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Thick and continuous deposits in the Linxia Basin, located in the landing area of westerlies
and monsoons, offer a good opportunity for understanding the climatic evolution and
tectonic activities. However, detailed paleoclimate reconstruction based on lipid
biomarkers was rare, which limited our further knowledge, even though there were
some relevant reports regarding pollen assemblages, microbial communities. In the
present study, we conducted systematic analyses on the lipid biomarkers and carbon
isotope values of the sediments, in an effort to reconstruct the evolution history of
paleoclimate and figure out the potential driving mechanism. Our results showed that
the organic matter was from mixed sources including lower organisms and terrestrial
higher plants. The organic matter sources varied in response to the change of paleoclimate
conditions as revealed by the lipid-derived proxies and organic carbon isotopes.
Significant climatic events like late Oligocene Warming, Mid-Miocene Climatic Optimum
and aridification at ~8.5 Ma were observed throughout the sequence. Our results further
indicated that the paleoclimate conditions in the study area primarily followed the pace of
long-term global cooling, and the aridification at ~8.5 Ma was associated with the uplift of
the Tibetan Plateau.
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INTRODUCTION

The increasing research hotspots of global environment and climate change has recently received a
great attraction. Especially since the late Cenozoic, a series of major geological events have taken
place on the earth, resulting in great changes in global climate and environment, such as global
cooling (Miller et al., 1987; Miller et al., 1991; Zachos et al., 2001; Molnar et al., 2010; Haider et al.,
2013; Zhuang et al., 2014; Kern et al., 2016), the aridity in north America and Asia (Ruddiman and
Kutzbach, 1989; Manabe and Broccoli, 1990; Kutzbach et al., 1993; Rea et al., 1998; Wu et al., 2007;
Wan et al., 2010; Tang et al., 2011; Kita et al., 2014; Jia et al., 2015), formation of the Asian monsoon
(Quade et al., 1989; Li, 1995; An et al., 2001; Liu et al., 2008; Miao et al., 2011; Miao et al., 2012; Miao
et al., 2013b; Liu et al., 2013; Li et al., 2014; Sun et al., 2014; Liu et al., 2015). Among these geological
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events, the aridity in North America and Asia is a major scientific
problem, which has the most profound and direct impact on
human living environment. As the largest temperate arid zone in
the world, the onset time, evolution sequence, formation process
and driving mechanism of aridity in inland Asia are the research
hotspots of environmental change in the NorthernHemisphere of
Cenozoic era.

In terms of the development trend of inland aridity in Asian,
the key scientific problem to be resolved is to reveal the onset
time, evolution sequence, formation process of inland aridity in
Asian (Sun andWang, 2005), so as to explore its relationship with
the driving mechanism (Boos and Kuang, 2010; Shi et al., 2011;
Miao et al., 2012; Li et al., 2014). There have been different views
on the driving mechanism of the evolution of Asian inland aridity
in the late Cenozoic. At present, it is mainly reflected in three
aspects: the uplift of the Tibet Plateau, the global cooling of the
Cenozoic and the retreat of the Paratethys Sea. Previous studies
have shown that the uplift of the Tibetan Plateau, the global
cooling of the Cenozoic (the expansion of the arctic ice cap) and
the evolution and retreat of the Paratethys Sea have undoubtedly
played an important role in the formation and intensification of
inland aridity in Asia (Sun et al., 2008; Bosbom et al., 2011; Qiang
et al., 2011; Miao et al., 2012; Chi et al., 2013; Haider et al., 2013;
Bosbom et al., 2014a; Bosbom et al., 2014b; Bosbom et al., 2014c;
Li et al., 2014; Sun et al., 2014; Zhang et al., 2015). However,
owing to the different sensitivity of different climatic indicators
and the sparse of complete and continuous records, the primary
driving mechanism for the evolution of inland aridity in Asian is
still under debate.

