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This study presented a framework for uncertainty analysis of the ultimate axial bearing
capacity of piles evaluated by the UniCone method in layered soils. The UniCone method
by Eslami and Fellenius (1997) is a direct piezocone penetration test (CPTU) method for
evaluating the ultimate axial capacity of piles in the reliability design. The spatial variability of
CPTU data is modeled as a random field for each soil unit in the soil strata. The empirical
correlation coefficients of the UniCone method are assumed to follow lognormal
distributions. On the basis of uncertainties of CPTU data and empirical correlation
coefficients, the first-order reliability method (FORM) is then applied to the reliability
analysis of ultimate axial bearing capacity of piles. The effects of spatial variability of
CPTU data and variations of empirical correlation coefficients on the ultimate axial bearing
capacity of piles are evaluated by an Excel spreadsheet-based framework. Seven case
studies show that the proper identification of different soil units from soil profiles is crucial
for estimating the failure probability of pile capacity in the reliability analysis. Uncertainties of
CPTU data and empirical correlation coefficients would be over-estimated unless different
soil units in soil profiles are identified properly from each other. The over-estimated
geotechnical parameters contribute to a higher failure probability of pile capacity. The
proposed framework can evaluate the uncertainty of the ultimate axial bearing capacity of
pile foundations more rationally.

Keywords: uncertainty analysis, ultimate axial bearing capacity, spatial variability, reliability analysis, piezocone
penetration test

INTRODUCTION

Pile foundations are widely used to support highway bridges, tall buildings, transmission towers,
and other structures to transfer the upper loads into stiff soil or rock layers in the deep ground
(Naggar, 2002; Basack and Sen, 2014; Zhu et al., 2017; Wang et al., 2021; Basack et al., 2022). The
reliability of ultimate axial bearing capacity of piles is a major safety issue for geotechnical
engineering. The spatial variability of in situ measurements and variations of empirical
correlations coefficients lead to significant uncertainties in predicting the ultimate axial
bearing capacity of piles by the cone penetration test (CPT) or piezocone penetration test
(CPTU) (Haldar and Babu, 2008; Dithinde et al., 2011; Chen and Zhang, 2013; Mendoza et al.,
2017; Jarushi et al., 2020).

The reliability-based design (RBD) has been increasingly concerned as a more rational approach
to evaluate the effects of geotechnical uncertainties on the ultimate axial bearing capacity of piles
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(Phoon and KulhawyGrigoriu, 2000; Tandjiria et al., 2000; Honjo
et al., 2002; Zhang and Chu, 2009; Zhang and Chu, 2009). The
first-order reliability method (FORM) has been demonstrated as
one of the most effective tools for probabilistic design in
geotechnical practice (Low and Tang, 1997; Haldar and
Sivakumar Babu, 2009; Teixeira et al., 2012; Teixeira et al.,
2014). In most FORM studies, when conducting spatial
variability analysis, different soil units are seldom identified
from each other in a soil profile, which may lead to a biased
estimation of uncertainties associated with geotechnical and
design parameters (Phoon and Kulhawy, 1999; Uzielli et al.,
2005; Low and Phoon, 2015). If the layered soil strata are
viewed as an integral unit, the correlation among the
geotechnical parameters of different soil units in a soil profile
becomes indistinct. The spatial correlation significantly
influences the failure probability of geotechnical design
obtained from the FORM analysis (Jaksa et al., 1997; Dithinde
et al., 2011; Ching and Phoon, 2019; Wang et al., 2019). As a
consequence, the probabilistic analysis of the ultimate axial
bearing capacity of piles may be biased.

This study presented an Excel spreadsheet-based framework
for the uncertainty analysis of the ultimate axial bearing capacity
of piles in layered soils. The CPTU-based UniCone method by
Eslami and Fellenius (1997) is selected to calculate the ultimate
axial bearing capacity of piles by CPTU data. The framework
takes into account the spatial variability of layered soils and the
variations of empirical correlation coefficients of the UniCone
method. The uncertainties associated with CPTU parameters and
empirical correlation coefficients in layered soils are analyzed in
terms of the random field and random variables, respectively. The
FORM is applied to evaluate the ultimate axial bearing capacity of
pile foundations considering the uncertainties of design
parameters. The uncertainties of ultimate axial bearing
capacity of piles in layered soils from seven case studies are
discussed with the proposed framework.

