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Recognition and Classification for
Inter-well Nonlinear Permeability
Configuration in Low Permeability
Reservoirs Utilizing Machine Learning
Methods

Jinzi Liu* and Xinyu Liu

School of Mathematics and Statistics, Northeast Petroleum University, Daqing, China

Machine learning methods have become the leading research algorithm enjoying
popularity for reservoir engineering evaluation. In this paper, one machine learning
method is selected and optimized for the recognition and classification of inter-well
nonlinear permeability configurations between injection and production wells in the low
permeability reservoir. The above configurations are divided into four classes,
i.e., homogeneous, linear increment, convexity increasing (logarithmic function), and
convex downward increasing (exponential function). According to four kinds of
nonlinear permeability distributions in low permeability reservoirs and the increased
effect of threshold pressure gradient, the productivity formula is established. Then the
decision tree, neural networks (NN) and support vector machines (SVM) are utilized for
training dynamic data under the influence of the training model, i.e., the configuration in
low-permeability reservoirs. The data set is formed with dynamic production data under
different configuration permeability, well spacing, thickness, pressure, and production. The
recognition and classification of the permeability configuration are performed using
different machine learning models. The results show that compared with NN and
decision tree, SVM presents better performance in the accuracy of verification, true
positive rate (TPR), false-negative rate (FNR) and receiver operating characteristic
(ROC). Moreover, SVM verification results are placed on the brink of the training
methods. This paper provides new insights and methods for the recognition and
classification of inter-well nonlinear permeability configuration in low permeability
reservoirs. Additionally, the research method can also apply to solve similar theoretical
problems in other unconventional reservoirs.

Keywords: classification, permeability configuration, low permeability reservoirs, machine learning methods,
recognition
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1 INTRODUCTION

Reservoir heterogeneity has been the main research hotspot in the
area of low permeability reservoirs. They are identified in
numerous heterogeneity studies in terms of typical
characteristics and effective exploitation (Feng, 1986; Hao
et al., 2006; Hu, 2009; Wang et al, 2013; Dou et al., 2014).
Low permeability reservoirs show obvious heterogeneity, narrow
throat, and poor mobility, significantly distinct from medium and
high permeability reservoirs. Its fluid law also shows
inconformity compared to Darcy’s law. Previous research
results rely on core experiments to establish empirical
formulas. Among them, the threshold pressure gradient is
regarded as a constant to establish an empirical formula by
the experimental regression method (Deng and Liu, 2003; Han
et al,, 2004; Li et al., 2004; Li et al., 2008; Zhu and Liu, 2010).
Existing research explores the heterogeneity characteristics
however, the impact of permeability configuration distribution
and threshold pressure gradient on the productivity calculation in
low permeability reservoirs is still unclear.