The use of fossil molecules, such as n-alkanes, alkanoic
acids, alkenones, GDGTs and those derived from specific
biological sources, and δ13C values of TOC to reconstruct
paleoclimate has become an important part of molecular
stratigraphy (Xie et al., 2003; Fan et al., 2007; Weijers et al.,
2007; Wang et al., 2012; Wu et al., 2018; Tian et al., 2019; Wang
et al., 2021a; Wang et al., 2021b). Wang et al. (2012) analyzed
the n-alkanes and n-alkan-2-ones of the sediments collected
from the Linxia Basin, and proposed that these biomarkers was
in agreement with the palynofloras showing significant
variations in response to the climate changes and uplift of
the Tibetan Plateau at ~8 Ma. Furthermore, Wu et al. (2018)
applied the organic carbon isotopes (δ13CTOC) to reveal the
ecological response to the Eocene/Oligocene transition in the
Lanzhou Basin, and found that the variations of δ13CTOC

responded to the global cooling. All these indicators
displayed great potential in paleoclimate reconstruction in
inland Asia.

Northwest China is mainly made up of large inland basins,
with extra-thick Cenozoic sediments accumulated. The Linxia
Basin is one of them and rich in lipids with weak diagenesis,
therefore, is an ideal recorder of arid climatic changes. Previous
studies have carried out relevant analyses in the Linxia Basin to
establish the general framework of paleoclimate evolution,
including low-resolution lipid biomarkers (Wang et al., 2012),
microbial communities (He et al., 2020), pollen assemblages (Ma
et al., 1998). Nevertheless, detailed paleoclimatic characteristics
were limited due to the sample resolution. In the present study, on

the basis of previous results, we carried out a systematically high-
resolution analyses of lipid biomarkers and δ13C values of TOC of
the Maogou sediments in the Linxia Basin, in hope of revealing
the process of arid environmental changes and understanding the
driving mechanism of the evolution of Asian inland aridity in the
late Cenozoic.

GEOLOGICAL SETTING AND
CHRONOLOGICAL FRAMEWORK

The Linxia Basin is located on the northeastern edge of the
Tibetan Plateau (102°30′–104°E, 35°10′–35°51′N, Figure 1).
Sedimentary rocks of the Linxia Basin are mainly composed of
mudstone and sandstone of fluvial and lacustrine origin (Fang
et al., 2003; Zhang et al., 2019). Climatically, the Linxia Basin is
now dominated by an arid/semiarid continental climate with
mean annual temperature (MAT) of 6.3°C, mean annual
precipitation of 537 mm, and mean annual evaporation of
1,198–1745 mm. Rainfall mainly occurs between June and
August, generally following a typical monsoon pattern.

TheMaogou section in this research is in the central part of the
Linxia Basin (Figure 1), which is representative of the tertiary red
bed. The Maogou section is characterized by continuous
sedimentary strata with a total thickness of 443 m. Li (1995)
and Fang et al. (2003) have provided a high-resolution
paleomagnetic analysis of the Maogou section to establish the
chronological framework. Basically, from the bottom to the top of
Maogou section, identified as Tala Formation (0–91 m,
~29–21.4 Ma), Zhongzhuang Formation (92–188 m,
21.4–14.7 Ma), Shangzhuang Formation (189–230 m,
14.7–13.1 Ma), Dongxiang Formation (231–313 m,
13.1–7.8 Ma), Liushu Formation (314–376 m, 7.8–6 Ma) and
Hewangjia Formation (377–443 m, 6–4.3 Ma), the
magnetostratigraphy results indicated that the sediments from
the Maogou section deposited continuously from 29 to 4.3 Ma,
spanning from the upper Oligocene to the Pliocene. It is also
should be pointed out that there were abundant mammalian
fossils which can serve as clear indications of chronology (Deng
et al., 2004; Deng et al., 2013). Consequently, the chronological
framework was established reasonably and precisely.