UNCERTAINTIES IN THE UNICONE
METHOD

Many direct CPT/CPTU-based methods have been proposed to
predict the ultimate axial bearing capacity of piles in geotechnical
practice (Lunne et al., 1997; Mayne, 2007). Among those
methods, the UniCone method by Eslami and Fellenius (1997)
has been proved to be a more reasonable method than other
methods (Abu–Farsakh and Titi, 2004; Cai et al., 2009; Cai et al.,
2012; Niazi and Mayne, 2016; Golafzani et al., 2020; Heidari and
Ghazavi, 2021). The UniCone method has shown usefulness and
reliability for clays, silts, and sands (Mayne, 2007; Amirmojahedi
and Abu–Farsakh, 2019). Hence, the UniCone method (Eslami
and Fellenius, 1997) is adopted for the uncertainty analysis of the
ultimate axial bearing capacity of piles in this research.

The ultimate axial bearing capacity (Qu) of a single pile mainly
consists of end bearing capacity (Qb) and friction resistance along
the shaft (Qs):

Qu � Qb + Qs � qbAb + ΣN
i�1fpiAsi (1)

where qb is the unit end resistance at the pile base, Ab is the
section area of the pile, fpi is the unit pile shaft resistance of the ith
soil layer, Asi is the superficial area of pile shaft at the ith soil layer,
and N is the number of soil units in the soil strata.

Based on a database of 102 full-scale pile loading tests from 40
sites, Eslami and Fellenius (1997) developed the correlations
between unit pile resistances and effective piezocone
penetration resistance (qe) for a single soil layer as

qb � Cpqeg (2a)
fp � Csqe (2b)

where Cp is the toe correlation coefficient, Cs is the shaft
correlation coefficient, determined from a soil behavior chart
depending on sleeve frictional resistance (fs) and qe, qeg is the
geometric average of qe values over the influence zone, qe is the
effective cone tip resistance that qe = qt–u2, and qt is the cone tip
resistance corrected for the unequal area effect caused by pore
water pressure (u2) (Lunne et al., 1997; Mayne, 2007). Table 1
presents the empirical ranges and advised approximation for Cs

corresponding to the soil type.
Substitution of Eqs 2a, 2b in Eq. 1 derives

Qu � AbCpqeg + ΣN
i�1AsiCsiqei (3)

The influence zone for qeg values depends on the stiffness of
surrounding soils above and below the pile toe along with the
diameter (B) of the designed piles. Based on comprehensive
literature reviews and experimental analysis, Eslami and
Fellenius (1997) suggested that the influence zone extends
from 4B below the pile toe to a height of 8B above the pile toe
when a pile is installed through a weak soil into a dense soil, and
2B above the pile toe when a pile is installed through a dense soil
into a weak soil. Due to the uncertainties associated with (Cp, qeg,
Csi and qei), Qu could vary in a large range. In this research, the
Unicone method is analyzed from a probabilistic way to evaluate
the reliability of the ultimate axial bearing capacity of piles.

Uncertainties of Empirical Correlation
Coefficients
For a soil profile with high variability, the geotechnical
parameters usually followed skewed probability density
distributions (PDFs). Consequently, in the estimation of
bearing capacity around the pile toe, the geometric mean value
is more rational than the arithmetic mean value for average
properties of geotechnical parameters (Eslami and Fellenius,
1997; Golafzani et al., 2020; Heidarie Golafzani et al., 2020).
However, the geometric mean, qeg, is not compatible with
reliability-based analysis, in which the arithmetic mean is
used. Hence it is necessary to rewrite Eq. 3 in the form of the
arithmetic mean (qea), as follows:

Qu � AbaCpqea + ΣN
i�1AsiCsiqei (4)

where a = qeg/qea is the ratio of geometric mean (qeg) to arithmetic
mean (qea), varying between 0 and 1. The values of the ratio a can
be determined from the sampling CPTU data. Since both
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geometric and arithmetic mean values of qe are viewed as
deterministic quantities, the ratio (a) is also treated as a
constant (deterministic value).