Machine learning has become a widespread method of
intelligent recognition and classification (LiuSong and Zhu,
2011; Yu et al,, 2012). Numerous reports detail the use of
machine learning methods for productivity prediction,
connectivity evaluation, and flow characteristics analysis
(Wei et al., 2017; Wang et al.,, 2019; Song et al., 2020; Xu
etal., 2020). Normally, there are three excellent algorithms for
the classifications and recognition of machine learning,
i.e., decision tree, neural networks (NN) and support vector
machines (SVM), by which numerous works have been
conducted. The decision tree learning algorithm is one
process of recursively selecting optimal features and
dividing training data according to features so that each
sub-data set can be optimally classified. For the data with
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the inconsistent number of typical samples, the information
gain is biased towards those features with more values, which
are easy to overfit (Li, 2009; Ahmadi and Chen, 2019; Du et al,,
20205 Liu, 2020; Liu and Liu, 2021). Neural network algorithm
simulates the biological neural network and is a kind of pattern
matching algorithm usually used to solve classification and
regression problems. The Transect Network has multiple
hidden layers and can deal with non-separable linear
problems. However, it needs various parameters and has no
applicable method for parameter selection, easily falling into
local optimum (Kurt et al., 2008; Zhong et al., 2010; Raeesi
et al,, 2012; Mu et al.,, 2016; Han and Zheng, 2020). With
nonlinear mapping as the basic theory, SVM uses the inner
product kernel function to replace nonlinear mapping with
higher dimensional space. The SVM learning problem can be
determined by a convex optimization problem, so the global
minimum of the objective function can be found using known
efficient algorithms. However, other classification methods
(such as the rule-based classifier and NN) adopt one greedy
learning strategy to search hypothesis space, which can only
obtain locally optimal solutions. This is the fundamental fact
that allows far-reaching generalization of the support vector
machine using the method of kernels (Al-Anazi and Gates,
2010; Gholami et al., 2012; Hatampour and Razmi, 2013;
Rostami and Manshad, 2014; Anifowose et al., 2015; Chang
and Liu, 2015; Swietlicka et al., 2017; Zhang and She, 2017;
Serfidan et al., 2020; Zhou et al., 2021). The comparison and
optimization of classification calculation are carried out from
the consequences of the training set and test set. Moreover, it
can also be extended to solve analogous theoretical problems in
other unconventional reservoirs (Cortes and Vapnik, 1995;
Anifowose et al., 2014; Nwachukwu et al,, 2018; Yu et al,
2020). For example, classification of lithofacies, prediction of
permeability and porosity, identification of water saturation
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using well logging data in reservoirs, and so on (Zhang et al.,
2018; Wood, 2019; Zhang et al., 2020a; Tian et al., 2020; Sun
et al., 2021; Zhang et al., 2021). The machine learning method
is more and more being widely used in reservoir engineering
(Gholami et al.,, 2014; Wang et al.,, 2014; Li et al., 2020; Silva
et al., 2020).

Advantages are obvious when machine learning methods are
used to recognize and classify heterogeneous permeability
configurations in low permeability reservoirs. In contrast, it is
challenging to judge inter-well permeability distribution by
traditional methods. It has obvious theoretical significance to
establish classification algorithm of dynamic basic data by
machine learning method.

In this paper, a machine learning method is selected and
optimized to classify inter-well nonlinear permeability
configurations in low permeability reservoirs. The specific
research steps are shown as follows in Figure 1.:

1) Four types of inter-well nonlinear permeability configurations
are summarized between injection and production wells:
homogeneous, linear increment, convexity increasing
(logarithmic function) and convex downward increasing
(exponential function); four nonlinear types as output
classification data.

2) In accordance with four kinds of nonlinear permeability
distributions in low permeability reservoirs and the
increased effect of threshold pressure gradient, the
productivity formula is established. Inter-well parameters
included spacing, thickness, permeability, pressure, and
production as input data.

3) Contrast to SVM, NN and decision trees are utilized to classify
different permeability configurations.

The results of this paper will provide guiding significance and
application prospects for oilfield development. In addition to
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FIGURE 5 | Permeability distributing graph of reservoir numerical simulation.

classification and prediction, machine learning algorithm canalso 2 METHODOLOGY

be used for numerical calculation of fluid mechanics equation in

reservoirs (Zhang et al., 2020b). Machine learning algorithms 2.1 Decision Trees

plays an important role in geophysics and reservoir engineering  As a basic classification method based on features, a decision
(Sun and Zhang, 2020). tree is frequently used with a tree structure. The learning
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process usually includes three steps: feature selection,
decision tree generation, and decision tree pruning, and
the number of features is m, as shown in Figure 2. It can
be viewed as sets of if-then rules or conditional probability
distribution defined in feature space and class space. Its
principal advantages are readability and high speed. In
prediction, extra data are classified by the decision tree
model, which is set up by minimizing the loss function
using training data. Particularly in high-dimensional
spaces, data can more easily be separated linearly and
simplicity of classifiers, such as naive Bayes and linear
SVMs. It could lead to better generalization than other
classifiers. To solve over fitting training samples and low
generalization ability, this paper chooses Bayesian as a
pruning algorithm to improve the accuracy.

