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With the wide application of full-face rock tunnel boring machine (TBM) in tunnel
construction, the self-adaptive adjustment of TBM tunneling parameters is of great
significance for the safety and efficiency of TBM tunnelling. Aiming at the shortcomings
of the current TBM data mining capability and optimization methods of tunneling
parameters, this paper proposes a prediction method of TBM tunneling parameters
based on particle swarm optimization-bi-directional long short-term memory (PSO-Bi-
LSTM) model, which selects the complete tunneling cycle data to predict the TBM
tunneling parameters, and uses a number of numerical methods such as binary state
discriminant function and 3σ criterion to preprocess the operation data of TBM3 bid
section of Songhua River water conveyance project. By comparing with the Bi-LSTM
model and evaluating the prediction effect under different surrounding rock levels, the
applicability and prediction performance of the model to different strata are verified. The
results show that the prediction accuracy of the model is proportional to the surrounding
rock grade. Compared with the Bi-LSTM, the overall prediction effect of the proposed
PSO-Bi-LSTM model is better, which can assist the intelligent construction of TBM with
similar geological conditions.
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INTRODUCTION

With the large-scale development of infrastructure construction and the continuous application of
new technologies in China, large-scale engineering equipment integrating soil cutting, tunnel
support and other functions, namely tunnel boring machine (TBM), has become the first choice
for various medium and long-distance tunnel construction due to its remarkable advantages such as
high efficiency, safety, and economy (Gao et al., 2019; Hou and Liu, 2021). However, due to the
variability of TBM tunneling parameters and the complexity of geological conditions (Feng et al.,
2015; Feng et al., 2022; Yang et al., 2022), it is difficult to quantitatively analyze the interaction law
between TBM and rock. Tunneling often relies on human experience to adjust repeatedly, and the
real-time matching is poor, and it cannot adapt to the complex geological environment (Zhang et al.,
2018a; Afradi et al., 2021). Therefore, accurate and effective real-time prediction of TBM tunneling
parameters has become an urgent problem to be solved in the field of tunnel engineering.

In recent years, scholars have proposed a series of prediction models around the prediction of
TBM tunneling parameters, including theoretical prediction models (Evans, 1965; Zhou et al., 2016),
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empirical prediction models (Barton, 2000; Gertsch et al., 2007),
and prediction models based on machine learning methods (Sun
et al., 2018; Zhang et al., 2021a). Based on indentation test or full-
scale laboratory cutting test, the theoretical prediction model
quantifies the equilibrium force equation required for cutting
force. For example, the CSM model proposed by the Colorado
School of Mines (Rostami, 1997) summarizes rock breaking laws
and calculates TBM tunneling parameters based on the results of
full-scale laboratory cutting tests on plenty of rock samples. This
type of model considers limited engineering factors and has
certain limitations. For improving the applicability of the
theoretical model, Yagiz (Yagiz, 2006) improved the CSM
model and introduced the research on the brittleness and
discontinuity of rock mass. Zhang et al. (Zhang et al., 2013)
established a theoretical load prediction model for shield
tunneling machines with Earth pressure balance considering
the influence of soil-rock interlayer foundation. Zhou and
Zhai (Zhou and Zhai, 2018) extended the theoretical cutter
head torque model to mixed surface grinding. In addition to
the above theoretical prediction models, different scholars have
conducted multi-angle explorations on the prediction of TBM
tunneling parameters based on empirical learning methods and
have made certain research progress. Krause (Krause, 1976)
proposed a widely used empirical formula for TBM load
prediction. Xue et al. (Jing et al., 2019) studied the rock
crushing process based on experiments. Entacher et al.
(Entacher et al., 2014) proposed a rock crushing test method
for cutting experiments and used an empirical method to estimate
the load in the light of the test results. In addition, with the
continuous improvement of test equipment, multi-factor
prediction models represented by the Norwegian Institute of
Technology (NTNU) model (Sun et al., 2018) have been
widely used. Although the above models have achieved
abundant research results, they still have different degrees of
limitations in the prediction process. Based on the existing
engineering experience and through regression analysis, the
empirical prediction model establishes the empirical
relationship between the TBM tunneling parameters and rock
mass parameters, but it only has a good prediction effect on
specific strata, and the factors considered in the prediction
process are limited. It has great limitations and poor
universality under different geological conditions. The
theoretical prediction model is mainly based on the summary
of test results and mechanical theoretical analysis and cannot
sensitively capture the small changes of TBM load, which is quite
different from the actual TBM tunneling construction.

With the rapid development of artificial intelligence
technology and the continuous improvement of various
detection technologies (Zhang et al., 2020a; Zhang et al.,
2021b), to make up for the shortcomings of the above
traditional prediction models, many scholars have proposed a
series of new intelligent prediction models for TBM tunneling
parameters based on machine learning algorithms. Wen et al.
(Wen et al., 2009) established a predication model based on
Monte Carlo-BP neural network and ranked the importance of
parameters to improve the prediction accuracy of TBM tunneling
speed. Mahdevari et al. (Mahdevari et al., 2014) and Tao et al.

