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Imaging of fluid pathways is crucial to characterize processes taking place in hydrothermal
systems, a primary cause of volcanic unrest and associated hazards. The joint imaging of
seismic absorption and scattering is an efficient instrument to map fluid flow at crustal
scale, and specifically in volcanoes; however, this technique has so far been applied to
image volcanoes and hydrothermal systems at the kilometre scale. Here, we use data from
a meter-scale, active seismic survey inside the shallow structure of the Solfatara crater to
obtain the first frequency-dependent near-surface scattering and absorption model of a
hydrothermal system. The Solfatara crater is the place used to monitor historic unrest at
Campi Flegrei caldera (Italy), a high-risk volcano under continuous surveillance due to its
closeness to a densely populated area. Improving the imaging of the shallow part of this
system is crucial to broaden the understanding of unrest processes that are progressively
characterizing other portions of the eastern caldera. The scattering contrasts highlight the
primary structural feature, a fault separating the hydrothermal plume from zones of CO2

saturation nearing fumaroles. While high-absorption anomalies mark zones of high soil
temperatures and CO2 fluxes, low-absorption anomalies indicate zones of very shallow
upflow and are caused by contrasts between liquid-rich and vapour-rich fluids coming
from mud pools and fumaroles, respectively. All maps show a SW-NE trend in anomalies
consistent with fluid-migration pathways towards the eastern fumaroles. The results
provide structural constraints that clarify mechanisms of fluid migration inside the
crater. The techniques offer complementary geophysical images to the interpretation of
hydrothermal processes and prove that seismic attenuation measurements are suitable to
map fluid pathways in heterogeneous media at a detailed scale.
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INTRODUCTION

Imaging hydrothermal systems in volcanic areas is crucial to
forecasting phreatic eruptions (Mayer et al., 2016), assessing risks
of edifice collapse (Rosas-Carbajal et al., 2016) and monitoring
the possible evolution toward an unrest stage (Amoroso et al.,
2018). Seismic attenuation measurements, like scattering and
absorption that are suitable to map structures and feeding
systems in volcanic settings (e.g., De Siena et al., 2016), could
be applied to image hydrothermal systems. Scattering and
absorption are the manifestations of the anelastic attenuation
of coherent waves, i.e., the energy lost by seismic waves while
propagating through a heterogeneous medium. The presence of
fluids mainly controls absorption, triggered by fluid/squirt flow,
internal friction, viscosity, and thermal relaxation mechanisms
(Barton, 2006), while scattering is caused by the presence of
heterogeneities and generally highlights tectonic interactions (De
Siena et al., 2016) and lithological contrasts (Napolitano et al.,
2020). At the sample scale, ultrasonic attenuation measurements
are related to the physical rock properties (Vanorio et al., 2002; Di
Martino et al., 2021). At crustal scale, seismic attenuation is a
pivotal instrument to identify and track the location of fluid and
melt reservoirs and, thus, to understand magmatic and
hydrothermal processes in volcanic environments (e.g., De
Siena et al., 2017a; De Landro et al., 2019). Frequency-

dependent parameters like peak-delay time and the
attenuation of coda waves are proven proxies of scattering
attenuation and absorption (e.g., at Mount St Helens
volcano—De Siena et al., 2016). These parameters have shown
notable sensitivity to fluid-filled pathways and reservoirs,
especially when using active-survey data (Prudencio et al.,
2013; Ibáñez et al., 2020).

Peak-delay time (Pd) is a measurement of the strength of
scattering (Takahashi et al., 2007) that has been recognised as a
marker of scattering losses (Saito et al., 2002; Calvet and
Margerin, 2013) and is sensitive to structural and geological
features (e.g., Napolitano et al., 2020). Seismic wave
propagation in volcanic areas is primarily affected by
scattering that dissipates the energy of the coherent waves into
coda waves (Sato et al., 2012). The attenuation of coda waves
(Qc−1) measured from the decay of seismic envelope energy with
time (Aki and Chouet, 1975) is a combination of intrinsic
absorption and scattering losses. When coda waves enter the
diffusive regime, coda attenuation directly measures absorption
(Shapiro, 2000). The multiple scattering/diffusion approximation
best describes seismograms in volcanic media, primarily if active
sources produce the scattering in the media (Wegler, 2003;
Prudencio et al., 2013).