2.2 Neural Networks

The NN structure consists of an input layer, hidden layer, and
output layer, as shown in Figure 3. The calculation process is
mainly divided into forward and backward propagations.
Forward propagation means to use the weights and
thresholds in the NN to calculate the desired output
variable based on the input data, while backward
propagation is the process to update the weights and
thresholds continuously according to the error of output
variables to ensure a constant true output result. Common
activation functions of NN are sigmoid, tanh and ReLU
function. In NN training, increasing the number of hidden
layers can reduce the error of the network and improve the
accuracy, but it also increases complications and training
time, or even the tendency of “over fitting”. Therefore, this
paper gives priority to the three-layer network through
increasing the number of nodes as n and selecting the
activation function to improve the accuracy.

2.3 Support Vector Machines

SVM is a binary classification model. Its rudimentary model is
one linear classifier defined in feature space with the largest
interval. SVM can be seen as a single hidden layer of the NN
(multiple hidden layers). SVM uses a single hidden layer to
perform fitting and is added kernel function, which can fit
nonlinear problems (NN is fitted by a multi-layer activation
function). The SVM typically uses a “kernel function” to
project the sample points to high dimension space to ensure
separability, as shown in Figure 4. Generic kernel functions
include linear, polynomial, Gaussian, and sigmoid/logistic
functions. In this paper, the choice of kernel function depends
on the accuracy, the number of kernel functions as N. By
replacing the proper objective functions, better selection of the
kernel parameters can be achieved. The kernel functions are
selected to optimize the parameters, and thus, are significantly a
nonlinear classifier. The learning strategy of SVM is interval
maximization which can be formalized as a process to solve
convex quadratic programming.
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TABLE 1 | Function form of different permeability configurations.

Classification Nonlinear Permeability Configuration

Type configurations Function form correlation coefficient

| homogeneous K(r)=K —

I Linear increment K(r)=a+br a,b

1l convexity increasing (Logarithmic function) K(r)=a+blinr a,b

\% convex downward increasing (Exponential function) K(r) =ae® a,b

TABLE 2 | Basic data sets of different permeability configurations (part).

Class constant data Injection wells Production wells

space thickness permeability pressure permeability pressure production

75 0.4 5.00 17.00 5.00 7.00 0.33
150 0.8 15.00 22.00 15.00 7.00 2.63
200 1.6 30.00 17.00 30.00 7.00 6.71

Il 75 0.4 10.00 17.00 1.00 7.00 0.1
150 1.2 20.00 22.00 10.00 7.00 2.94
200 1.6 45.00 22.00 35.00 7.00 12.21

Il 75 0.4 15.00 17.00 5.00 7.00 0.60
150 0.8 30.00 17.00 20.00 7.00 2.88
200 1.6 40.00 17.00 30.00 7.00 7.78

Vi 75 0.4 10.00 22.00 1.00 7.00 0.13
150 0.8 25.00 17.00 15.00 7.00 1.88
200 2 45.00 17.00 35.00 7.00 10.15

2.4 Model Evaluation

The number of observations, true positive rate (TPR), false-
negative rate (FNR), and false-positive rate (FPR) are utilized
to verify the classification results. The formulas are as follows:

TP
TPR= 7P FN M
_FN
FNR = TP + FN @
_FP
FPR= FP+TN ®

where TP denotes true positive, TN means true negative, FP refers
to false positives, and FN is false negative. ACC is used to describe
and verify the accuracy of classification, as shown in Eq. 4.

ACC - TP+TN @
" TP+FP+TN +FN

ROC (receiver operating characteristic) curve is utilized to
show the TPR and FPR as a metric to evaluate classification
quality. The ROC curve closer to the top left corner represents
better accuracy. The AUC number is defined as the area enclosed
by the ROC curve and coordinate axes. The closer it is to 1.0, the
higher authenticity it will be.

3 PROCEDURE

3.1 Inter-well Nonlinear Permeability

Configuration

For the permeability distribution graph of reservoir numerical
simulation, the permeability heterogeneity configuration between
injection-production ~ wells has  obvious heterogeneity
characteristics, as shown in Figure 5.

In Figure 6, the heterogeneous configuration of permeability
distribution between wells can be streamlined into the following
three heterogeneous mathematical models. Therefore, there are
four types of permeability distribution configurations between
wells, with homogeneous as type I, linear increment as type II,
convexity increasing (logarithmic function) as type III, and
convex downward increasing (exponential function) as type

TABLE 3 | Comparison of different algorithm result.

