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The research aims to improve prediction accuracy for heights of fractured water-
conducting zones (FWCZs) and effectively prevent and control roof water disasters, to
ensure safe coal mining. For this purpose, themethod that integrates the improved cuckoo
search (ICS) algorithm and extreme learning machine (ELM) is used to predict heights of
FWCZs. Based on an analysis of factors influencing FWCZs, the ICS algorithm is employed
to optimize two key parameters of the ELM model, the input weight ѡ and the bias b of
hidden elements, thus establishing the ICS–ELM model for predicting the height of the
FWCZ. The ICS–ELMmodel is trained using 42 measured samples, and the trained model
is employed to predict the remaining six sample data points. The obtained prediction
results show a relative error of only 3.97% and are more consistent with the actual
situation. To verify the effectiveness of the model, the prediction results are compared with
those of the adaptive particle swarm optimization based least squares support vector
machine (APSO–LSSVM) and particle swarm optimization (PSO) based backpropagation
(PSO–BP) models. The average relative errors of the two models are 8.21 and 9.75%,
respectively, which further proves that the ICS–ELM model improves the accuracy of
prediction results for heights of FWCZs. The heights of FWCZs predicted using the model
are accurate and reliable, and the accuracy meets the requirements of engineering
practice.

Keywords: height of fractured water-conducting zone, improved cuckoo search algorithm, extreme learning
machine, model comparison, improved cuckoo search based extreme learning machine

INTRODUCTION

With the advance of underground coal mining, the equilibrium of in-situ stress of strata overlying the
roof of coal seams is broken, which causes caving, fracturing, and bending of the overlying strata,
forming a caving zone, a fractured zone, and a bending subsidence zone (Dai et al., 2020). Therein,
the caving zone and the fractured zone are collectively called a fractured water-conducting zone
(FWCZ). If the FWCZ develops upwards to coalesce with an aquifer rich in water or meet surface
water, the underground water inflowwill increase abruptly, which poses threats to safe mining of coal
mines, damages groundwater resources, and aggravates deterioration of the ecological environment
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in mining areas (He et al., 2021). The height of the water-
conducting fracture zone also reflects the movement range of
the overlying burden, which has certain guiding significance for
the ground pressure behavior ((Zhu et al., 2022)). Therefore,
determining the heights of FWCZs has become an important link
in safe mining and ecological environmental protection (Bai et al.,
2014; Bai and Li 2013; Bai et al., 2021; Bai et al., 2018).

Many studies have been conducted to predict the heights of
FWCZs and the commonly used methods include theoretical
calculation, empirical formulae, and in-situ measurement. These
research findings are of certain theoretical and practical
significance for predicting the heights of FWCZs formed due
to coal mining. Based on the theory of plates and shells, (Zhu
et al., 2020) predicted the heights of FWCZs and discussed the
development process of an FWCZ in bedrock and loess strata.
(Zhang et al., 2018) established a mechanical analysis model for
the height of an FWCZ in overlying strata based on the elastic
foundation beam theory. (Zhang 2019) used the fitted empirical
formulas to predict height of the FWCZ. (Xu et al., 2012)
developed a theoretical method for predicting the heights of
FWCZs according to locations of key strata in overlying strata.
(Wang et al., 2021) calculated the height of an FWCZ under
influences of a fault using the mechanical model of beams and the
numerical simulation. (Ti et al., 2021) built mechanics models for
first fracture and periodic fracture of an elastic Winkler
foundation beam based on the theory of key strata and
investigated the failure and deformation processes in overlying
strata. (Liu et al., 2020) observed the caving zone and fractured
zone during failure of overlying strata in hydrogeological
boreholes. (Yan 2015) adopted the observation method for
losses of drilling fluid to observe the height of an FWCZ.
Many researchers also used FLAC3D numerical simulation to
determine height evolution of an FWCZ during mining of a
working face (Liu et al., 2015; Liu, et al., 2021; Du and Gao 2017).
They proposed a predictive method for the heights of FWCZs
according to distribution of damaged zones in the model. (Liu
et al., 2021) proposed an approach for detecting the damage
height of overlying strata based on isotopic tracing. (He et al.,
2020) established a non-linear predictive model for the height of
FWCZs based on influencing factors, such as the height, through
the multiple regression (MR) analysis. By building a mechanical
model for damage evolution in overlying strata, (Guo et al., 2019a,
Guo et al., 2019b) studied the mechanisms for first rock caving,
breakage of overhung strata, and structural failure of rock blocks
above coal seams. On this basis, they proposed a theoretical
prediction method for the heights of FWCZs during fully-
mechanized caving mining. (Chang et al., 2019) applied the
transient electromagnetic (TEM) method to monitor the
evolution of an FWCZ beneath a river after longwall mining.
Among these methods, the in-situ measurement methods are
accurate, while they are seldom used due to heavy workload,
complex operation of equipment, and high cost. Methods based
on empirical formulae involve few influencing factors, so they do
not consider influences of other factors. Theoretical calculation
assumes idealistic conditions, which does not tally with reality, so
their results exhibit relatively large errors. The accuracy of
numerical simulation is closely related to geological