The hydrothermal system of Campi Flegrei caldera
(Southern Italy, Figure 1) is one of the best-studied and

FIGURE 1 | Solfatara Crater. The topography of Campi Flegrei is shown in the upper right corner, with the survey location in yellow and the Pisciarelli fumarole
indicated by the green cross. The survey area of the active RICEN experiment is in the yellow box, with station locations in magenta. Main Hydrothermal features: Fangaia
(mud pool, blue contour) and fumaroles (LS: Le Stufe, BN: Bocca Nuova, and BG: Bocca Grande; in red contours). The stars indicate other fumaroles closest to the
survey area (after Serra et al., 2016). The inversion grid (black axes) extends between 0 and 160 m in the SN and WE directions. See figure SM-1 for a close-up on
the location of stations and seismic shots.
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most hazardous in the world. Hydrothermal vents have
progressively opened in the eastern caldera (Giudicepietro
et al., 2021), entering the metropolitan city of Naples (~1
million inhabitants). Hydrothermal activity is one of the
causes of ground deformation and seismicity at the caldera
(Vanorio et al., 2005; Troise et al., 2006; Cusano et al., 2008;
Petrillo et al., 2019; Ricco et al., 2019) and the primary reason
for the onset of recent earthquake swarms across the eastern
caldera (Petrosino et al., 2018; Tamburello et al., 2019;
Akande et al., 2021). There is debate around the source of
fluids likely producing the recent unrest, whose inputs may be
caused by either a deep contribution from a shallow magma
sill (D’Auria et al., 2015; Chiodini et al., 2017), drying of the
deep hydrothermal system (Moretti et al., 2018; Troise et al.,
2019) or decarbonisation reaction from the caldera basement
(Vanorio and Kanitpanyacharoen, 2015). However, there is a
general agreement that in the upper 3 km hydrothermal
processes are more likely taking place than magmatic ones,
with the changes of permeability due to rainfalls receiving
attention as a short-term trigger for seismicity and
deformation (Akande et al., 2021; Petrosino and De Siena,
2021). Presently, degassing and seismicity are increasing due
to the pressurisation and heating of the hydrothermal system,
which triggers energy transfer from the fluids to the host rocks
(Chiodini et al., 2021).

Campi Flegrei goes through repeated unrest episodes
(Kilburn et al., 2017), releasing carbon dioxide gases and
high heat flow from the hydrothermal-magmatic system
(Chiodini et al., 2007). The caprock has controlled fluid
migrations since the 1980s (Vanorio and
Kanitpanyacharoen, 2015; De Siena et al., 2017b; Calò and
Tramelli, 2018). These fluid migrations to the surface towards
the east caldera, produce seismic and geochemical responses,
especially at the Solfatara crater (Di Luccio et al., 2015; De
Siena et al., 2017b; Petrosino and De Siena, 2021). This crater
formed about 4,000 years ago and, historically, is the first
place where the volcano shows signs of unrest (Kilburn and
McGuire, 2001). The Solfatara crater (Figure 1) is a tuff cone
(graben-like structure) with 600 m in diameter, 100 m above
sea level. Described as a maar-diatreme structure (Isaia et al.,
2015), it was created by the interaction of supercritical fluids
rising from depth and groundwater, leading to eruptions and
tephra expulsion. High-angle normal faults and fractured
rocks surround the Solfatara crater (Figure 1), guiding
fluids from depth to fumaroles and mud pools (Bianco
et al., 2004). The most active fumaroles across the caldera
are located at Solfatara and across the Pisciarelli field, 400 m
to the northeast. The two fields are likely connected, as
inferred by field data, electromagnetic surveys, and gravity
gradiometry (Troiano et al., 2014; Young et al., 2020). The
increasing geochemical release and seismic activity between
the Solfatara and Pisciarelli hydrothermal areas raise concerns
over phreatic and hydrothermal eruptions (Chiodini et al.,
2021; Giudicepietro et al., 2021).