SAMPLING AND EXPERIMENTS

Sampling
Actually, our sediment samples were collected from the same
section as Li (1995) and Fang et al. (2003) proposed. In order to
get the fresh and uncontaminated sediments, an exploratory
trench (0.5 m deep and wide) was dug. And then a total of
229 unweathered sediment samples were collected from the
trench from the bottom to the top of the Maogou section,
from the Tala Formation to the Hewangjia Formation,
generally with the sampling interval of 2 m. Most of the
samples were composed of silt sandstones, mudstones. All the
sediment samples were marked with thickness and stored at -20 C
for further analyses.
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Sample Pretreatment and GC-MS Analysis
The samples (150 g each) were powdered (80mesh) and extracted
with dichloromethane/methanol (93:7) in a Soxhlet extractor for
70 h, and the solvent was removed by distillation. The extracts
were condensed and weighed. Because the extracted material was
only 1–5 mg, fractionation using chromatography on silica gel or
alumina was avoided to prevent the potential loss of components
such as the trace alkanes and the oxygen compound. After natural
air-drying and dilution using chloroform, the total extracts were
analyzed directly using GC-MS. The blank samples were run
under similar conditions. The GC-MS spectra of blank samples
showed that the lipid molecules to be discussed in this paper were
not found.

GC-MS analysis was performed using a HP 5973 MSD
interfaced to a HP 6890 gas chromatograph fitted with a 30 m
× 0.25 mm i. d. fused silica capillary column coated with a film
(0.25 μm) of 5% phenyl-methyl-DB-5. For routine GC analysis,
the oven was programmed from 80 to 300°C at 3°C/min with an

initial and final hold time of 1 and 30 min, respectively. Helium
was used as carrier gas at a linear velocity of 32 cm/s, with the
injector operating at a constant flow of 0.9 ml/min. The MS was
operated with an ionisation energy of 70 eV, a source temperature
of 230°C and an electron multiplier voltage of 1900 V over a range
of 35–550 Da.

Carbon Isotopes of Organic Matter (δ13Corg)
An aliquot of each sample was acidified with HCl to remove
carbonates before analysis. Then, samples were washed with
deionized water until a neutral pH value was reached. Next,
samples were dried in an oven at 90°C. Pretreated samples were
analyzed using a Flash 2000-MAT 253 system. The Flash 2000
was fitted with an oxidation-reduction tube filled with Cr2O3,
Cu and silver-bearing CoO. Treated samples were oxided at
960°C with flowing oxygen. Helium was used as carrier gas.
IAEA-600 (caffeine) was used as standard sample (Coplen
et al., 2006). Each sample was analyzed twice, and final

FIGURE 1 | (A) Location of the Linxia Basin (red circle) and the arrow indicating the present main climate controls of China, including southwest summer monsoon,
east Asian summer monsoon and winter monsoon (modified from Shao et al. (2006)) (B) Simplified geological map of the Linxia Basin. Red pentacle representing the
Maogou section (cited from Fang et al., 2003) (C) outcrop photograph of the Dongxiang Formation of the Maogou section.
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averaged results were expressed as ‰ relative to the VPDB
(Vienna Peedee Belemnite) standard. During the analysis, 15
standard samples were determined to monitor the accuracy of
the instrument. Reproducibility, as determined from the
replicate standard samples, were better than 0.05‰ for
δ13Corg of organic carbon.

RESULTS

Distribution Patterns of n-alkanes,
n-Alkane-Derived Proxies and Carbon
Isotopes of Bulk Organic Matter
Basically, the n-alkanes ranges from C16 to C32 with an obvious
maximum carbon number at C18 throughout the entire section,
characterized by unimodal distribution patterns. Moreover, some
samples show a significant bimodal distribution, with C18 and C29

as the main peaks. A distinct odd-over-even predominance of the
long-chain n-alkanes is observed throughout the profile.
Representative relative abundance of n-alkanes from the
Maogou section sediments are shown in Figure 2.

In terms of the n-alkane derived proxies, the ratio of C27/C31

and (C17-C21)/(C27-C31) values were calculated in this study.
Specifically, the ratio of (C17-C21)/(C27-C31) can be calculated
using the following equations:

(C17−C21)/(C27−C31) � (C17+C18+C19+C20+C21)/
× (C27+C28+C29+C30+C31)

Besides, the δ13Corg values of the Maogou section sediments
varies between -31.0‰ and -22.0‰, with an average value of
-26.0‰ (Figure 3C).