(Tao et al., 2015) applied support vector regression (SVR) and
random forest to predict the penetration rate of TBM in hard rock
conditions, respectively. Xiong et al. (Xiong et al., 2017)
established a BP neural network model through MATLAB
based on the surrounding rock and machine performance
parameters to predict the penetration of TBM. Compared with
other optimization algorithms, particle swarm optimization
(PSO) has the several advantages, that is, fewer parameters
need to be adjusted, the algorithm implementation is simpler,
the efficiency is higher, the robustness is better, and it is easy to
converge. Therefore, Hou et al. (Hou et al., 2020) improved the
standard particle swarm optimization (PSO) algorithm and
proposed a TBM prediction model based on the improved
PSO to optimize the BP neural network. In addition, Hou
et al. (Hou et al., 2019) proposed an exponential adjustment
inertia weight immune particle swarm optimization to enhance
the accuracy and reliability regarding the selection of shield
tunneling parameter values. The application of machine
learning algorithm effectively improves the prediction accuracy
of TBM tunneling parameter. However, due to the timeliness of
TBM parameters, the machine learning algorithm fails to
consider the time variation characteristics of various
parameters, which greatly increases the difficulty of feature
extraction and analysis in the prediction process. Therefore,
the further development of more robust and effective
algorithms is still an urgent problem to be solved.

As a new field, deep learning (Zhang et al., 2021c) has the
advantages of efficient learning, transferability and strong
adaptability compared with traditional machine learning
algorithms. Due to advanced optimization techniques and
powerful GPU computing power, deep learning models have
been successfully applied in practical engineering fields such as
speech recognition (Zhang et al., 2018b), image processing
(Graves et al., 2009), and machine translation (Tan et al.,
2018). Recurrent neural network (RNN) (Jin et al., 2018) is a
special network structure in neural network for processing time
series data, which is widely used in sequence related fields such as
language model (Zhao and Dong, 2018), part-of-speech tagging
(Si et al., 2018). The long-short term memory (LSTM) network
(Vlachas et al., 2018; Liu et al., 2019; Zhang et al., 2020b; Wang
et al., 2021) improves the unit structure of the traditional
recurrent neural network and effectively solves the long-term
dependency problems such as gradient disappearance in the RNN
network. However, LSTM network is a one-way sequence
structure, which cannot use the subsequent time information
to calculate the output, and the data processing process is
cumbersome. To solve this problem, this paper improves the
propagation mode of LSTM neural network, introduces a
bidirectional learning strategy, optimizes the model by PSO,
and puts forward a prediction method of TBM tunneling
parameters based on PSO-Bi-LSTM model.

Taking the data set based on the TBM3 bid section of Songhua
River water conveyance project as the research object, 9,350
tunneling cycles are randomly selected as the model training
set in the light of the ratio of 17:1 by data mining method.
Different from the traditional prediction method that uses the
data of the ascending segment to predict the parameters of the
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stable segment, this paper selects the data of the complete
tunneling cycle to predict the TBM tunneling parameters.
Using Pearson correlation analysis, this paper extracts the 21
key parameters with the highest correlation with the
predicted parameters from the 199-dimensional tunneling
parameters of the complete tunneling cycle as the model
input features. Meanwhile, the Adam optimizer is used to
train Bi-LSTM, and the mean square error (MSE) is used as
the loss function of the model. By comparing with the current
relevant algorithms and analyzing the prediction effect under
different surrounding rock grades, the prediction
performance of the PSO-Bi-LSTM model and its
applicability under different surrounding rock grades are
verified, to provide a more feasible intelligent decision-
making method of tunneling parameters for TBM-assisted
intelligent construction.

BI-LSTM MODEL OPTIMIZED BY PSO

Unidirectional LSTM
RNN is a special kind of network structure used to process
sequence data. Different from the traditional neural network
model, the RNN network has a high-dimensional hidden
nonlinear internal structure, which can memorize the
information of the previous moment and apply it to the
current output vector. Theoretically, the RNN network can
process sequence data of any length. But in practice, the
information that the RNN network can store is limited, and
there may be varying degrees of information forgetting during
long-distance data transmission, and the input of the hidden layer
has a significant impact on the output of the network. The
influence decays as the network loop continues to recurse,

making it difficult to deal with long-term dependencies such
as vanishing gradients.

To solve this problem, related scholars introduced a gating
mechanism upon the RNN network to form a LSTM network.
Compared with the RNN network, LSTM adds three control
gates, namely input gate, output gate, and forget gate. The unit
structure of LSTM is shown in Figure 1, which is mainly
composed of one memory unit and three gating units.
Through the gated unit structure, the memory unit can
effectively filter the historical information. The output vector
of the hidden layer at the previous moment and the information
at the current moment are combined into the input vector at the
current moment, and then be stored, forgotten and output
adaptively through the LSTM unit.

Bi-LSTM
LSTM network can effectively deal with long-term dependence
problems such as gradient disappearance in variable-length
sequences, but TBM tunneling parameters are time-
dependent, and the data change law is not only related to
past information, but also considers the impact of future
information on the model prediction performance. For
changing the limitation that the traditional LSTM network
only draws conclusions from past information, some scholars
have improved the propagation method of the LSTM network
and proposed a Bi-LSTM network.