Solfatara is a key region where the repeated unrest of the
last 50 years has been monitored, becoming one of the best-
known, best-monitored, and best-surveyed volcanic craters

worldwide. Researchers have analysed the hydrothermal
system at Solfatara by applying ambient noise tomography
(e.g., Petrosino et al., 2012; Petrosino and De Siena, 2021),
electrical resistivity tomography and self-potential (e.g.,
Byrdina et al., 2014; Gresse et al., 2017; Troiano et al.,
2019), joint geochemical and thermal measurements (e.g.,
Tamburello et al., 2019; Chiodini et al., 2021); geodetic
(e.g., D’Auria et al., 2015), gravity (Young et al., 2020),
hydrogeological (e.g., Bruno et al., 2007) magnetotellurics
(e.g., Troiano et al., 2014; Siniscalchi et al., 2019); volcano-
tectonic (Isaia et al., 2015), seismic and tremor surveys
(Saccorotti et al., 2007; Letort et al., 2012; Serra et al.,
2016; Bruno et al., 2017; De Landro et al., 2017; Amoroso
et al., 2018; Gammaldi et al., 2018; Giudicepietro et al., 2021),
and seismic attenuation (De Landro et al., 2019). The first
kilometre under Solfatara is imaged at very high resolution;
however, there is still uncertainty about the structures that
guide fluids from the deforming centre of the Solfatara caldera
to its eastern side, specifically to the degassing Pisciarelli field
(Young et al., 2020). At Solfatara, the absorption of seismic
energy could be attributed mainly to wave-induced fluid flow,
a mechanism known for producing significant attenuation in
saturated porous rocks (Pride et al., 2004; Tisato and Quintal,
2013). Therefore, the spatial variation of scattering and
absorption can be a marker of both structure and
composition of the volcanic medium.

Most field imaging with absorption and scattering is in 2D,
with no available results at the meter scale. This study offers
the first example of 3D separation of seismic scattering from
seismic absorption performed using the open-access code
Multi-Resolution Attenuation Tomography (MuRAT3D).
The active data from the Repeat Induced Earthquake and
Noise (RICEN, Serra et al., 2016) experiment, performed
inside the Solfatara crater in September 2013, offer the
ideal dataset to image the shallowest hydrothermal system
at Solfatara at the meter-scale. The results provide novel
images that complement the available information,
improving our insight into the shallow hydrothermal
structures and revealing fluid pathway geometries around
the main fumaroles.

FIGURE 2 | Signal example. Seismogram (blue) and its envelope
(orange). The vertical black thin line marks the P-wave arrival. The coda
window section is represented by the pink line, while the green line shows the
peak delay measured on this seismogram.
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DATASET

In this study, we used as input seismograms collected during the
RICEN experiment (Serra et al., 2016). The network covers 90 ×
115 m2 and comprises 240 sensors distributed over 10 lines
(Yellow box in Figure 1). The distance between sensors is
5 m, with lines of 24 sensors distanced 10 m apart. The
experiment was performed using a vibroseis seismic source
from the 100 shot-points triggered; here, we used 20 shots
evenly distributed, the best compromise between adequate
coverage and avoiding redundancy (Supplementary Figure S1
in Supplemental Material).

The input velocity model is the one obtained by De Landro
et al. (2017) using the full dataset of the RICEN array acquisition
in a 160 × 160 × 30 m3 volume. The signals are sampled at a
1,000 Hz frequency rate. The seismograms were already pre-
processed (cross-correlation with the vibroseis sweep to obtain
a source-corrected signal and minimum phase filter to preserve
causality; see Serra et al., 2016; De Landro et al., 2017 for details).
The P-wave arrival times of each seismogram are the ones
estimated by De Landro et al. (2017) and included in the
header of the waveform files in SAC format. We selected 2,144
waveforms with source-station distances longer than 50 m. The
analysis was carried out on the waveforms that complied with a
coda to noise ratio higher than 3 (Supplementary Table S2). The
P-wave energy is contained in the first 0.126 s from the P-wave
picking and has frequencies above 45 Hz (De Landro et al., 2019).
The start of the coda window was selected at 2 s from the origin
time, with a length of 2 s (Figure 2).

We performed a preliminary study of the seismic signal
and its spectrum over different windows to choose the
suitable coda window (Supplementary Figures S2A,B).
The choice of the coda windows complies with the
assumption of stochastic waves contained in the coda
section. We bandpass-filtered the seismograms by applying
a Butterworth filter of order four in four frequency bands

centred at 12, 18, 24, and 27 Hz. The coda waves contain
stochastic information at this range of frequencies and are
dominated by highly-scattered surface waves. The envelopes
were computed through a smoothed Hilbert transform of the
signal using a sliding window of the size of the sampling
frequency (Figure 2).