parameters of the established model, however, it is difficult to
obtain these parameters accurately. As for geophysical
exploration methods, such as electrical resistivity and
microseismic monitoring, their accuracy is not high due to
presence of multiple possible solutions, therefore, how to
improve prediction accuracy is a difficulty in the height
prediction of FWCZs (Bai and Shi 2017; Bai et al., 2020; Bai
et al., 2019; Bai, Zhou, et al., 2021).

Machine learning has been applied to height prediction of
FWCZs with the development of computer techniques.
Meanwhile, numerous scholars have explored more accurate
and efficient prediction models, in which predictive models
based on support vector machine (SVM) and backpropagation
neural network (BPNN) are most widely used. (Guo et al., 2014)
established a model based on entropy weight attribute measure
theory for predicting the heights of FWCZs. (Shao and Zhou
2018) built a prediction model for the heights of FWCZs based on
a quantum genetic algorithm (QGA)–random forest regression
(RFR) model. (Rezaei, 2018) developed an intelligent height
prediction model for FWCZs based on the artificial neural
network (ANN). (Yang et al., 2019) built a height prediction
model for FWCZs based on the BPNN. (Hou et al., 2020)
established such predictive models by combining the genetic
algorithm (GA) and SVM. (Dai et al., 2020) proposed a
predictive model for the heights of FWCZs based on MR
model and BPNN. (Lou and Tan 2021) constructed a height-
prediction model of FWCZs based on particle swarm
optimization (PSO)–BPNN. (Chai et al., 2018) established a
prediction model for the height of a FWCZ formed in
overlying strata due to mining disturbance based on
GA–support vector regression (SVR). Despite having strong
non-linear identification ability, traditional ANN learning
algorithms, including backpropagation (BP) network and
SVM, also have shortcomings such as poor generalization, a
slow learning rate, and a tendency to be trapped in local
optima. Compared with traditional prediction models,
including BPNN and SVM, the extreme learning machine
(ELM) shows advantages such as fast learning, favorable
generalization, and simple parameter selection (Guo et al.,
2021; Huang et al., 2017).

When extreme learning machine deals with nonlinear
problems, it is difficult to determine the network structure,
which will lead to the problems of low algorithm accuracy and
poor stability. In view of this, a predictive model for the heights of
FWCZs based on the improved cuckoo search (ICS)
algorithm–ELM is established to solve problems. By
optimizing parameters of the ELM using the ICS, the research
provides an effective method with which to predict heights of
FWCZs.

FACTORS INFLUENCING THE HEIGHT OF
AN FWCZ

Mining Depth
Burial depth of coal seams influences the original stress on the
surrounding rocks. With the increase of burial depth within a
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certain range, the vertical and lateral stresses on the rock
surrounding a working face increase as mining proceeds,
which intensifies damage to the overlying strata of roofs and
increases the height of the FWCZ. Beyond that range, fractures
induced by mining are closed under the high in-situ stresses
encountered at such depths, so that the height of the FWCZ
decreases (Wang et al., 2018).