Bi-LSTM network is composed of forward LSTM and
backward LSTM. Compared with traditional LSTM network,
Bi-LSTM network can better adapt to sequence data with
strong round-trip correlation and effectively capture the
dynamic characteristics of TBM tunneling parameters.
Figure 2 shows the Bi-LSTM network structure, which adds a
backpropagation layer upon LSTM. The forward training
sequence and the backward training sequence are two
independent LSTM structures. The two structures are
symmetrical, and the information transmission directions are
opposite. The forward training sequence calculates the current
moment information forward, and the backward training
sequence calculates the same sequence backwards. Bi-LSTM
predicts all input vectors based on the timing of the input
features, the hidden layer integrates the past and future

FIGURE 1 | LSTM structure diagram (Gao et al., 2019).

FIGURE 2 | Bi-LSTM network structure diagram.
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information and outputs to the output layer, and finally integrates
the forward and reverse information to output the prediction
result.

ht � f(w1xt + w2ht−1) (1)
h′t � f(w3xt + w5ht+1′ ) (2)
yt � g(w4ht + w6h

′
t) (3)

where, ht is the current state of the forward hidden layer; h’t is the
current state of the reverse hidden layer; xt is the input value of
the input layer at the current moment; yt is the output value of
the output layer at the current moment; w1、 w2、 w3、 w4、

w5、 w6 are the corresponding weight matrices of information
propagating along the time series respectively.

Particle Swarm Optimization
PSO is a population-based computational method for intelligent
bionic evolution, first proposed by American professors Eberhart
and Kennedy in 1995. The concept of PSO originates from the
research on the predation behavior of birds and realizes the
intelligence of problem solving through cooperation and
information sharing among individuals in the group.
Compared with optimization algorithms such as genetic
algorithm and ant colony algorithm, PSO has a relatively
simple structure, fewer adjustment parameters, and has the
advantage of fast convergence.

PSO uses the velocity-position iterative search method to
determine the global optimal solution when solving the
optimization problem. First, some particles are randomly
initialized in the solution space. Each particle can be
regarded as a search individual in the search space. The
current velocity and position of the particle correspond to a
candidate set of the optimization problem and are
dynamically adjusted in accordance with the fitness
function. The point where the fitness function is optimal
is recorded as the current individual extreme value, also
known as the local optimal solution. The local optimal
solution is shared with other particles in the particle swarm,
and the optimal individual extreme value is obtained by
comparative analysis as the current global optimal solution
of the whole particle swarm. The particle speed and position
adjust the update state in the light of the two optimal solutions
in the optimization process, and finally find the optimal
parameters. According to the principle of the PSO above,
the state update equation of the particle at time t+1 is as
follows:

v(t + 1) � ωvt + c1r1(Pt − xt) + c2r2(Gt − xt) (4)
x(t + 1) � xt + v(t + 1) (5)

where, v is the particle swarm velocity; ω is the inertia weight
(non-negative), the larger the value of ω, the stronger the
global optimization ability and the weaker the local
optimization; x is the particle swarm position; r1, r2 are a
random function in the range [0, 1]; c1, c2 are the learning
factor; Pt is the local optimal solution; Gt is the global optimal
solution.

Bi-LSTM Model Optimized by PSO
The basic idea of constructing the PSO-Bi-LSTM model is to use
the PSO to optimize the bias and weights of the Bi-LSTM neural
network, thereby improving its convergence speed and prediction
accuracy. Compared with some deterministic algorithms, the
PSO, as an uncertain algorithm of bionic optimization, has
self-organization, robustness, and essential parallelism. Each
particle cooperates with each other to better adapt to the
environment, ensuring the effectiveness and practicability of
the algorithm under different conditions and environments.
Figure 3 is the specific algorithm flow of PSO.

FIGURE 3 | Flow chart of PSO algorithm.
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The specific steps of PSO to optimize Bi-LSTM are as follows:

1) The method of constructing binary state discriminant
function is used to preprocess the original data of TBM
tunneling, and the data and outliers of the stop section are
eliminated to obtain valid data samples.

2) Normalize the input data, import the PSO-Bi-LSTM model,
determine the particle swarm search space, initialize the
particle swarm parameters, set the optimization function,
parameter dimension, number of iterations, and upper and
lower limits of the parameters to be optimized.

3) Calculate the fitness value of each particle, update the particle
based on the fitness function, and determine the local optimal

solution; and compare the local optimal solution of each
particle to obtain the current global optimal solution.

4) Determine the velocity and position of the particle at the
current moment in the light of Eqs 4, 5.

5) Train the model and judge whether the predicted value
reaches the expected value or reaches the maximum
number of iterations. If the conditions are met, end the
model training, and output the optimization result;
otherwise, after recording the historical information,
continue to execute the Bi-LSTM algorithm to train the
model until it reaches the expectation.

6) In accordance with the optimized parameters of PSO, a PSO-
Bi-LSTM model is constructed to predict the TBM tunneling
parameters, and an appropriate evaluation function is selected
to evaluate the prediction effect.