METHODS

Peak-Delay Measurements
We measured peak delay (Pd) as the time lag from the onset of
the P-wave arrival to the maximum amplitude of the envelope
(green line in Figure 2). In heterogeneous media, the peak
delay should increase linearly with the travel time (Saito et al.,
2002) and be related to the P-wave travel time (tt) in each
frequency band f by:

Pd(f) � A(f) + B(f)ptt (1)
where A(f) and B(f) are the coefficients of the linear fit (Pd_L)
(Figure 3). Peak delay is mapped by measuring the variations of
the logarithm of the Pd measures Log(Pd) relative to a linear
trend:

ΔLog(Pd(f)) � Log(Pd(f)) − Log(Pd L(f)) (2)
The data values above and below the linear trend represent

the variations of the peak delay time, interpreted as high and
low scattering (Takahashi et al., 2007). Areas with positive
variations indicate that the ray path crosses strong
heterogeneous zones (i.e., high scattering attenuation),
while negative variations indicate either low scattering or
strong absorption (Calvet et al., 2013). Peak delays are then
mapped into space assuming sensitivity to the seismic ray,
computed in the available velocity model (De Landro et al.,
2017).

FIGURE 3 | Peak-delay dependence on travel time at 18 Hz. Coefficients A and B define the linear fitting of the data with 95% confidence (A = 0.7668 ± 0.8338, B =
0.7941 ± 0.8684). Minimum and Maximum peak delay (0.3 and 5 s respectively) were set to avoid biases on the picking. Given this threshold, the data used for the
analysis was reduced to 2081 seismograms at 18 Hz (Supplementary Table S2).
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Coda Attenuation
The energy decay of the coda as a function of frequency and time
(Aki and Chuoet, 1975) is given by:

E(f, t) � S(f)t−∝ exp
−2πft
Qc (3)

where t is the lapse-time, S(f) is the frequency-dependent source
factor,∝ is a constant factor related to the geometrical spreading
and Qc is the coda quality factor (inverse of coda attenuation).
The coda decay method estimates Qc−1 values by linearizing this
equation and obtaining a least-square fitting of the logarithm of
the envelope energy at a given frequency versus lapse time (see
Sketsiou et al., 2020 for the uncertainties associated with this
linearization). Aminimum correlation coefficient threshold of 0.8
was imposed for this fitting to select high-quality data. This
threshold led to a further reduction of the data used for the
analysis (1895 seismograms at 18 Hz); the cut was higher at lower
frequencies (Supplementary Table S2).

The analysis is performed using the inversion approach
described by De Siena et al. (2017a). However, this work uses
2D space-weighting functions (Prudencio et al., 2013; Del Pezzo
et al., 2016) with the hypothesis that the entire energy of the coda
window is contained (thus lost) inside the defined grid.
MuRAT3D implements 3D multiple-scattering sensitivity
kernels (Del Pezzo et al., 2018) based on Paasschen’s
equations (Paasschens, 1997) (Supplementary Figure S3). To
determine the input albedo and extinction length parameters, we
followed the approach of Wegler (2003), assuming that the
medium is fully diffusive (Scala et al., 2019). An iterative
inversion (Gazzola et al., 2019) is used to obtain the Qc−1

values at each node. We tested the stability and resolution of
the inversion at different grid node spacing through iterative
regularizations and checkerboard tests (Supplementary Figures
S3A–C). The best parametrization model corresponds to 11 ×
11 × 7 nodes (grid spacing 16m × 16m × 5m). The anomalies are
well reconstructed laterally; however, at depth, it is only possible
to resolve a shallow section (upper ~10m) for the coda.

Here, we interpret Qc−1 as a marker of seismic absorption,
which is a common approach at a regional scale when a diffusive
regime describes scattering (Calvet and Margerin, 2013;

Prudencio et al., 2013; Sketsiou et al., 2020). Nonetheless, also
at our very local scale, we checked that Qc−1 1) does not vary
consistently with ray length (Calvet and Margerin, 2013) and 2)

FIGURE 4 | (A) Coda Attenuation Qc−1 dependency on ray length at 18 Hz (B) Qc values estimated at different frequencies.