DISCUSSION

Inputs of Organic Matter
Typically, n-alkanes are widely distributed in sedimentary
organic matter derived from organisms living in the study area
and their catchments, and different compositions of n-alkanes
can directly reflect different biota (Pearson et al., 2007).
Normally, the ratio of (C17-C21)/(C27-C31) of n-alkanes can
indicate the relative contribution from lower organisms
including algae, cyanbacteria, fungi and microbes relative to
that from terrestrial higher plants, and thus the corresponding
climate conditions (Eglinton and Hamilton, 1967; Cranwell et al.,
1987; Rielley et al., 1991; Meyers and Ishiwatari, 1993; Ficken
et al., 2000). Besides, the ratio of C27/C31 is usually applied to
indicate the relative abundance of trees versus grasses, as trees
produce high abundance of C27 or C29 n-alkane, while grasses
typically generate high C31 n-alkane. Consequently, a high C27/
C31 ratio indicates a thrive of trees at the expense of grasses, and
thus more contribution from trees to the organic matter
(Cranwell et al., 1987).

In our study, abundant n-alkanes were detected in all the 229
samples from the Maogou section. Generally, the n-alkanes
displayed bimodal or unimodal distribution patterns,
suggesting that the organic matter were contributed by mixed
sources, including lower organisms and terrestrial higher plants.

FIGURE 2 | Representative chromatographs of n-alkanes (m/z 85) in the Maogou sediments.
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Generally, the ratio of (C17-C21)/(C27-C31) and C27/C31 displayed
a similar variation trend throughout the sequence (Figures
3A,B), indicating the variations of organic matter sources.
From 29 to 21.8 Ma, the ratio of (C17-C21)/(C27-C31) and C27/
C31 remained relatively low-value stage except some fluctuations,
suggesting a high proportion of grasses contributed to the organic
matter. During the period of 21.8–18 Ma, both the (C17-C21)/
(C27-C31) and C27/C31 values increased, implying the source of
organic matter changed and lower organisms and trees flourished
during this interval. From 18 to 14 Ma, the lipid-derived proxies
showed a decreasing trend, indicating the sources of trees and
lower organisms were limited at this time. Between 14 and
4.3 Ma, our records indicated that the contribution from lower
organisms constantly remained constrained, and the abundance
of trees slightly increased. According to these observations, we
may infer that different organic matter sources at different
timescales corresponded to the varying climate conditions.

Paleoclimate Conditions Inferred From
δ13Corg and Lipid-Derived Proxies
Terrestrial high plants can normally be divided into three categories,
C3 plants, C4 plants and CAM plants based on their photosynthesis
characteristics and carbon atomicity. C3 and C4 plants can be
identified according to their carbon isotope values, as C3 plants
are characterized by an δ13C value ranging from -40‰ to -20‰with
an average of -27‰, and C4 plants have a distinct δ13C value
between -19‰ and -9‰with an average value of -12‰, respectively
(Smith and Epstein, 1971; Oleary, 1981). It is also generally
acknowledged that C4 plants adapt to an environment which is
typical of high temperature, high aridity and low atmospheric CO2

concentration (Wang and Greenberg, 2007). Particularly, C4 plants
have greater water-use efficiency than C3 plants (Collatz et al., 1998).
In the present study, there is no exact relationship between the
δ13Corg values from the Maogou sediments and the reconstructed
atmospheric CO2 concentrations based on the carbon isotopic

analyses of diunsaturated alkenones and planktonic foraminifer
(Pagani et al., 1999), suggesting the concentration of CO2 may
not be the main factor influencing the vegetation in the Linxia Basin
(Figure 3). Additionally, previous study indicated that terrestrial
higher plants contributed significantly to the organic matter in the
sediments in the Linxia Basin (Fan et al., 2007). Consequently, the
δ13Corg values may reflect the information of the vegetation
communities and its associated climate conditions, such as
temperature and/or precipitation (Wang and Deng, 2005; Kohn,
2010; Wu et al., 2018). Overall, the δ13Corg values of the sediments
throughout the ~29 to 4.3Ma varied from -31.0‰ to -22.0‰
(Figure 3C), indicating that C4 grasses were possibly not
significant in the Linxia region prior to 4.3Ma, which is
consistent with the conclusion proposed by Fan et al. (2007).