Algorithm ACC (%) AUC
Decision tree 49.4 1.00
Neural network 88.5 1.00
Support Vector Machines 97.5 1.00
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FIGURE 7 | Parameter optimization process graph. (A) Optimizable tree,

(B) Optimizable neural network and (C) Optimizable Support vector machines.

IV. The four types have unique configurations and mathematical
function forms, as shown in Table 1.

Classification Nonlinear Permeability Configuration

3.2 Single-phase Productivity Models
3.2.1 Threshold Pressure Gradient Calculation

The function form of threshold pressure gradient and permeability is
obtained by the regression of experimental data in the low-
permeability reservoir. The mathematical expression is as follows:

G = AK™ (5)

where G represents the threshold pressure gradient; A and ny4
represents the correlation coefficient.

3.2.2 Production Formula
Type I: homogeneous.

When permeability K is constant, it can be substituted into the
threshold pressure gradient G. The productivity of the low-
permeability reservoir can be obtained:

Q- K(r)@(@—cmr),r)) ©)
po \dr

as
_ @ dp - G(K(r),r)dr
H (I/K(r)r)dr

Where Q represents productivity, p denotes pressure, y is
viscosity, h is thickness.

™)

2mth . 't 't
Q= H(pjjw - JG(K(r), r)dr>/ J(l/K(r)r>dr (8)

Where p. represents injection pressure, p,, denotes producing
well pressure, 1. represents the wellbore radius, and r,, represents
the well spacing.

Type II: linear increment.

Substituting into Eq. 5; Eq. 8 can be obtained as follows.

2mh In a+rbr
Q=" (p ) [
Type III: logarithmic function.

U
Substituting K(r) =a+bln r into Eq. 5; Eq. 8 can be
produced as follows.

Te Te

e _A(a+b1’)IMGI
P b(1+ng) |

)

Tw | Tw

2mh . ; a+blnr\|"
Q=" ol et (—b)d-F<1+nd,—T)rw
In(a+blnr)|™
/7b ) (10)

Where T represents the Gamma function.
Type IV: Exponential function.
Substituting into Eq. 4; Eq. 7 can be achieved as follows.

szﬂh<ppe _;L.<(ae"’)"“ >>/(—Ei(;,b~r))

U Pw bny
Where Ei represents exponential integral function.

Te Te

(11)

Tw Tw

Frontiers in Earth Science | www.frontiersin.org

March 2022 | Volume 10 | Article 849407


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Liu and Liu Classification Nonlinear Permeability Configuration

A
I 0
i 0
n 29.2% 30.3% 41.3%
i 38.3% 22.1% 39.6%
. > mn 28.9% 30.9%
o ]
g ﬂ:)
= Y 41.9% 25.1% 27.8%
mn 37.9% 32.5% 29.6%
\% 55.0% 18.3% 26.7%
n n v
Predicted Class Predicted Class
TPR-FNR and PPV-FDR graph of optimizable tree
B I 0
I
I 8.3% 24.0%
0] 25.0% 25.0%
- mn 0.0
E E v 21.7% 6.0%
n
v 20.8% 20.8%
FDR 21.7% 24.0%
| ] n \% FNR | [ n v
Predicted Class Predicted Class
TPR-FNR and PPV-FDR graph of optimizable neural network
Cc
100.0%
3.3%
§
g
1.7%
5.0%
FDR 6.1% 0.4% 3.4%
| I i v FNR | 1l 1 Y
Predicted Class Predicted Class
TPR-FNR and PPV-FDR graph of optimizable support vector machines
FIGURE 8| TPR-FNR and PPV-FDR graphs of different algorithm results. (A) TPR-FNR and PPV-FDR graph of optimizable tree, (B) TPR-FNR and PPV-FDR graph
of optimizable neural network and (C) TPR-FNR and PPV-FDR graph of optimizable support vector machines.
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In conclusion, based on altered permeability
configurations and threshold pressure gradient function,
the single-phase productivity calculation formula is
established relevant to the low-permeability homogeneous
reservoir, representing universal significance. Where, asb =0
and a = K, it is the production formula in low-permeability
homogeneous reservoir. As A = 0, b = 0, and a = K, it is the
production formula in homogeneous reservoir.