FIGURE5 |Workflow of the attenuation tomographymethods applied to
map peak delay (left side) and coda attenuation (right side) for imaging seismic
scattering and absorption, respectively.
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that Qc−1 has a linear correlation with frequency (Sketsiou et al.,
2020) to validate this condition (Figure 4). The characteristic
length after which the multiple scattering regime occurs is the
scattering mean free path (Scala et al., 2019). The scattering mean
free path must be larger than the wavelengths, and the source-
receiver distance larger than the transport mean free path
(Wegler, 2003). We measured an average scatter mean free
path of ~7.5 m in the area in a wide frequency range
(10–40 Hz), which complies with these assumptions (see
Supplementary Material S3). Scala et al. (2019) obtained a
similar result, estimating a scattering mean free path of ~10 m
at 25 Hz in the Solfatara crater using surface waves. Their
estimation of attenuation values using mean free path values
assumes a homogeneous development of the coda in which the
averaged elastic properties are independent of the location of
source and receivers. In this study, we included sensitivity kernels
in the inversion of coda attenuation values, which shows that only
the first 10 m are resolved because of the close location of the
events and stations at the surface (Del Pezzo et al., 2018).

Tomographic Procedures
Scattering attenuation is mapped by the regionalization of the
peak delay measurements (see the workflow in Figure 5). The
underlying principle is that the envelope of direct wave packets
broadens due to multiple forward scattering by inhomogeneities
(Markov approximation, Saito et al., 2002). We adopted the
tomographic method developed by Takahashi et al. (2007) for
mapping scattering as follows: 1) measure Pd for all the
waveforms filtered at the study frequency bands; 2) cross-plot
the Pd values against travel time (Figure 3); 3) perform a linear
regression of the dependence of peak delay increasing with travel
time; 4) allocate positive and negative variations of Pd with
respect to the linear trend to identify strong and weak
scattering, respectively; 5) map Pd in space using
regionalization. The regionalization consisted of dividing the
mapped volume into blocks, where each block is crossed by
several rays, each ray has an allocated Pd value measured from its
seismogram, and the average Pd of all these rays is given to the
block. Then the variations between blocks are smoothed by taking
the average of the mean Pd values between neighbour blocks. 6)
Finally, we plot in 3D the spatial variations of peak delay
(Figure 6).

Absorption is mapped by an inversion procedure of the coda
attenuation measurements (see the workflow in Figure 5).
The method is as follows: 1) compute the seismic envelopes at
each study frequency; 2) compute Qc−1 from the least square
fitting of the logarithm of the envelope versus time; 3)
compute the sensitivity kernels for the event-station
couples (Supplementary Figure S3); 4) create the inversion
matrix G using the computed kernels; 5) perform the
tomographic inversion. The linear inversion problem solves
the general expression d = G(m); where the data vector d
contains the Qc values measured for each seismogram, while
the operator matrix G, which represents the mathematical
relation between the observed and the modelled Qc−1,
corresponds to the normalized sensitivity kernels. The
model vector m contains the attenuation values Qc−1 for

each block of the volume. The modelled Qc−1 are adjusted
to satisfy the observed data by using an iterative regularization
that leads to choosing adequate damping parameters using
conjugate gradients (Aster et al., 2019; Gazzola et al., 2019).
The final choice is performed by minimizing a cost function
that includes data residuals and L2-norm misfit
(Supplementary Figure S3B). 6) We produce a checkboard
test to assess the accuracy of the inversion (Supplementary
Figure S3A). These tests consist of alternating patterns of
positive and negative anomalies that must be reconstructed,
so that the areas with good recovery are assumed to be well
constrained. 7) Finally, we plot the coda attenuation
variations over the study volume (Figure 7).

RESULTS

Figures 6, 7 show the peak-delay and coda-attenuation variation
maps. The maps occupy the extension of the input velocity model
(Figure 1); however, for the peak delay maps, we only interpret
the patterns in the area covered by the ray crossing, while for the
coda attenuation maps the model resolution is delineated by the
results of the checkerboard test. We present the results obtained
in different frequency bands, as the size of the heterogeneities
could change based on the wavelengths. For the peak-delay maps,
we present depth slices every 5 m covering the entire study
volume, while for the coda attenuation, we show only the first
10 m. Below this depth, the resolution of the results was
inadequate (Supplementary Figure S3A) because:

1) The sources are located at the same elevation level of the
stations (96–98 m), and coda waves mainly reverberate near
source and receiver;

2) The first abrupt change in the velocity model, to which coda
wave attenuation is extremely sensitive (Gabrielli et al., 2020),
is around 85 m a.s.l. (De Landro et al., 2017);

3) Having a regular grid spacing smaller than 10 m on the
vertical direction, coda waves do not propagate much at
depth, as the wavelengths used are 4–8 times larger than
the grid cell.

