comprehensive Intensity Index of HTHH
Response of tomato to HTHH stress is related to the temperature,
humidity, and duration of the event. A comprehensive intensity
index (CSI) of HTHH is built as:

CSI � wtIt + whIh + wdId (1)
where t, h, and d are the element of temperature, humidity, and
duration days of the HTHH event, respectively; w are the weights
corresponding to each element, which are determined by the
AHP method; and I are the normalized values of each element,
calculated as:

Ii � Vi − Vmin

Vmax − Vmin
(2)

where Vi is the original observation value of maximum
temperature, average RH, or duration days of a certain HTHH
event. Vmax and Vmin are the maximum and minimum value of
this element among all the HTHH events in southern China
during the past 30 years. Ii is between 0 and 1. The purpose of
normalization is to eliminate the unit and dimensional
differences between elements, so as to make the calculation of
CSI much more scientific.

TheAHPmethodwas first introduced by Saaty (1977; Saaty 1994).
It is an effective decision-making tool to solve multiple-criteria
problem, and can provide the weights of the parameters (Halil
et al., 2013; Pramanik, 2016; Ren et al., 2019). In this study, the
AHP method is used to determine the weights of the three elements
describing the intensity of HTHH. The basic step of AHP is to
establish the judgment matrices by a pairwise comparison method.
The weights can be obtained by solving the judgement matrix. The
fundamental scale for the pairwise comparisonwas suggested by Saaty
(1994), as shown in Table 2. The pairwise matrix and weights of the
three elements of HTHH are shown in Effects of HTHH Stress on the
Physiological Indexes of Tomato Based on the Experiment section.

Experimental Design and the Measured
Physiological Indexes
Seedlings of tomato variety, Lycopersicon esculentumMill. Shouhe
Fenguan, were planted in a Venlo-type greenhouse in Nanjing

University of Information Science and Technology from April to
July 2020. At the stage of fourth true leaf, seedlings were
transferred to an artificial climate box (TPG1260, Australia)
and exposed to the HTHH stress. A three-factor orthogonal
experimental design was conducted. The factor of high
temperature (daily maximum/minimum temperature) was set
as four levels: 32/22°C (T1), 35/25°C (T2), 38/28°C (T3), and 41/
31°C (T4); average RH was set as follows: 50% (RH1), 70% (RH2),
and 90% (RH3); the factor of stress duration days was set as
follows: 2 days (D1), 4 days (D2), 6 days (D3), and 8 days (D4).
The control treatment (CK) was set as 28/18°C and 50 ± 5%. From
all the treatment combinations, 16 treatments were selected by an
orthogonal table as shown in Table 3.

Days of flower bud differentiation (DD), Chl content of leaves,
ABA content of terminal buds, and seedling quality index (SQI)
were measured for each treatment to show the responses of plants
to HTHH stress. The date when the apical meristem became
slightly visible and small flat bumps began to form is recorded as
the beginning of flower bud differentiation, and the date when
flower organs became fully developed is regarded as the end of the

TABLE 1 | The locations of the plastic greenhouses and the periods of observation.

Location (latitude,
longitude)

Observation start date Observation end date

Fuqing (25.8°N, 119.3°E) May 1, 2017 September 10, 2019
Liancheng (25.6°N, 116.6°E) June 9, 2017 August 30, 2019
Jiangyan (32.5°N, 120.1°E) August 23, 2013 December 30, 2015

TABLE 2 | Pairwise comparison scale for AHP preferences.

Definition Equal importance Moderate importance Strong importance Demonstrated
importance

Absolute importance

Numerical 1 3 5 7 9

Notes: The numbers are 2, 4, 6, and 8 when between two adjacent comparison scales.

TABLE 3 | Orthogonal experimental design table.