PROJECT OVERVIEW AND DATA
PROCESSING

Project Overview
The Songhua River water conveyance project in Jilin Province
has a total length of 263.01 km and a water diversion tunnel of
133.98 km. It is a large-scale cross-regional water diversion
project with the largest scale, the longest water transmission
line, and the most difficult construction in Jilin Province. The
total length of the TBM3 bid section is 22,955 m, and the
construction projects are mainly water diversion tunnels, shaft
excavation, support, and drainage work. Among them, the
tunnel excavation section with a total length of 20,198 m and a
maximum buried depth of 260 m is mainly constructed by
TBM and supplemented by the drilling and blasting method,
and its engineering geological conditions are shown in
Figure 4. The lithology of the stratum involved in this
section is mainly granite and limestone, and the
surrounding rock grades II to V are distributed. The
groundwater is divided into five grades in the light of the
degree of humidity. The distribution ratio of the granite area to
the limestone area is 1:1.58; the proportions of grades II to V of
the surrounding rocks in the granite area are 7.03, 65.23, 25.14
and 2.60% respectively; the proportions of grades II to V of the
surrounding rocks in the limestone area are 5.19, 66.70, 22.83
and 5.28% respectively.

FIGURE 4 | Statistics on geological conditions of TBM construction
section. (A)Granite classification statistics; (B) Limestone classification statistics.

FIGURE 5 | Variation curve of TBM tunneling parameters in 1 day.
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The data of the TBM3 bit section is taken as the research
object. The data collection frequency is 1 Hz, and an average of
86,400 data are collected every day. Each data includes 199-
dimensional TBM tunneling parameters such as the propulsion
speed, total thrust, cutter head torque and cutter head power. As
shown in Figure 5, the TBM tunneling process is composed of
several tunneling cycles. Generally, the cylinder stroke is used
as one tunneling cycle, with about 10–20 tunneling cycles per
day. The tunneling data of a complete tunneling cycle is
selected to predict the tunneling parameters of the stable
segment of the next tunneling cycle, thereby judging the
tunneling state of TBM.

Data Preprocessing
Figure 5 shows that the TBM tunneling parameter-time variation
in a certain day. The adjacent tunneling cycles are divided by the
shutdown state. The shutdown data (that is, the data with the
TBM tunneling parameter value of 0) belongs to useless data
for the machine learning algorithm. For eliminating the
influence of the shutdown state data, the binary state
discriminant function is constructed to preprocess the
original working data and extract the effective tunneling
data of each tunneling cycle from the record file. The
formula for judging whether the TBM tunneling parameter
value is the data of the shutdown section is as follows:

I � f(N)f(T)f(F)f(V) (6)
f(x) � { 1, x ≠ 0

0, x � 0
(7)

where, I is the binary state discriminant function; N is the
propulsion speed; F is total thrust; T is cutter head torque; V
is cutter head power.When the binary state discriminant function
I = 0, it means that this segment of data is the shutdown segment
data; when I = 1, it means that this segment of data is the TBM
normal running state data.

Due to the influence of equipment factors, construction
environment and construction experience of operators, there
are abnormal working conditions in the collected data
samples, which affect the prediction accuracy of the model.
Therefore, the 3 σ criterion is used to identify and remove
outliers. The data processing flow is shown in Figure 6.

The original data is read row by row, and the input data is
marked and judged based on total thrust. The first total
thrust (non-zero value) data is marked as P1; then continue
to read the next data, and the second total thrust (zero value)
data is marked as P2. Subsequently, it is necessary to
determine whether the data between P1 and P2 is within
the range of 500 s to 5,000 s. If not, discard the data; if it is,
output the data of P1 and P2 to the corresponding file.
According to the above method, all data are sequentially
extracted, and the data preprocessing process ends. Based on
data preprocessing, a total of 9,900 groups of valid tunneling
cycles were extracted, 9,350 groups of tunneling cycles were
randomly selected as the model training set, and the
remaining 550 groups of tunneling cycles were used as the
model test set.

Tunneling Cycle Extraction
In accordance with the data preprocessing results, the working
state of the TBM at each moment is determined, and valid data
samples are extracted, wherein each group of continuous
tunneling sequences corresponds to a complete tunneling
cycle, and the data between adjacent tunneling cycles

FIGURE 6 | Flow chart of data processing.

FIGURE 7 | A certain complete tunneling cycle during TBM construction.
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corresponds to a set of stop data. As shown in Figure 7, the TBM
tunneling process can generally be divided into an ascending
segment and a stable segment.

In the existing TBM tunneling parameter prediction research,
several scholars such as Hou et al. (Hou et al., 2020) and Zhou et al.
(Zhou et al., 2020) usually analyze and predict the parameters of the
stable segment based on the data of the ascending segment, which
helps the driver to judge the tunneling state and optimize the
adjustment of parameters to a certain extent. However, the
method of predicting TBM tunneling parameters by using the
ascending segment data requires a lot of time to identify and
extract data. The accuracy of the ascending segment identification
directly affects the model prediction performance. Therefore, how to
avoid the extraction of invalid features of the ascending segment is
still an urgent problem to be solved. Secondly, the duration of the
ascending segment is short, and the amount of data contained is
limited, which cannot completely and accurately display the law of
rock-machine interaction. In addition, the stable segment occupies
most time of the total tunneling section. For the geological conditions
that may be different from the ascending segment, when only the
rock-machine interaction law of the ascending section is used to
reflect theworking state of the TBM stable segment, therewill be large
error. Therefore, this paper uses the data of the complete tunneling
period to train the prediction model, which can effectively reduce the
complexity and difficulty of the huge data processing generated
during the TBM tunneling process, greatly improve the data
preprocessing efficiency, and more accurately display the rock-
machine interaction. It can provide a higher-quality intelligent
decision-makingmethod for TBM tunneling construction (Figure 8).