In the coda attenuation maps (Figure 7), the Qc−1 scale
represents relative changes of coda attenuation resolved in the
area, not an exact quantification of coda attenuation (for an
averageQc value in the crater, see Figure 4B). In the inversion, we
do not impose the condition of positive Qc−1 values, so we also
obtain negative values. A description of the physics creating
anomalous negative attenuation in volcanoes at Campi Flegrei
caldera is given by De Siena et al. (2013). These negative
anomalies are proven markers of deformation at regional and
volcanic scales, marking interfaces inside the Tyrrhenian Sea (e.g.,
Nardoni et al., 2021) and Pollino fault network (Napolitano et al.,
2020) and dike intrusions/fluid injections at Campi Flegrei (De
Siena et al., 2017a). Such interfaces produce reverberations that
contrast the diffusion approximation at specific frequencies, thus
lowering coda attenuation. These reverberations can be related to
the relative positions of source and interfaces. This has been
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proven via joint radiative transfer and eikonal equationmodelling
by Nardoni et al. (2021), who demonstrated that the presence of
interfaces, like the Moho, in the medium creates reverberations

that lower the invertedQc−1 depending on the source location. At
our scale, these could indicate lateral structural variations that
could coincide with fluid-migration pathways.

FIGURE 6 | Peak delay variations at different frequencies. The white dashed polygon represents the resolution limits of the retrieved models based on the ray
crossing.
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The absorption models reveal geometries different from those
observed in the peak delay map, an indication that coda
attenuation and peak delay define different attenuation
mechanisms and have different sensitivities. We merged and
classified the absorption information from Qc−1 and the
scattering information from peak delay in a parameter
separation map (Figure 8) to discriminate fluid paths from
fracture networks (De Siena et al., 2016; Napolitano et al.,
2020). This map is divided into four quadrants: 1) Low
Scattering/Low Absorption LS/LA, 2) High Scattering HS, 3)
High Absorption HA, 4) High Scattering/High Absorption
HS/HA, equivalent to the possible solutions of the
attenuation model.

DISCUSSION

Layers of tuff deposits with similar rock properties but different
fluid contents characterize the shallow Solfatara crater (table 1 in
Petrosino et al., 2012). Thus, we assume that the changes observed
in the absorption and scattering maps (Figures 6–8) are not
affected by the lithology but are due to the fluid composition,
temperature, and the alteration of the host rock caused by
hydrothermal fluid and meteoric water infiltration. This rock
alteration causes the lack of vegetation in the centre of the crater,
where the survey took place (Figure 1). To the West of our study
volume, there is the Fangaia mud pool. At depth, this zone is
characterized by a conductive hydrothermal plume with meteoric
water upwelling to the surface (Bruno et al., 2007), while towards
the East there is a higher-resistivity zone attributed to the high
CO2 saturation close to the fumaroles (<5Ωm and 50–100Ωm
respectively, Byrdina et al., 2014).

The peak-delay maps (Figure 6) indicate the primary
structural change in the zone. The change marks sharply the
NW-SE-striking fault proposed by Bruno et al. (2007) in the
middle of the crater, which appears as a resistive body in both
electrical and magnetotelluric profiles. This buried fault (Isaia
et al., 2015) is sealed by a mineralized clay-rich caprock with gaps
at the surface due to the presence of the fault/fracture systems
(Siniscalchi et al., 2019). Gammaldi et al. (2018) interpreted a
fault of similar direction using 2D P-wave velocity images
crossing the middle of the crater. They considered it the
preferential gas migration path between the deeper
hydrothermal source and the main fumaroles. The rocks are
highly fractured in the eastern portion of the map (Isaia et al.,
2015); here, the high scattering anomaly coincides with the area of
most intense geothermal activity at Solfatara, that is also the one
with the highest fumarole concentration. Young et al. (2020)
delineated a low-gravity anomaly to the East of the crater (caused
by the accumulation of two-phase fluid within highly-fractured
and porous host rocks), and a moderate low gravity anomaly to
theWest that delimitates the Fangaia and is characterized by high
CO2 fluxes. The survey area in this study is located between these
two gravity anomalies. A preferential, active path for fluids is
located along the SE and NE of the crater structure (described by
Bruno et al., 2007 after Del Castillo et al., 1968). Apart from the
prevalent NW-SE fault, the features in the maps follow a cross-
cutting SW-NE trend, as inferred also by the very similar VP