Dip Length of Working Faces
Geometrical parameters of a working face mainly refer to the
strike length and dip length. Before coal mining reaches full
subsidence under conditions of a fixed dip length, the heights of
FWCZs constantly increase with the advance of working faces
(until reaching their maximum subsidence). If the strike length is
the same as the dip length, the height of a FWCZ is maximized
and does not increase with the further advance of the working
face. Under such conditions, the FWCZ forms a typical arch (Guo
et al., 2019b).

Mining Thickness
Mining height of coal seams is a direct factor that influences
development of FWCZs. Within a certain range, the overlying
strata are gradually broken with further coal mining and the
scope of plastic failure zones in the roof enlarges. As a result, the
displacement and deformation of the roof increase and
correspondingly the heights of FWCZs rise (Zhang et al., 2017).

Hard-Rock Lithology Proportional
Coefficient
The uniaxial compressive strength and the structure type of roof
strata both affect the heights of FWCZs. The two parameters are
replaced with a new index, hard-rock lithology proportional
coefficient, to characterize their relationship with the heights
of FWCZs. Under conditions of similar mining thickness, the
hard-rock lithology proportional coefficient shows an
approximately linear increasing relationship with the heights
of FWCZs (Chen and Zhu 2020).

PRINCIPLES OF ALGORITHMS

Cuckoo Search Algorithm
The cuckoo search (CS) algorithm is a mathematical model proposed
based on the breeding mode of cuckoos in nature (Tang and Xue
2019). Cuckoos are brood parasitic birds that do not raise their
offspring. When cuckoos reproduce, they do not build nests and
hatch eggs, but look for a host with similar eating habits, shapes and
colors and then they quickly lay eggs when the host goes out for food.
Only one egg is laid in each nest. Cuckoo eggs are similar in shape and
size to other birds, so they are not easy to be identified by other birds.
Young cuckoos have an instinct to push young birds of the host out of
nests, so they can enjoy the food of the host bird alone and survive
well. When the host bird finds the cuckoo offspring in its nest, it will
abandon the nest or the cuckoo offspring.

The CS algorithm is based on three idealized assumptions
(Gandomi et al., 2013):

(1) Each cuckoo lays only one egg at a time and randomly puts
the egg into a nest;

(2) The best nest will be reserved for the next generation;
(3) The probability of cuckoo being found by the host is

Pa ∈[0, 1]

Based thereon, the formula used to represent a cuckoo finding
a nest for the next generation is given by:

Xi(t + 1) � Xi(t) + α · Levy(λ) (1)
Where, Xi represents the location of the i

th nest in the tth generation;
· denotes point-to-point multiplication; α denotes the control
quantity of the step length and is generally given a value of 1.

ICS Algorithm
The specific process of the algorithm is shown as follows (Fan
et al., 2021):

(1) Parameters of the algorithm are set. The objective function
f(x) is determined and X � (x1, x2, . . . , xn)T. The initial
locations of n nests generated randomly are assumed to be
Xi(i � 1, 2, . . . , n). N, D, Pa , and L separately represent the
population size, dimension, probability of being found, and
critical value. The maximum number of iterations is
represented by MaxN, and the location of the optimal nest
and the optimal solution are X0

best and fmin.
(2) The location of the current-generation nest is updated. The

locations of the nests in the current generation and previous
generation Pt−1[Xt−1

1 ,Xt−1
2 , . . . ,Xt−1

n ]T are compared and the
location of the nest with the better fitness replaces that with
the worse fitness and gt � [Xt

1,X
t
2, . . . ,X

t
n]T

(3) The random number R is taken as the probability of the host
of the nest to find other birds’ eggs. The random number is
compared with the probability Pa of the nest being
eliminated. If R >Pa, the location of the nest in gt is
randomly changed to determine a group of new locations
of the nest. When updating the location of the nest, a group of
better locations of the nest can be obtained:
pt � [Xt

1,X
t
2, . . . ,X

t
n]T. The location of the optimal nest

Xt
best and optimal solution ft

min are updated.
(4) Whether the algorithm meets the set maximum number of

iterations is judged. If satisfied, the search is ended and the
global optimal value fmin is output; otherwise, Step 2 is
repeated for iterative optimization.