In terms of this background, we attributed the obvious
fluctuations of δ13Corg values to the climate variations somewhat
arbitrarily, with positive δ13Corg values corresponding to a relatively
high abundance of C4 plants. In the present study, the records of
δ13Corg values seemed more sensitive to climate variations as it
revealed more stages of climate shifts. From 29 to 21.8Ma, the
δ13Corg values exhibited an overall increasing trend, indicating a
relatively high proportion of C4 plants. Coincidently, the C27/C31

ratio displayed a decreasing trend, suggesting an expansion of
grasses. As previous study has confirmed that the grasses usually
applied the C4 photosynthesis (Wang and Greenberg, 2007), our
results indicated that the vegetation evolution from trees to grasses
reflect the vegetation type variations from C3 to C4 plants under the
relatively warm and dry climate condition (Ao et al., 2021). The
pollen assemblages also indicated an open woodland-steppe
vegetation mainly composed of Chenopodipollis, Polygonaceae,
Compositae for the herbs and Quercoidites, Betulaepollenites,
Fraxinoipollenites and Cupressaceae for the woody plants under a
dry condition during this time (Ma et al., 1998). While between 21.8
and 18Ma, the C4 grasses shrank while the C3 trees flourished in this
interval, implying a gradual increase in humidity, as indicated by the
decreasing δ13Corg values and highC27/C31 ratios, corresponding to a

FIGURE 3 |Comparison of different proxies from theMaogou sediments with other indicators, including the ratio of (C17-C21)/(C27-C31) (a), the C27/C31 ratio (b), the
δ13Corg values of organic matter from Maogou sediments (c), the percentage of tree pollen from the Yanwan section, Tianshui Basin (d) (Hui et al., 2011), the PC1 scores
from the Jingou River section in northern Tian Shan, with higher PC1 scores denoting wetter conditions (e) (Tang et al., 2011), the atmospheric CO2 concentrations
reconstructed based on the carbon isotopic analyses of diunsaturated alkenones and planktonic foraminifer (f) (Pagani et al., 1999), and the compiled δ18O records
(g) (Westerhold et al., 2020). Further comparison containing the sedimentary facies, lithology, age-depth model modified from He et al. (2020), and vegetation evolution
based on pollen records from Ma et al. (1998).
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general coniferous forest (Ma et al., 1998). During this interval, the
high (C17-C21)/(C27-C31) ratio possibly indicated an increasing
contribution from lower organisms to the organic matter.
Normally, the δ13Corg of the typical lake algae in fresh water is
about −28‰ (Meyers, 1994; Meyers, 2003), thus enhanced inputs of
lower organismsmay result in negative δ13Corg values in our records.
In addition, the sedimentary face was identified as floodplain-
shallow lake (Fang et al., 2016), furthering indicating an
increasing humidity. Thereafter, a sharp increase in δ13Corg values
demonstrated that C4 grasses increased at the expense of C3 trees
from 18 to 14Ma, indicating the climate was turning to warm and
dry conditions gradually, possibly corresponding to the MMCO
(Figure 3D) (Zachos et al., 2001; Zan et al., 2015). During this
interval, the C27/C31 and (C17-C21)/(C27-C31) ratio decreased,
suggesting an enhanced contribution from terrestrial higher
plants such as grasses and limited inputs of lower organisms,
which was in good accordance with the increasing δ13Corg values.
The warm and dry climate conditions was beneficial to the growth of
grasses. Although this period was recognized as coniferous forest, the
percentage of herbs was increasing (Ma et al., 1998). Specifically, the
initial stage of the MMCO was characterized by a relatively humid
condition as reflected by the proxies, which was also recorded by the
pollen assemblages from the northern Tian Shan (Tang et al., 2011)
and Linxia Basin (Ma et al., 1998). After theMMCO, the climate was
generally dry from 14 to 9.1Ma, although the humidity showed a
slight increase, generally consistent with the vegetation type as
coniferous and broad-leaved mixed forest. A rapid increase in
δ13Corg values and a sharp decrease in C27/C31 and (C17-C21)/
(C27-C31) ratio within only less than 1Ma from 9.1 to 8.5Ma
were observed, suggesting a significantly strengthened aridity at
this time under the background of long-term global cooling in
the late Cenozoic (Zachos et al., 2001; Westerhold et al., 2020), in
accordance with the steppe forest expansion at ~8.5Ma (Ma et al.,
1998). This aridity sustained to ~6.4Ma and then the humidity
displayed a slight increase afterwards. Coincidently, the vegetation
evolved towards coniferous and broad-leavedmixed forest, implying
the climate became relatively wet (Ma et al., 1998). Considering the
refined age-depth model and sample resolution, our records
generally agreed with the pollen analysis.