anomalies distribution retrieved in the depth range 15–27 m by
De Landro et al. (2017). These anomalies are thus directed toward
the Pisciarelli field (Isaia et al., 2015) in a way that is consistent
with the existence of a migration pathway connecting the two
regions (Young et al., 2020; Petrosino and De Siena, 2021).

FIGURE 7 | Coda attenuation variations at different frequencies. The white and black dashed polygon represents the resolved and survey area (Figure 1),
respectively. We scaled the colour legend to the maximum and minimum for each frequency. The labels are described in the main text.
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Our Qc−1model is satisfactorily resolved up to ~87m a.s.l. this is
around ~10m below the surface (Figure 7). Laterally, the structure
looks heterogenous, a product of the intense fluid saturation of the
pore space in the area, especially at low frequencies (12 Hz). Letort
et al. (2012) suggested that seismic noise sources at Solfatara are
related to the presence of CO2 (and steam) bubbles and the
propagation of these bubbles into the liquid layer. Saturated rocks
strongly attenuate seismic energy when gas bubbles occupy part of
the pore space (Tisato et al., 2015). In the highly-fractured and
highly-porous rocks (up to 60%—Mayer et al., 2016) in Solfatara, the
measured seismic absorption is likely related to these steam-to-liquid
phase changes, taking place close to the surface (Chiodini, 2005). At
95 m, the coda attenuation maps show random features (Figure 7),
likely due to the coexistence of downward flow of liquid water and
upward flow of gas near the surface (Siniscalchi et al., 2019).

In Figure 7, the primary high Qc−1 anomalies (labelled “a”)
correlate with the high soil temperature and high CO2 flux in the
diffuse degassing area, as identified in the central part of the crater
by Gresse et al. (2017). Interpretation of the lowQc−1 anomalies is
more intriguing. They appear in the NW (“b”) and coincide with
the low-frequency high-velocity body that Serra et al. (2016)
derived from phase-velocity maps. Similar anomalies appear in
correlation with the location of dike intrusions/fluid injections in
the centre of the caldera, using data recorded during its major
unrest (1983–1984—De Siena et al., 2017b). At 18 Hz, the narrow
lowQc−1 anomaly (“c”) is thus inferred as the most likely location
where the fluid flow from the NW-SE fault/fracture system,
observed in the peak delay map, reaches the near-surface.
Increasing frequencies and at the shallowest depth (95 m.
a.s.l), the low-Qc−1 anomalies (“arrows”) go from S towards

NE, pointing to the LS fumarole (Figure 1): this anomaly
could indicate a connection between the mud pool and the
fumaroles. These mud pools, found at both F and LS
(Figure 8) are a combination of CO2 and steam bubbling
through hot water (Gresse et al., 2017). We interpret the low
Qc−1 anomaly “d” that appears at 24 and 27 Hz frequencies as the
subsurface transition between the hot water/liquid-rich fluid
coming from the Fangaia pool and the CO2/vapour-rich fluid
from the plume below BG/BN fumaroles. This encounter point
intensifies at depth, and it is most evident 90 m. a.s.l. It appears to
be the SW portion of the area where hydrothermal circulation
takes place (Bruno et al., 2007).