The flow-chart through the ICS algorithm is displayed in
Figure 1.

ELM
Extreme learning machine (extreme learning machine) ELM is an
easy-to-use and effective single-hidden layer feedforward neural
network SLFNs learning algorithm. Traditional neural network
learning algorithms (such as BP algorithm) need to manually set a
large number of network training parameters, and it is easy to
generate local optimal solutions. The extreme learning machine
only needs to set the number of hidden layer nodes of the
network, and does not need to adjust the input weights of the
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network and the bias of the hidden elements during the execution
of the algorithm, and generates a unique optimal solution, so it
has fast learning speed and generalization (Choudhury et al.,
2013). The classic ELM structure is displayed in Figure 2.

The ELM algorithm can be divided into five steps (Huang
et al., 2012):

(1) Sample data are input.
(2) The input weight wi and bias bi of the hidden layer are

determined.
(3) The output matrix H of the hidden layer is calculated.

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h(x1)
h(x1)
..
.

h(x1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h1(x1) h2(x1) . . . hL(x1)
h1(x2) h2(x2) . . . hL(x2)

..

. ..
. ..

. ..
.

h1(xN) h2(xN) . . . hL(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g(ω1x1 + b1) g(ω2x1 + b2) . . . g(ωLx1 + bL)
g(ω1x2 + b1) g(ω2x2 + b2) . . . g(ωLx2 + bL)

..

. ..
. ..

. ..
.

g(ω1xN + b1) g(ω2xN + b2) . . . g(ωLxN + bL)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

(4) The weight matrix β � H + T is calculated.

H+ � (HTH)−1HTβ

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β11 β12 . . . β1M
β21 β22 . . . β2M
..
. ..

. ..
. ..

.

βL1 βL2 . . . βLM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tT1
tT2
..
.

tTN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t11 t12 . . . t1M
t21 t22 . . . t2M
..
. ..

. ..
. ..

.

tN1 tN2 . . . tNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

FIGURE 1 | Flow-chart through the ICS algorithm.

FIGURE 2 | Classic ELM structure.
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(5) The predicted value is obtained.

It is assumed that there are N arbitrary samples (Xi, ti), where
Xi1 � [xi1, xi2, . . . , xin]T ∈ Rn. The single-hidden-layer neutral
network with L hidden-layer nodes is expressed as follows:

∑L

i�1βig(Wi · Xj + bi) � oj, j � 1, 2, . . . . . . ,N (4)
Where, g(x) represents the activation function and ωi �
[ωi1,ωi2, . . . ,ωin]T represents the input weight; βi and bi
denote the output weight and bias of the ith hidden element,
respectively. Wi · Xj denotes the inner product of Wi and Xj.

ESTABLISHMENT AND ANALYSIS OF THE
ICS–ELM MODEL FOR PREDICTING
HEIGHTS OF FWCZS
Establishment of the Model
bj and ωij of the ELM are closely related to its generalization
and prediction performance, so the two parameters are
optimized through iterations with the ICS algorithm, to
attain more accurate and stable results. Random variables
are presented in the ELM model, which leads to
unstable results. However, the ICS model can
independently determine the number of hidden-layer
nodes, input weight and threshold of the ELM and can
well ensure the stability of the results. The ICS–ELM
model is established based on four steps: data processing,
initialization and fitness calculation, model training and
result prediction. In this case, the obtained results are
more accurate.

The flow-chart through the model is shown in Figure 3.
The calculation process is shown as follows:

(1) Data processing. It is supposed that there are N samples
(Xh, Yh), where h � 1, 2, . . . ,N. The formula used in data
processing is as follows:

xϕhe �
xhe − xemin

xemax − xemin
(5)

Where, Xhe represents the eth influencing factor of the hth datum;
Xemin and Xemax separately indicate the minimum andmaximum
values of the eth influencing factor; Xhe denotes the processed
data.

(2) Initialization and fitness calculation. The maximum number
of iterations, a relevant parameter in the ICS algorithm, is set
to 200 and the maximum and minimum values of Pa are 0.5
and 0.1, respectively. The maximum and minimum values of
a separately are 1.5 and 0.5. N, yh, ŷ , and �y represent the
total number of samples, actual test value, predicted value of y
and mean average of y, respectively.