It also should be pointed out that throughout the sequence, the
variations of δ13Corg values corresponded well with the changes of
lithology basically. This interesting phenomenon was primarily
observed in the Dongxiang Formation sediments. The high
δ13Corg values occurred when the gray-green clay deposited, and
the red bed was characterized by low δ13Corg values. Further studies
are necessary to figure out the potential driving mechanisms
regarding the frequent fluctuation of the δ13Corg values.

Comparison With Regional and
Over-Regional Paleoclimate Records
As mentioned above, our records based on the n-alkane-derived
proxies and δ13Corg values are overall in good accordance with the
pollen records in the Linxia Basin (Ma et al., 1998). Furthermore,
the sporopollen records from the Tianshui Basin in the NE
Tibetan Plateau demonstrated a temperate, warm-temperate
broad-leaved forest between 17.1 and 14.7 Ma, forest or forest-

steppe between 14.7 and 11.7 Ma, broad-leaved forest during
11.7–8.5 Ma and steppe vegetation from 8.5 to 6.1 Ma (Hui et al.,
2011). Similarly, the sporopollen reports in the Jiuxi Basin
revealed a semi-moist climate from 13 to 11.2 Ma, warm and
moist climate between 11.2 and 8.6 Ma, warm and semi-moist
climate during 8.6–5.6 Ma, semi-arid climate during 5.4–4.9 Ma
and arid climate condition in the interval of 4.9–2.2 Ma (Ma et al.,
2005). Also, Tang et al. (2011) reported that the climate was wet
during the late Oligocene and shifted to dry conditions between
23.8–17.3 Ma, and subsequently ameliorated to a relatively wet
stage to 16.2 Ma, but then turned to dry condition until 4.2 Ma
and the aridity reached a peak at 13.5 Ma. Despite the lack of
long-term comparison of paleoclimate records, our results are in
good concert with the periodical reports from previous studies.

Moreover, our reconstructed paleoclimate conditions based
on the n-alkane-derived proxies and the δ13Corg values exhibited
significant variations especially during the typical climate events,
which behaved synchronously with previous studies. During the
period of ~26 to 25 Ma, our results suggested the grasses
expanded, and contributions from trees and lower organisms
declined, roughly in association with the late Oligocene Warming
(Zachos et al., 2001). Sporopollen records from the Nima Basin
indicated that broad-leaved trees increased obviously after
25.6 Ma, in response to the late Oligocene warming, further
suggesting the development of south Asian monsoon and
accompany of global warming (Wu et al., 2019). At ~23 Ma,
the increase of the (C17-C21)/(C27-C31) and C27/C31 ratio implied
that trees and lower organisms characterized by negative the
δ13Corg values increased, leading to the decrease of δ13Corg values
from the sediments. This most apparent explanation for the
change of organic matter source at ~23 Ma is the Mi-1
Glaciation as revealed by the compiled oxygen isotope records
(Zachos et al., 2001). Palynological results from the Xining Basin
showed the cold-tolerant conifers shrived while thermophilic
plants declined during the Mi-1 Glaciation at ~23 Ma (Miao
et al., 2013a). While during the interval of ~18 to 14 Ma, the (C17-
C21)/(C27-C31) ratio and C27/C31 value were decreasing, while the
δ13Corg values exhibited an opposite variation, which suggested
that C4 grasses gradually flourished when the warm and wet
climate shifted to warm and dry conditions during the MMCO
(Zachos et al., 2001; Westerhold et al., 2020).