4 PROCEDURE

4.1 Dataset Collection

In this study, basic parameters of the low permeability reservoir
are introduced. The porosity value is 0.25. Nonlinear permeability
configuration is four classes. The permeability values of injection
and production wells of the eight intervals are (1-10), (5-15),
(10-20), (15-25), (20-30), (25-35), (30-40), and (35-45).
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Homogeneous permeability is 5, 7.5, 15, 20, 25, 30, 35, and 40.
The viscosity is 5.8. The wellbore radius of the production well is
0.1 m. The production differential pressure is 10 and 15 MPa. The
well spacing is 7m, 150m, and 200 m. The reservoir thicknesses
are 0.4m, 0.8m, 1.2m, 1.6m, and 2 m, respectively. Initial water
saturation is 0.25. Irreducible water saturation is 0.78. Therefore,
the basic data set includes 960 samples. The sets adopt 5-fold
cross validation, as shown in Table 2.

4.2 Optimization of Algorithm Parameters

Figure 7 shows the parameter optimization process of different
algorithms. The best point and minimum error hyperparameters
of the decision tree exceed 0.5. The best point and minimum error
hyperparameters of NN are close to 7 x 1072. The vest point and
minimum error hyperparameters of SVM is 2.5 x 1072. Taken
together, SVM presented the optimum performance algorithm.

4.2.1 Decision Tree
The optimal Bayesian classification is based on the decision tree
algorithm. Iterations is 30.

4.2.2 Neural Network

Optimizable NN hyperparameters are as follows: there are three
fully connected layers with the first, second, and third layer sizes
being 22, 23, and 44, respectively; the activation function is Tanh;
the regularization strength (Lambda) is Data and is standardized;
the iteration limit is.

4.2.3 Support Vector Machines

Optimizable hyperparameters of SVM are as follows: the kernel
function is cubic; the box constraint level is 6.79 x 10%; the one-
vs-one multiclass method is adopted;and standardized data are
utilized.

5 RESULTS AND DISCUSSION

5.1 Model Calibration

As shown in Figure 8, TPR-FNR and PPV-FDR graphs of discrete
algorithm results can be observed. As for Type I, three algorithms are
all 100%. As for Type II, three algorithms are 38.3%, 75%, and 96.7%,
respectively. As for Type III, three algorithms are 32.5%, 100%, and
98.3%, respectively. As for type IV, three algorithms are 26.7%,
79.2%, and 95.0%, respectively. From the overall evaluation, SVM
shows the optimum performance algorithm.

5.2 Model Verification and Comparison
Table 3 and Figure 9 shows the ACC and AUC of different
algorithm results. The AUCs of the three algorithms are all
100%, showing that all classification algorithms are
appropriate. The ACCs of the three algorithms are 49.4%,
88.5%, and 97.5%, respectively. This explains why SVM has the
highest recognition accuracy of 97.5%.

Classification Nonlinear Permeability Configuration

6 CONCLUSION

This paper selects and determines one machine learning
method to recognize and classify the nonlinear
permeability  configuration between injection and
production wells in the low-permeability reservoir. The
following conclusions can be obtained:

1) This paper abstracts and simplifies four classes of inter-well
nonlinear permeability configurations between injection and
production wells, ie, homogeneous, linear increment,
convexity increasing (logarithmic function), and convex
downward increasing (exponential function).

In accordance with the four kinds of nonlinear permeability
distributions in low permeability reservoirs and the increased
effect of threshold pressure gradient, the productivity formula
is established.

2)

3) SVM, NN, and decision tree are used to train the dynamic
data with the of nonlinear permeability
configuration in low permeability reservoirs as the training
model. The data set is trained with dynamic production data
under different configuration permeability, well spacing,
thickness, pressure, and production. The results show that
compared with NN and Tree, SVM represents the optimum
performance in the accuracy of verification, TPR, FNR and
ROC. The TPR is 100%, 96.7%, 98.3%, and 95.0%. ROC is 1.0.
The accuracy is 97.5%.

influence
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