Treatment Maximum/Minimum
temperature (°C)

Average RH Duration days

1 T1(32/22) 50% (RH1) 2 days (D1)
2 T1(32/22) 50% (RH1) 4 days (D2)
3 T1(32/22) 70% (RH2) 6 days (D3)
4 T1(32/22) 90% (RH3) 8 days (D4)
5 T2(35/25) 50% (RH1) 2 days (D1)
6 T2(35/25) 50% (RH1) 4 days (D2)
7 T2(35/25) 70% (RH2) 8 days (D4)
8 T2(35/25) 90% (RH3) 6 days (D3)
9 T3(38/28) 50% (RH1) 6 days (D3)
10 T3(38/28) 50% (RH1) 8 days (D4)
11 T3(38/28) 70% (RH2) 2 days (D1)
12 T3(38/28) 90% (RH3) 4 days (D2)
13 T4(41/31) 50% (RH1) 6 days (D3)
14 T4(41/31) 50% (RH1) 8 days (D4)
15 T4(41/31) 70% (RH2) 4 days (D2)
16 T4(41/31) 90% (RH3) 2 days (D1)
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flower bud differentiation. An Olympus electron microscope was
used to observe the flower bud differentiation process. SQI, Chl,
and ABA content were measured when flower bud differentiation
ended. SQI was calculated as: (diameter of the main stem/plant
height) × dry mass of whole plant (Li et al., 2020). Duncan’s test
(p ≤ 0.05) was used to assess differences in physiological indices
under different treatments.

To make the four physiological indexes comparable, change
rates were calculated as Eqs. 3, 4. The physiological indexes that
increased under abiotic stress were calculated with Eq. 3, such as
ABA and DD. The physiological indexes that decreased under
abiotic stress were calculated with Eq. 4, such as SQI and Chl.

CrPIi � (PIi − PIck)/PIck (3)
CrPIi � (PIck − PIi)/PIck (4)

where PIi is the observed value of physiological index PI under i
treatment, and PIck is the value of PI in the CK; CrPIi represents
change rate of PIi.

RESULTS

Performance of the Selected Machine
Learning Methods
Six machine learningmethods were used to simulate daily maximum
temperature and average RH in typical plastic greenhouses. The
performances of themachine learningmethods are shown inTable 4.
The results showed that for both daily average RH and maximum
temperature, the ELMmodel had the greatestR2 and smallestRSME
in the testing stage, indicating the best model performance among all
methods. The observed and simulated values of daily average RH and
daily maximum temperature by using the ELM model are further
shown in Figure 2, and the values of regression coefficient were close
to the 1:1 line. Therefore, in this study, the ELMmethod was selected
to simulate the daily average RH and maximum temperature in
plastic greenhouses in southernChina during 1990 and 2019 by using
outdoor meteorological station observations.

The Spatiotemporal Variation of Plastic
Greenhouse HTHH Events
HTHH events in plastic greenhouses were extracted in southern
China during 1990 and 2019 according to the definition in the

Definition of Plastic Greenhouse HTHH Events. The spatial
distribution of multi-year average occurrence times, average
duration days, and annual accumulative days of HTHH events
were analyzed. As shown in Figure 3A, the annual occurrence
times of HTHH events showed the largest value in the
southernmost areas of the study region (often annually >10
times). Average duration days of HTHH events was high
along the eastern and southern coasts with the events often
lasting over 6 days (Figure 3B). Annual accumulative HTHH
days were highest in the southern area (Figure 3C), where the
HTHH events occurred frequently and lasted for longer days.
However, in the western area of the study region, HTHH events
seldom happened.