PREDICTION MODEL BASED ON
PSO-BI-LSTM

Feature Selection
The construction conditions of TBM tunneling are often complex,
and the data generated during the working process of the equipment
contains 199- dimensional parameters. However, when predicting
TBM tunneling parameters, the selection of characteristic variables is
not the better. On the one hand, too many parameters will cause the
model dimension to be too high and the calculation will be slow; on
the other hand, some parameters are not highly correlated with the
prediction parameters, and too many selections will reduce the
model prediction accuracy. Therefore, it is necessary to perform
feature selection on the 199-dimensional tunneling parameters in the
TBM operating data, with the aim of assisting the optimization and
adjustment of the TBM tunneling parameters.

There are many factors affecting the prediction of TBM
tunneling parameters, but most of the parameters that
characterize the law of rock-machine interaction are greatly
influenced by human factors and have poor correlation with
rock-machine interaction, so they cannot be directly used for
model prediction and analysis. Therefore, this paper only selects
the propulsion speed, total thrust, cutter head torque and cutter

FIGURE 8 | Comparison of the prediction processing flow between the
ascending segment and the complete cycle. (A) Ascending segment
prediction (Hou et al., 2020); (B) complete cycle prediction.
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head power of the TBM tunneling stable segment as the output
characteristics of the model.

The selection of input features is of great significance to the
parameter optimization of the model and the efficiency of
intelligent decision-making. Based on the complexity of the

model, the accuracy of prediction and the comprehensive
consideration of previous studies, this paper uses Pearson
correlation analysis to identify the 199-dimensional TBM
tunneling parameters, eliminates irrelevant parameter
variables, and selects key model parameters as model inputs.
The formula for calculating the Pearson correlation coefficient is
as follows:

1) Calculate the average of the data:

E(X) � ∑
i

pixi (8)

2) Calculate the variance of the data:

Var(X) � 1
n
∑n
1

(xi − μ)2 (9)

3) Compute data covariance:

cov(X,Y) � E(X · Y) − μv (10)

4) Calculate data correlation:

η � cov(X,Y)�������������
Var(X)Var(Y)√ (11)

where, μ is the mean of the data sample X; v is the mean of the
data sample Y; xi is the input parameter; pi is the frequency of
occurrence of the input parameter; the larger the absolute value of
η, the stronger the correlation; the closer η is to 0, the weaker the
correlation.

Based on the Pearson correlation analysis results, the PSO-Bi-
LSTM model constructed in this paper selects the 21 key
parameters with the highest correlation with the predicted
parameters in the complete tunneling cycle data as the
input features of the model, to realize the prediction and
analysis of the four key parameter indicators in the TBM
stable segment. The 21-dimensional input feature
identification results corresponding to the four prediction
parameters of the model divided according to the size of the
correlation coefficient of each parameter are shown in
Figure 9.

To solve the problems of low prediction efficiency and slow
convergence speed caused by the dimensional difference between
the tunneling parameters, this paper normalizes the input data of
the model, and the formula is as follows:

x′ � x − xmin

xmax − xmin
(12)

where, x’ is the normalized input parameter; x is the actual input
value; xmin is the minimum value of the input parameter; xmax is
the maximum value of the input parameter.

Model Establishment
Figure 10 shows the TBM tunneling parameter prediction model
based on the PSO-Bi-LSTM. Before using the PSO to optimize,
the Bi-LSTM model structure needs to be determined first.

FIGURE 9 | Model identification results for four key parameters.
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Compared with the unidirectional LSTM, a back-propagation layer
is added. Each layer of this structure contains two parallel layers,
which control the forward and backward outputs respectively, and
can utilize the contextual information in the meanwhile.

After data preprocessing, the original data is divided into
training set and test set in a ratio of 17:1. The 21 key parameters
with the highest correlation with a certain tunneling parameter to
be predicted in the complete tunneling cycle extracted from the
training set are input into the Bi-LSTM. The Bi-LSTM is
optimized by PSO, and the global optimal solution obtained
by iterative optimization is input into the Bi-LSTM.

Model Training and Evaluation
To verify the generalization ability of the model, this paper adopts
the goodness of fit R2 and the mean absolute percentage error
(MAPE) as the performance indicators for evaluating the
intelligent prediction model.

MAPE � 1
n
∑n
i�1

∣∣∣∣yp
i − yi

∣∣∣∣
yi

(13)

R2 � 1 −
������������∑n

i−1(yi − yp
i )2∑n

i�1y
2
i

√
(14)

where, yp
i is the predicted value of the model; yi is the true value; i

is the sample number; n is the total number of samples in the
test set.