The area of the survey is characterized by 1) a high-absorption
area and 2) a well-localized high-scattering and high-absorption
area, while 3) there is no clear high-scattering zone, primarily a
marker of sealing formations, like clays (Napolitano et al., 2020). The
clay cap expected in this zone (Siniscalchi et al., 2019) is likely below
our depth of penetration, as the fault/fracture system breaks it near
the surface. These results suggest that the principal attenuation
mechanism across the shallow hydrothermal is the fluid flow
interaction on the highly porous and fractured rocks. In
Figure 8, high absorption (in orange) increases towards the mud
pools area, where the degassing is less intense. Here (i.e., the southern
region of this model), we imaged strong variations of ΔLog(Pd) and
Qc−1, especially at high frequencies. This observation is fully
consistent with attenuation images by De Landro et al. (2019):
they retrieved the lowest QP values in the investigated volume
(i.e., the strongest attenuation) in this area, adjacent to the
eastern part of the Fangaia mud-pool, where mineralized liquids
saturate the shallow subsoil. The high-scattering/high-absorption

FIGURE 8 | Left: The topography image indicates the location of the survey area (yellow rectangle), the main fumaroles, and the interpreted NW-SE fault from our
results (dashed purple line). Absorption and scattering sections across the first 10 m are stacked below the topography, showing the trace of two vertical sections (SN
andWE). Right: Parameter maps obtained at 18 Hz by separating themapped values in their parameter space (the location of the stations and sources is indicated by the
yellow triangles and the black circles, respectively).
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zone (in red) appears below the main vents, where the degassing
occurs.

In dry volcanic samples, the level of heterogeneity observed in
coda waves produced by changes in pore space topology is already
quite complex (Di Martino et al., 2021). At Solfatara, the host rocks
are highly altered by intense hydrothermal alteration that increases
porosity and permeability and reduces elastic wave velocity (Mayer
et al., 2016), intensifying the attenuation responses. Once combined
with evidence from rock physics, our maps could offer
complementary information to retrieve fluid composition and
saturation levels (e.g., Amoroso et al., 2017) at scales that bridge
field seismology and rock observations.

The Solfatara crater has a unique significance, as it is where unrest
episodes at Campi Flegrei have historically been monitored (Kilburn
and McGuire, 2001). While vents continuously degas at its centre,
the Pisciarelli fumarolic-hydrothermal area increased in 2009 on the
outer eastern flank of the crater (Figure 1). Today, this is the most
hazardous sector of the caldera, characterized by an active
hydrothermal system often producing phreatic and small
hydrothermal explosions (Isaia et al., 2021), and where fluids are
progressively migrating east producing earthquakes (Petrosino and
De Siena, 2021).

While the severity of a larger eruption is usually linked to a
magmatic ejection, in this paper the mapped features are only
produced by fluid flow interactions. From our study, it is
impossible to determine if they are related to a magmatic
source degassing at depth. Regardless, the scattering mapping
of the hydrothermal system shows how a highly dipping fault is
the primary contributor to fluid migration from depth (Figure 6).
As previously highlighted by gravity gradiometry (Young et al.,
2020), the fluid migrations feeding Pisciarelly are shallow
(Figure 8) and start from the primary Solfatara feeder
(Siniscalchi et al., 2019). Absorption marks the shallow
pathways followed by these fluids, which migrate east towards
Pisciarelli within the first few meters of the volcano (Figure 7).
These traces likely extend further east, representing the most
impending hazard for people leaving near the Solfatara crater.

CONCLUSION

We present scattering and absorption 3Dmodels and an interpreted
separation map of these attenuation parameters for the shallow
hydrothermal system at Solfatara crater, inside Campi Flegrei
caldera. The model delineates the NW-SE fault that separates
fluids flowing through the mud pool (W) and vapor-filled
structures near fumaroles (NE and SW). The lateral variations of
absorption and scattering provide the first seismic evidence of fluid-
migration pathways, previously inferred by field and gravity surveys.
These fluids are generated under Fangaia and eventually reach the
Pisciarelli fumaroles, outside the crater.

This work is the first application of 3D scattering and absorption
imaging to a shallow hydrothermal system, providing models at
meter-scale resolutions. The results depend on the complexity of the
crater structure and support previous inferences about how these
features constrain fluid migrations. On the other hand, within a
relatively-homogeneous geological matrix, separating the

attenuation mechanisms (i.e., scattering from absorption)
demonstrated the high potential to detect fluid upflow and
identify different fluid compositions. Our results offer a highly-
resolved picture of the pathways taken by hazardous fluids to rise to
surface and migrate east, from Solfatara towards the metropolitan
city of Naples. This approach can improvemodelling of very-shallow
hydrothermal systems, especially if combined with different
geophysical responses and interpreted using rock-physics
observations.
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