The variation of plastic greenhouse HTHH events in
different months is shown in Figure 4A. The HTHH events
mainly occurred from June to September in southern China,
accounting for 86.93% of the total occurrence times of HTHH
events, and 89.27% of the total accumulative days. From June to
September, the average monthly occurrence times was ~1.2 and
the average duration days was ~6 days. The HTHH events rarely
occurred in October to May of the next year. The interannual
variation of the HTHH events during 1990 and 2019 is shown in
Figure 4B. The annual occurrence times and the annual
accumulative days of the HTHH events showed a significant
downward trend with 0.37 times/decade (p < 0.01) and
2.63 days/decade (p < 0.05), respectively, during this period.
In order to find out which months caused this decreasing trend,
the interannual changes of HTHH events in different months
were analyzed. We found that the occurrence times and
accumulative days of the HTHH events in July had a
significant downward trend, while there was no obvious
interannual trend in other months. As shown in Figure 4B,
the occurrence times and the accumulative days of the HTHH
events in July decreased significantly (p < 0.05) by 0.1 times/
decade and 1.3 days/decade, respectively.

Effects of HTHH Stress on the Physiological
Indexes of Tomato Based on the
Experiment
The physiological indexes of tomatoes after flower bud
differentiation were measured for each treatment, as shown in
Figure 5. The physiological indexes had significant (p < 0.05)
differences under different high-temperature treatments. High

TABLE 4 | Performance of the machine learning methods.

Model Daily average RH Daily maximum temperature

Training Testing Training Testing

R2 RSME (%) R2 RSME (%) R2 RSME(°C) R2 RSME(°C)

MLR 0.7887 4.76 0.765 4.85 0.8584 3.17 0.8618 3.09
BP 0.8298 4.28 0.7957 4.54 0.8976 2.70 0.8893 2.78
ELM 0.8008 4.62 0.7977 4.52 0.8833 2.88 0.8904 2.75
Rf 0.9653 2.02 0.7904 4.58 0.9765 1.33 0.8810 2.87
SVM 0.8548 3.95 0.7843 4.67 0.8996 2.67 0.8873 2.79
XGBoost 0.9508 2.33 0.775 4.78 0.9664 1.56 0.8749 2.95
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FIGURE 2 | | Observation and simulated daily average RH (A) andmaximum temperature (B) in plastic greenhouses by the ELMmethod. n is the sample size for the
testing stage.

FIGURE 3 | Spatial distribution of multi-year average occurrence times (A), average duration days (B), and annual accumulative days (C) of HTHH events in
southern China.

FIGURE 4 | The temporal variations of HTHH events. (A) Variations from month to month. (B) Interannual variations of the HTHH events. Black lines show the
variations of occurrence times of the HTHH events; red lines show the accumulative days of the HTHH events; triangles are for annual average HTHH events; and dots
show the HTHH events in July.
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temperature significantly increased the values of DD and ABA,
but significantly decreased Chl and SQI. Compared with the CK,
the HTHH stress with any level of RH or duration days
significantly changed the physiological indexes. However,
among different levels of RH, there is no significant difference
for DD, Chl, and ABA. SQI of treatments under high RH (90%)
stress is significantly smaller than 50% RH treatments. Among
different duration day treatments, there is no significant
difference for DD and ABA. The HTHH stress with longer
duration days can significantly decrease SQI and Chl
compared with shorter duration days. In general, high
temperature plays a more important role than RH and
duration days in the effects of HTHH stress on tomato growth.

According to the responses of physiological indexes of
tomato under different HTHH stress treatments and after
consulting some experts, we build the pairwise comparison
matrix. Then, the weight of each element of HTHH event
based on the AHP method can be calculated. The results are
shown in Table 5. The weight of high temperature, average
RH, and duration days are 0.579, 0.234, and 0.187,
respectively. Based on Eq. 1, the CSI of each HTHH
treatment can be calculated. Logistical functions are used
to fit the changes of physiological indexes with the CSI, as
shown in Figure 6. The goodness of fit of all the curves are at
the 0.01 significance level, and the curve of ABA performs
better than other indexes with an R2 of 0.88. With the
increased CSI, the change rate of DD is higher than other
physiological indexes. When the CSI value is ~0.2, the change

rate exceeds 1.0 for DD, 0.4 for Chl, but no more than 0.2 for
SQI, indicating that the DD is the most sensitive physiological
index to HTHH stress, followed by Chl.