The preprocessed data set is divided into training set and test
set proportionally, in which the data of the training set is
continuously used to iteratively optimize the model and
update the model parameters; the test set is used to test the
performance of the model and verify the generalization ability of
the model. To improve the accuracy of the training model, this
paper uses the Adam optimizer to update and optimize the
network, and the loss function is the MSE function. The

FIGURE 10 | Prediction model of TBM tunneling parameters based on PSO-Bi-LSTM.

FIGURE 11 | Prediction results of the propulsion speed under different
number of hidden layer nodes.
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number of hidden layer nodes and layers will be discussed in
Model Parameter Analysis. A fully connected layer is added after
the hidden layer, and the learned distributed feature
representation is mapped to the sample label space, so that the
output feature dimension is represented as one dimension,
which speeds up the model calculation efficiency. Considering
the prevention of the model from overfitting, each layer of
unit is regularized, and the dropout probability is set to 0.3.
The maximum number of iterations is set to 50. When the
number of iterations reaches the requirement or the average
loss value no longer decreases with the iterations, the training
is stopped.

Model Parameter Analysis
Before using PSO to optimize Bi-LSTM, the network
structure of Bi-LSTM needs to be determined. Parameters
such as the number of hidden layer nodes, the number of
hidden layers, and the training learning rate α of the Bi-
LSTM network need to be adjusted many times, so it is
difficult to effectively judge the optimal state of the model.
To improve the prediction accuracy, this paper takes the
propulsion speed as an example to discuss the
hyperparameters and determines the optimal parameters
of the model through two indicators, namely the MAPE
and the goodness of fit R2.

FIGURE 12 | Prediction results of the propulsion speed with different number of hidden layers.

FIGURE 13 | Predicted results of the propulsion speed at different learning rates.
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1) Discussion on number of hidden layer nodes in Bi-LSTMnetwork

In the Bi-LSTM neural network, the selection of the number of
hidden layer nodes is extremely important, which not only has

a great impact on the performance of the neural network
model, but also is the direct cause of overfitting. However, the
theory of determining the optimal number of hidden layer
nodes in neural networks is not yet mature. Research shows
that the number of hidden layer nodes is not only related to
the number of input/output layer nodes, but also depends on
the complexity of the problem to be solved and the
characteristics of the sample. If the number of nodes is too
large, it is prone to over-fitting, which reduces the
generalization ability of the model; if the number of nodes
is too small, the model cannot fully learn the characteristics of
time series data and reduces the performance of the model. To
solve the above problems, scholars have proposed a variety of
discrimination methods to determine the number of hidden
layer units based on many experimental studies (Liu et al.,
2012; Han et al., 2020; Zheng et al., 2020). In this study, the
empirical formula is used to determine the value range of the
number of hidden layer units:

Nhid � (Nin +Nout)12 + a (15)
where, Nin is the number of nodes in the input layer; Nhid is the
number of hidden layer nodes;Nout is the number of output layer
nodes; a is a constant, 1≤ a≤ 10.

To prevent the model from overfitting and reduce the
complexity of the model, the maximum number of iterations
of the model in this section is 50, and the number of particle
swarm populations is 30; other parameters such as the number of
hidden layers is set to two according to experience, the learning
rate is set to 0.001, and the value range of the number of the
hidden layer is 3–13. Figure 11 shows the prediction of the
propulsion speed with different numbers of hidden layer units
based on lots of training samples. As the number of hidden layer
units increases, the mean absolute percent error first decreases
and then increases, and the goodness of fit first increases and then
decreases. Too many or too few hidden layer nodes will reduce
the prediction performance of the model. To sum up, when the
number of nodes is 5, the prediction effect is optimal, so the
number of hidden layer nodes in this model is set to 5.

2) Discussion on hidden layers of Bi-LSTM network

For the sake of exploring the optimal network structure, the
number of layers of the model is further analyzed and studied.
Theoretically, the prediction performance of the model is
proportional to the number of hidden layers, but the time cost
of model training increases gradually with the increase of the
number of layers, the convergence effect and efficiency drop
sharply, and the model often falls into the dilemma of local
optimal solution, which leads to training long-term dependency
problems such as information loss and gradient disappearance in
the process.

Taking the propulsion speed as an example, the number of
hidden layer nodes is set to 5, the maximum number of iterations
is 50, the number of particle swarm populations is 30, the range of
layers is set to 1~8 based on experience, and the learning rate
is 0.001.

FIGURE 14 | Prediction results of the PSO-Bi-LSTM model under
different surrounding rock grades.
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As shown in Figure 12, when the number of hidden layers of
Bi-LSTM is 2, the model accuracy is higher than that of single
layer. However, the increase of the number of layers did not
improve the prediction performance of the model. On the
contrary, it fell into the problem of unable to find the global
optimal solution, which greatly increased the risk of overfitting.
Therefore, the number of hidden layers in this paper is selected
as 2.