ARV �
∑M

h�1[yh − ŷh]2
∑N

h�1[yh − yh]2
(6)

(3) Model training. The training samples are substituted into the
model. The optimization objective is to minimize the fitness
function, and continuously optimize the model parameters
with the ICS algorithm, thus establishing the optimal
ICS–ELM model.

(4) Result prediction. The samples to be predicted are input into
the trained ICS–ELM model with influencing factors and the
predicted values are output, to analyze and verify the
feasibility and accuracy of the results.

Model Analysis
The mining depth (H), dip length of working faces (L), mining
thickness (M) and hard-rock lithology proportional coefficient (B) as
main factors affecting heights of FWCZs are taken as input vectors.
Heights of FWCZs (Hf) are output based on the ICS–ELM
prediction model. In the research, 48 groups of sample data are
collected, in which Groups 1–42 are taken as a training set, while
Groups 43–48 are regarded as a test set (Table 1).

FIGURE 3 | Flow-chart for predicting heights of FWCZs.
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The input weight ѡ and bias b of hidden elements in the ELM
model are two important parameters that directly affect the
prediction results. Therefore, the ICS model is used to
optimize these two important parameters. The number of
iterations in the ICS algorithm is set to 100 and the optimized
data are substituted into the model to train the training set. The
trained values and actual values of each sample are shown in
Figure 4. Favorable fitting effects can be observed, furthermore,
six samples in the training set are predicted. Excellent regression
prediction results are obtained by use of this scheme (Figure 5).

To verify the prediction accuracy of the ICS–ELM model for
heights of FWCZs, the prediction results are compared with
results obtained by adaptive particle swarm optimization based
least squares support vector machine (APSO–LSSVM) and PSO
based BP (PSO–BP) models. The prediction effects of them are
shown in Figure 5 and Table 2.

The root mean square error, mean absolute error, mean
relative error and squared correlation coefficient of the
ICS–ELM model is smaller than those of the other two
models, and the obtained results are closer to the actual

TABLE 1 | Sample data: factors influencing the height of an FWCZ.

No M (mining
thickness)

B (hard-rock
lithology proportional

coefficient)

L (dip
length of

working faces)

H (mining
depth)

Hf (heights
of FWCZs)

1 3.7 0.71 70 420 56.80
2 2.4 0.81 180 550 55.32
3 1.9 0.83 70 173 25.30
4 2.03 0.95 69 89 45.86
5 2.6 0.60 147 265 43.43
6 4.0 0.74 71 282 33.00
7 3.4 0.41 200 117 72.00
8 2.5 0.36 135 350 20.00
9 1.7 0.90 65 320 27.50
10 2.0 0.30 174 150 58.40
11 8.0 0.72 170 450 86.80
12 2.0 0.24 85 230 52.50
13 3.0 0.06 150 125 22.00
14 2.2 0.45 158 101 63.00
15 4.0 0.52 135 49 45.00
16 3.8 0.92 143 446 40.00
17 1.9 0.78 70 173 26.70
18 2.8 0.93 156 264.5 44.34
19 2.6 0.37 168 290 38.41
20 7.52 0.41 190 367 61.77
21 2.6 0.18 168 290 39.14
22 6.1 0.37 170 475 64.60
23 3.0 0.23 186 649.1 42.99
24 5.0 0.81 122 320 67.70
25 4.8 0.36 175 485 62.50
26 4.6 0.50 170 86.1 53.90
27 3.8 0.65 168 270 54.60
28 2.8 0.68 156 269 50.34
29 9.0 0.51 220 590 76.37
30 2.5 0.93 192 265 40.21
31 7.4 0.55 160 331 64.25
32 7.0 0.52 168 433 70.30
33 2.7 0.56 192 265 42.81
34 5.7 0.63 177.9 283.9 51.40
35 2.94 0.85 180.4 568.4 57.00
36 7.5 0.19 222 665 53.70
37 2.1 0.46 180 679 44.54
38 7.6 0.62 116 463 86.40
39 2.6 1.00 168 290 46.22
40 4.5 0.55 175 387.5 58.50
41 2.8 0.26 148.5 264.5 40.35
42 4.8 0.47 150 499.9 54.00
43 7.53 0.38 170 357 61.90
44 2.95 0.74 206.1 516 54.50
45 7.0 0.52 168 433 72.97
46 2.6 0.64 185 295 40.50
47 4.3 0.89 55 56 42.50
48 5.3 0.24 145.7 312 44.20
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values. This indicates that the ICS–ELM model has stronger
prediction performance for heights of FWCZs and wider
applications.