Change Rates of Tomato Physiological
Indices Caused by the HTHH Events at
Different Return Periods
HTHH events are recognized at every station from 1990 to 2019,
and CSI of these HTHH events was calculated by Eq. 1. The
exceeding probability of CSI for each station is fitted so as to
obtain the CSI of HTHH events at different return periods.
Fitting equations in Figure 6 can be used to calculate potential
loss rates of physiological indexes of tomatoes caused by the
HTHH events at different return periods. Figure 7 takes ABA and
Chl as examples to show the spatial distributions of potential loss
rates of tomato under the HTHH events for the 0.33-year, 1-year,

FIGURE 5 | Values of physiological indexes of tomato under different HTHH stress treatments. In the same group, data having the same letters atop bars are not
significantly different determined by Duncan’s test (p ≤ 0.05). The error bars represent standard deviation.

TABLE 5 | Pairwise matrix and the corresponding weights of the three elements
for HTHH.

Elements of the pairwise matrix Weight by AHP (ωi)

Duration Temperature RH

Duration 1 1/4 1 0.187
Temperature 4 1 2 0.579
RH 1 1/2 1 0.234

FIGURE 6 | Relationships between comprehensive intensity of HTHH
(CSI) and physiological indexes of tomato.
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and 5-year return periods. As the return period increased, the
corresponding loss rates also increased. The loss rates of Chl are
significantly higher than ABA at the same return period except
for the western region. This can be attributed to the fact that Chl
is more sensitive to HTHH than ABA (Figure 6). In these areas, a
once-a-year HTHH event can cause Chl losses of more than 40%.
However, the western region is a mountainous area where the
HTHH events rarely happened (Figure 3). Hence, the intensity of
the HTHH events did not change much even at higher return
periods; the corresponding loss rates were all below 10%.

DISCUSSION AND CONCLUSION

Discussion
Outdoor dailymaximum andminimum temperature, RH, sunshine
duration, and wind speed are the essential elements to simulate the
maximum temperature and RH inside plastic greenhouses. Against
the backdrop of global warming, there were significant upward
trends for the daily maximum temperature and daily minimum
temperature across various climatic zones of China (Fan et al.,
2016). A downward trend for daily RH was found during
1956–2015 in China; this downward trend reached significance
at −0.124%/year during 1986–2015, and southern China showed
the greatest declinemagnitude (Fan et al., 2016). However, Yan et al.
(2019) found that the high-temperature and high-humidity events
have increased since the mid-1980s in the middle and lower reaches
of Yangtze River, in the northern part of southern China. Wind
speed decreased in the 1990s and increased after 2000 in southern
China (Fan et al., 2016). Since the 1990s, the sunshine duration have
increased in southern China (Fan et al., 2016; He et al., 2018).
Previous studies were more concerned about univariate
meteorological elements; high-temperature and high-humidity
events were less researched. Western north Pacific subtropical
high westward extension and intensification during the past

decades plays an important role in regulating China’s climate in
summer (He et al., 2015; Wang et al., 2014). In this study, it was
found that there was a decreasing trend of the interannual variation
of the HTHH events in plastic greenhouses, especially in summer.
This is different from the result of increased outdoor HTHH events
obtained by Yan et al. (2019). This may have something to do with
increased sunshine duration and wind speeds, which prevents the
RH in plastic greenhouse from being too high.