3) Discussion on learning rate α for Bi-LSTM network training

After the Bi-LSTMneural network structure is determined, the
training learning rate of the model needs to be discussed. As an
important hyperparameter in deep learning, the learning rate
determines whether the objective function can converge to the
local minimum and the convergence efficiency. If the learning
rate is set too small, the convergence process is very slow, and
even the algorithm does not converge; if the learning rate is set too
large, the algorithm is prone to oscillation or divergence, resulting
in gradient explosion (Shen et al., 2020). Therefore, the maximum
number of iterations of the established model is 50, the number of
particle swarm populations is 30, the number of hidden layer
nodes is set to 5, the number of layers is set to 2, and the learning
rate is set to 0.0001, 0.0005, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
according to experience, respectively.

Taking the propulsion speed as an example, Figure 13 shows
the prediction results of the model under different learning rates.
When the learning rate is 0.001, the prediction result of the model
is the most stable, the MAPE is relatively low compared to other
cases, and the goodness of fit is relatively high, so this paper
selects the model learning rate of 0.001.

In summary, the final structural parameters of the model are
determined through experimental research: the number of
hidden layers is 2, the number of nodes is 5, and the learning
rate is 0.001.

MODEL APPLICATION AND COMPARISON

Application of PSO-Bi-LSTM Model Under
Different Surrounding Rock Grades
In the actual tunneling process, the interaction between the TBM
and the surrounding rock produces a complex rock-machine
relationship. How to realize the real-time perception of the

current rock mass information and ensure that the current
TBM tunneling state matches the complex and changeable
rock mass conditions is still a hot issue in TBM construction.
This section studies the prediction performance of PSO-Bi-LSTM
model under different surrounding rock grades based on the
construction database of TBM3 bid section of Songhua River
water conveyance project in Jilin Province. The 21-dimensional
parameters with the highest correlation with the predicted
parameters in the complete tunneling cycle are selected as the
input features of the model to realize the prediction and analysis
of the four key parameters (total thrust, the propulsion speed,
cutter head torque and cutter head power) in the stable segment
of the TBM tunneling; and the goodness of fit R2 and the MAPE
are used as evaluation indicators to judge the validity of the model
prediction.

The data samples in this paper are collected from a certain
construction section of the TBM3 bid section. Based on the data
preprocessing, a total of 9,900 valid tunneling cycles are extracted,
and 9,350 tunneling cycles are randomly selected as the model
training set, and the remaining data are used as the model test set.
It is used to verify the applicability of the trained model to
different surrounding rock levels. Among them, the
surrounding rock grades are mainly distributed in grades II to
V, among which grade III surrounding rock accounts for the
largest proportion in this tunneling section, and there are
relatively few grades II and V surrounding rock.

Figure 14 shows the prediction results of the PSO-Bi-LSTM
model under different surrounding rock levels. It can be seen
from the analysis of the figure that the predicted result and the
measured value of each tunneling parameter have a high
degree of fitting, and there is a large deviation only in
individual samples. In addition, the prediction agreement
between the propulsion speed and total thrust is the highest
under the conditions of different surrounding rock grades; the
prediction agreement between cutter head power and cutter
head torque is relatively low.

Table 1 shows the statistical analysis results of the evaluation
indicators of the four key tunneling parameters under different
surrounding rock grades. From the analysis of the goodness of fit
and error of the prediction results, the PSO-Bi-LSTM model has
high prediction accuracy. The higher the goodness of fit R2 of the
TBM tunneling parameters, the lower the MAPE, and the better
the prediction effect of the model. Comparing the goodness of fit,
the average values of the goodness of fit of the cutter head power,

TABLE 1 | Statistics of evaluation indicators of four tunneling parameters under different surrounding rock grades.

Surrounding rock
classification

Evaluation
indicators

Cutter head
power P

Cutter head
torque T

Propulsion speed
v

Total thrust F

Grade II R2 0.938 0.962 0.994 0.989
MAPE/% 6.195 3.723 0.473 1.009

Grade III R2 0.944 0.937 0.974 0.996
MAPE/% 5.087 5.965 1.151 0.352

Grade IV R2 0.918 0.925 0.981 0.948

MAPE/% 8.167 7.539 0.509 5.161
Grade V R2 0.849 0.909 0.951 0.953

MAPE/% 15.357 8.651 2.352 4.381
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cutter head torque, the propulsion speed and total thrust are
0.912, 0.933, 0.975 and 0.972, respectively, and the goodness of fit
of all reached above 0.91. This shows that the PSO-Bi-LSTM

model has excellent prediction effect for each parameter. The
prediction accuracy of total thrust in surrounding rocks at all
levels is relatively high, and the fluctuation of the goodness of fit
of its samples is much lower than that of other parameters, and
the goodness of fit of other parameters fluctuates greatly under
different surrounding rock grades.