The pollen records from both the Tianshui Basin and northern
Tian Shan suggested a warm and humid early stage of MMCO
turned to warm and dry conditions in the latter periods (Hui
et al., 2011; Tang et al., 2011). Moreover, the timing and duration
of the MMCO was reported from nearby records as 18–14 Ma in
the Qaidam Basin (Miao et al., 2011; Miao et al., 2016) and
17–14 Ma in the Xining Basin (Zan et al., 2015).

Our records demonstrated another significant climate shift at ~9
to 8Ma. During this period, the (C17-C21)/(C27-C31) and C27/C31

value decreased dramatically, and the δ13Corg values of sediments
showed a sudden increase within less than 1Ma, suggesting a
prominent plant variation from C3 to C4 plants, which was
ascribed to the enhanced aridification. Our previous work on
n-alkan-2-ones and microbial communities from the Maogou
section sediments also identified this severe climatic variation
(Wang et al., 2012; He et al., 2020). Besides, the pollen
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assemblages also indicated an obvious aridification event happened
at ~8.5Ma (Ma et al., 1998). The sporopollen data from the Tianshui
Basin recorded a rapid development of steppe at about 8.5Ma, which
suggested a permanent drying of the Asian interior at this time (Hui
et al., 2011). Yang et al. (2016) reported that carbonate-derived Sr
concentrations and Sr/Ca ratios on the northeastern Tibetan Plateau
exhibited weakened chemical weathering intensity and pedogenesis
at ~8.6Ma corresponding to a cold and dry climate linked with the
enhanced aridification. Furthermore, stable isotope evidence
including the δ13C and δ18O values of carbonates and δ13Corg

values from the Linxia Basin indicated that the most severe
aridity occurred from 9.6 to 8.5Ma (Fan et al., 2007).

In summary, based on these observations, the reconstructed
paleoclimate conditions in the Linxia Basin generally followed the
global climate variation trend. Specifically, our records indicated an
overall warm and dry period of lateOligocenewarming andMMCO,
which was in favor of the growth of C4 grasses, corresponding well
with the global climate as revealed by the oxygen isotope records
(Zachos et al., 2001; Westerhold et al., 2020). And the dry climate
conditions spanning 14–4.3Ma generally coincided with the global
cooling since the expansion of polar ice-sheets at 14Ma (Zachos
et al., 2001). Under this circumstance, the expansion of C4 grasses at
9–8Ma cannot be sufficiently explained by the global climate trends.
Thus, other possible factors need to be considered. The uplift of the
Tibetan Plateau may be responsible for the aridification, as extensive
evidence corroborated that the tectonic uplift of the Tibetan Plateau
occurred approximately at ~8Ma (An et al., 2001; Lease et al., 2007;
Miao et al., 2012; Yang et al., 2016). The uplift of the Tibetan Plateau
resulted in a geographic barrier which blocked moisture
transportation from neighboring oceans, leading to an arid
continental interior due to the rain shadow effect (Boos and
Kuang, 2010), and therefore an enhanced aridification. Moreover,
Miao et al. (2012) proposed that the uplift of the TP resulted in the
changes of topography, which strongly influenced the moisture
pattern in Central Asia during Miocene times, particularly the
precipitation rates in the Linxia Basin were significantly affected
by the tectonic uplift of the surrounding mountains.

CONCLUSION

In the present study, lipid biomarkers and carbon isotopes of
organic matter were analyzed to reconstruct the paleoclimate
conditions based on the sediments from the Maogou section,

Linxia Basin, northeast TP. Generally, the distribution patterns of
n-alkanes and its derived proxies indicated that the organic
matter of the Maogou section sediments were contributed by
mixed sources, including lower organisms like algae, fungi,
cyanbacteria and microbes, and terrestrial higher plants. The
variations of organic matter sources and evolution of higher
plants behaved in accordance with the carbon isotope values
δ13Corg, serving as good indicators for paleoclimate conditions.
Our results clearly demonstrated some typical climatic events,
such as the late Oligocene Warming event, MMCO and
aridification at ~8.5 Ma. Generally, the paleoclimate conditions
in the Linxia Basin were primarily controlled by the global climate
variations, but the uplift of the TP was responsible for the
aridification event at ~8.5 Ma, which was superimposed on the
long-term global cooling.
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