Previous studies on the environmental constraints for facility
crops mainly focus on a single factor, such as high temperature,
low temperature, scant light, and high humidity. However, these
environmental constraints often co-occurred in actual
production, such as low temperature and scant light, high
temperature, and high humidity. However, these composite
stresses are seldom studied. Heat stress research trials were
carried out in many previous studies, and showed that high
temperature had seriously adverse impacts on the growth, fruit
yield, and quality of tomatoes (Mulholland et al., 2003; Shamshiri
et al., 2018; Ro et al., 2021). Hence, identification of tomato
genotypes with higher resistance at high temperatures continues
to draw the attention of researchers (Xu et al., 2017;
Akhoundnejad et al., 2020; Vijayakumar et al., 2021). These
studies found that the effects of high temperature on heat-
resistant tomato genotypes were commonly alleviated by more
than 10% compared to that on heat-sensitive genotypes.
Therefore, selection of heat-resistant tomato varieties can be
an effective method to mitigate the adverse effect of high
temperature. Compared with high temperature, studies on
high humidity are relatively less reported. RH affects plants
mainly though regulating stomata. Arve and Torre (2015)
reported that high RH slightly decreased ABA, which is
consistent with the results in this study. In addition, with
regard to the effect of HTHH stress on tomato growth, we
found that high temperature plays a more important role than
high RH and duration days. Since high temperature and high

FIGURE 7 | The spatial distribution of the potential loss rates of ABA and Chl caused by HTHH events in southern China with return periods of three times a year,
once a year, and once every 5 years.
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humidity often occur simultaneously and will cause more serious
effects, the performance of high-temperature-resistant genotypes
under high-humidity conditions should be further assessed in a
future study.

Here, we found that the law of physiological indexes of tomato
changed with comprehensive intensity of HTHH, and the
goodness of fit of all the curves was at the 0.01 significance
level (Figure 6). In many previous studies, this kind of
relationship was commonly called vulnerability curve, which
can be used to assess the sensitivity and adaptability of a
hazard-bearing body to adverse effects (Yue et al., 2015; Wang
et al., 2016; Cui et al., 2019; Li et al., 2021). It is also an important
part of disaster risk assessment. Most of these vulnerability curve
studies were for field crops, such as soybean, wheat, and maize.
However, facility agriculture was rarely involved. Hence, the
curves obtained in this study can be potentially used for
disaster risk assessment in the facility agriculture, and provide
essential information for guiding the layout of plastic greenhouses
and early prediction of tomato losses when suffering fromHTHH
stress. However, due to the differences in variety, irrigation, and
fertilizer usage, among others, the response of tomatoes to HTHH
stress in actual greenhouse production may differ, to a certain
extent, from the estimated vulnerability curves derived in this
study. In addition, plastic greenhouses in practical production
have different qualities and structures, so the relationship
between the microclimate inside plastic greenhouses and
external meteorological conditions may be different for
different plastic greenhouses. This increased the uncertainty of
our results. In future research, collecting microclimate
observations from a larger number of and more dispersed
plastic greenhouses can reduce the uncertainty.

Conclusion
Adverse microclimate conditions in greenhouses can lead to crop
production losses and increase regulation costs. In this study,
southern China was chosen as the case study area to investigate
the spatiotemporal pattern of HTHH events in plastic
greenhouses. In addition, physiological responses of tomato to
HTHH stress were explored, so as to quantitatively identify the
spatial distribution of tomato potential losses under HTHH stress
in southern China. Major conclusions are as follows:

1) Among the machine learning methods, the ELM method
performed best to simulate the daily average RH and

maximum temperature in typical plastic greenhouses by
using outdoor meteorological observations.

2) The HTHH events in plastic greenhouses mainly occurred in
the southernmost areas of the study region (often annually
>10 times). About 86.93% of the HTHH events occurred from
June to September. Both the occurrence times and the
accumulative days showed a decreasing trend from 1990 to
2019, especially in July.

3) High temperature plays a more important role than RH and
duration days with regard to the effect of HTHH stress on
tomato growth. Among physiological indexes, DD was the
most sensitive parameter to HTHH stress.

4) As the return period of HTHH event increased, the
corresponding losses of physiological indexes of tomato
increased, except for the western region, where the HTHH
events rarely happened.

The results of this study are significant in guiding the layout of
plastic greenhouses based on local climate resources. Although
this research focused on greenhouse-grown tomato and HTHH,
the approaches and technical means in this study can also be
further applied to other greenhouse meteorological disasters
and crops.
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