In consideration of the influence of different surrounding rock
grades on the prediction effect of the model, it can be found that
the average values of R2 of the tunneling parameters of grade II
surrounding rock, grade III surrounding rock, and grade IV
surrounding rock are 0.971, 0.962, 0.943, and 0.916,
respectively. This shows that the PSO-Bi-LSTM model has a
good fitting effect and can sensitively reflect the interaction
information between the surrounding rock at all levels and the
TBM. By comparing the goodness of fit under different
surrounding rock grades, it is found that the higher the
surrounding rock grade, the better the stability. Similarly,
among the four types of surrounding rock grades, the MAPE
of each tunneling parameter of grade V surrounding rock is also
relatively high, reaching 7.685%. The average MAPE of the other
three types of surrounding rocks is not much different, and they
are 2.850, 3.139 and 5.344% respectively according to the grades
from high to low. This shows that the stability of low-grade
surrounding rock is relatively poor, and the rock-mechanism
relationship is greatly affected by human factors, so the prediction
accuracy is lower than that of high-grade surrounding rock. In
addition, the fitting fluctuations of the parameters of the low-
grade surrounding rock are relatively large, and it is difficult for
the model to learn its variation law. Meanwhile, compared with
high-grade surrounding rock, the problem of the number of
samples of low-grade surrounding rock may cause larger
accidental errors, which is also one of the reasons for the
decline of model accuracy.

Comparison With the Prediction Effect of
the Bi-LSTM Model
The same set of data was selected to quantitatively analyze the
prediction performance of the Bi-LSTM model under different
surrounding rock levels. Since total thrust is less affected by
external factors, and the propulsion speed and cutter head torque
are greatly affected by external rock mass information factors and
have high sensitivity to the rock-machine relationship, this

FIGURE 15 | Comparison of prediction results of cutter head torque by
different models.

TABLE 2 | Comparison of evaluation indicators for prediction results of different
models.

Model Surrounding
rock classification

R2 MAPE/%

PSO-Bi-LSTM Grade II 0.962 3.723
Grade III 0.937 5.965
Grade IV 0.925 7.539
Grade V 0.909 8.651

Bi-LSTM Grade II 0.932 5.332
Grade III 0.909 9.078
Grade IV 0.852 15.138
Grade V 0.828 19.172
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section takes cutter head torque as the research object and predict
and analyze different surrounding rock grades in turn, and the
prediction result is shown in Figure 15.

Figure 15 shows that the fluctuation of the prediction result
curve of the Bi-LSTM model for cutter head torque under all
levels of surrounding rock is significantly larger than that of the
PSO-Bi-LSTMmodel. Combining with Table 2, among the grade
II, III, IV and V surrounding rocks, the MAPE of the Bi-LSTM
model is 1.938, 3.765, 1.890, and 3.408%, respectively, which is
much larger than that of the PSO-Bi-LSTM model. On the one
hand, it shows that the prediction accuracy of the traditional Bi-
LSTM model is relatively poor; on the other hand, the Bi-LSTM
model optimized by PSO can almost accurately predict the
change law of tunneling parameters under different
surrounding rock levels. This shows that the PSO-Bi-LSTM
model has higher prediction accuracy and faster convergence
speed for time sample series and can more effectively predict
TBM tunneling parameters.

Given all of that, compared with the Bi-LSTM, the prediction
model based on PSO-Bi-LSTM has better prediction performance
and generalization ability. It can assist the safe and efficient
tunneling of TBM under different stratum conditions and
provide certain guidance for the optimization and adjustment
of parameters.

CONCLUSION

To make the model better match the characteristics of TBM
construction data under different surrounding rock levels, this
paper uses PSO to optimize the Bi-LSTM model and establishes
the PSO-Bi-LSTM model. This paper takes the construction data
set of the TBM3 bid section of Songhua River water conveyance
project as the research object and uses plenty of data processing
methods such as constructing a binary state function and 3σ
criterion to correct the original data. Different from the
traditional ascending segment data to predict the parameter
values of the stable segment, this paper selects the 21-
dimensional tunneling parameters with the highest correlation
with the predicted parameters in the complete tunneling cycle as
the model input features to realize the accurate prediction of the
four key tunneling parameters in the TBM stable segment. The
discussion of model hyperparameters is completed by
experimental analysis. The prediction results of the model
under different surrounding rock levels are evaluated, and the
influence of different formation conditions on the prediction
accuracy of the model is studied, and the Bi-LSTM model are
compared. The conclusions and results obtained are as follows:

1) An intelligent prediction model of TBM tunneling parameters
based on PSO-Bi-LSTM is proposed. The prediction analysis
was carried out for the formation sections under different

surrounding rock grades, and the time series prediction
method of the tunneling parameters was given by the PSO-
Bi-LSTM model. The average R2 of each parameter is above
0.910, and the highest is 0.996. The prediction results can
provide certain guidance for the safe and efficient tunneling
construction of TBM.

2) Different from the existing methods that use the data of the
ascending segment to predict the tunneling parameters of the
stable segment, this paper selects the data of the complete
tunneling cycle to predict the tunneling parameters of the
stable segment. The amount of data contained is rich, which
can improve the quality of intelligent decision-making during
TBM construction.

3) The higher the surrounding rock grade, the smaller the
prediction error and the higher the prediction accuracy of
the PSO-Bi-LSTM model. The fluctuations of the prediction
results on the propulsion speed and total thrust are smaller in
surrounding rocks at all levels, and the prediction
performance is relatively stable.

4) Compared with the Bi-LSTM, the intelligent prediction
method proposed in this paper has stronger prediction
performance for different surrounding rock grades and
different prediction parameters. This method can effectively
assist the optimization and adjustment of tunneling
parameters during TBM construction and can provide a
more effective intelligent decision-making method for
TBM-assisted intelligent construction.
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