EXAMPLE VERIFICATION

The N102 working face of a coal mine in Shanxi province in
China. The average thickness of the coal seam is 15.3 m and the
inclination angle is 2°–3°. The inclination length and strike length

of the working face are 193 and 1406 m. The full-mechanized
caving mining method is adopted, the mining height is 3.9 m, and
the coal caving height is 11.4 m. Most of the working face the roof
strata above the working face most are hard sandstone.

The traditional empirical formula for the height of the water-
conducting fracture zone is obtained by regression analysis of a
large number of measured data under conventional mining
conditions. The formula takes into account factors such as
mining thickness, overlying rock type and coal seam
inclination, and is widely used. The maximum height of the
water-conducting fracture zone in the test collection shaft is
calculated by using the calculation formula of the maximum
influence height of the gob fault zone in GB51044-2014 Code for
Geotechnical Engineering Investigation of Coal Mine Goaf. The
calculation formula for the maximum height of the water-
conducting fracture zone is shown in the Table 3.

FIGURE 4 | Comparison of prediction results of the training set based on the ICS–ELM model.

FIGURE 5 | Comparisons of prediction results obtained by the
APSO–LSSVM, PSO–BP and ICS–ELM models.

TABLE 2 | Prediction performance comparison of three models.

Model name Root
mean square error/m

Mean absolute error/m Mean relative error/% Squared
correlation coefficient

APSO-LSSVM 3.876 3.762 0.073 0.947
PSO-BP 5.484 5.322 0.108 0.954
ICS-ELM 2.003 1.795 0.035 0.987

TABLE 3 | The formula for calculating the height of the water-conducting
fracture zone.

Uniaxial compressive strength
fc/MPa

Calculation formula/m

40 ≤ fc < 80 Hli � 100∑M

1.2∑M+2.0 ± 8.9

20 ≤ fc < 40 Hli � 100∑M

1.6∑M+3.6 ± 5.6

10 ≤ fc < 20 Hli � 100∑M

3.1∑M+5.0 ± 4.0

fc < 10 Hm � 100∑M

5.0∑M+8.0 ± 3.0
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Using the above formula, it is estimated that the height of the
water-conducting fracture zone is 66.25–84.08 m. The ICS-ELM
model is used to predict that the height is 78.34 m. The predicted
value differs very little from the empirical formula. It shows that
the height prediction model of the fully mechanized mining
water-conducting fracture zone proposed in this paper is more
realistic, and provides a scientific basis for the prediction and
prevention of roof water damage.

CONCLUSION

(1) The two parameters, namely weight ѡ and bias b of hidden
elements in the ELM model are optimized using the ICS
algorithm, to establish the ICS–ELM model for predicting
heights of FWCZs. This avoids influences of randomness of
input weight matrix and bias of the hidden layer on the
prediction accuracy of the ELM and improves prediction
accuracy.

(2) By selecting 42 prediction samples for heights of FWCZs, the
samples of heights of FWCZs are predicted and trained by
using the ICS–ELM model and the predicted results are
compared with those of APSO–LSSVM and PSO–BP
models. The average error of the predicted results
obtained by the proposed model is 3.97%, which is smaller
than those of the other two algorithms. The predicted results
are in line with the actual situations, so this model can
accurately and effectively predict heights of FWCZs.

(3) The development of FWCZs is a complex movement and
failure process of surrounding rock in time and space, and
there are many influencing factors. In the future, the
influencing factors such as mining speed, repeated mining,

groundwater action, key strata action, etc. will be studied.
Consider more influencing factors and increase the number
of training samples to further improve the model’s
performance.
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