According to Eq. 4, four indices including two in situ
measurements (qea and qe) and two empirical coefficients (Cp

and Cs) should be concerned as random parameters. The variance
ofQu depends on the probability distributions of four indices (Cp,
qea, Csi, and qei), and also depends on the correlation between
each pair of two indices. For convenience, the geotechnical
parameters in Eq. 4 are denoted as Y variables, i.e., Y1 = Cp,
Y2 = qea, Y3i = Csi, Y4i = qei, where i is the order of the soil unit. In
this research, all the Y parameters in Eq. 4 are assumed to be
individually following lognormal distribution advised for most
geotechnical parameters. Under this assumption, only the means
and variance of these parameters are needed and discussed in this
section. To get a consistent description of the magnitude of
uncertainty, the dimensionless coefficient of variation (COV)
is used instead of variance, defined as the ratio of standard
deviation over the mean.

The Cp and Cs are uncertain because the true values are not
available, and only empirical values can be obtained based on
the engineering database. Based on 14 pile case histories,
Eslami and Fellenius (1997) proposed a mean of 0.98 and a
standard deviation of 0.09 for Cp. Hence, in this research, the

Cp is assumed to be a lognormal variable with a mean of 1 and
COV of 0.1. For the Cs, the recommended values are shown in
Table 1, most values should vary within the 95% confidence
interval (CI). If the soil strata containing different layers are
treated as a whole soil unit, the 95% CI for the PDF of Cs should
be the interval between the lower bound and upper bound for
all the involved soil types.

Figure 1 illustrated the estimated PDFs of Cs for different soil
types. The statistical parameters including expected value (μ),
standard deviation (σ), COV, and the 95%CI are listed inTable 2.
The 95% CI for each type of soil is the same as the recommended
ranges in Table 1, and the estimatedmean value of Cs for each soil
type approximates the suggested mean value. In Figure 1, the
PDFs of Cs are almost asymmetric if different types of soils are
investigated individually. The normal distribution can be used to
approximate the lognormal distribution when the COV is small
(COV <0.3). However, the lognormal distribution is still adopted
to guarantee the positivity of Cs.

However, if different soil units are lumped together, the
estimated PDFs of Cs are distinctly skewed (as shown in
Figure 1) and the COVs increase significantly. In extreme
cases, both Zone 1 and Zone 5 exist in the soil strata, the
mean and COV of Cs are 2.41 and 0.99. Due to uncertainties
associated with empirical coefficients, separating different soil
units properly should be more reasonable than a mixing soil
profile in the reliability-based analysis by the UniCone method.
This suggestion is also suitable for other CPT/CPTU-based
predicting methods (Mayne, 2007; Golafzani et al., 2020;
Heidarie Golafzani et al., 2020).

Uncertainties of Effective Cone Tip
Resistance
Soil properties exhibit spatial variability over the space. Due to
insufficient site characterization information and limitations
of testing techniques, the geotechnical parameters become
variational. Different Interpretations of in situ testing data
also contribute to the geotechnical uncertainty (Mo et al., 2021;
Chen and Mo, 2022). The random field has been widely
applied to model the spatial variability of geotechnical
parameters including the effective cone tip resistance (both
qe and qea).

The Framework of Random Field
In a random field model, the in situmeasurement Y(z) at a depth
z in a soil unit is treated as a combination of a trend component

TABLE 1 | Shaft correlation coefficient Cs (Eslami and Fellenius, 1997).

Zone Soil type Cs (%)

Range (%) Approximation (%)

1 Soft sensitive soils 7.37–8.64 8.0
2 Clay 4.62–5.56 5.0
3 Stiff clay and mixture of clay and silt 2.06–2.80 2.5
4 Mixture of silt and sand 0.87–1.34 1.0
5 Sand 0.34–0.60 0.4

FIGURE 1 | Estimated PDFs of Cs.
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t(z), and a fluctuation component w(z) (Phoon, et al., 2003;
Uzielli, et al., 2005):

Y(z) � t(z) + w(z) (5)
The trend component represents the impact of physical factors

on the in situ measurements, such as overburden pressure and
geologic setting, usually treated as a deterministic component.
The fluctuation component represents the spatial variability of a
geotechnical parameter. It has been emphasized that the
fluctuation component is not inherent but depends on the
selection of trends (Cafaro and Cherubini, 2002; Phoon, et al.,
2003; Stuedlein et al., 2012). In the reliability analysis, only the
arithmetic mean value is used rather than the trend, leading to a
potential conflict between reliability and the random field model.
Assuming that Cs is independent of both depth (z) and qe, it can
be proved easily that a linear trend in Eqs 2a, 2b is mathematically
equivalent to the arithmetic mean of qe profile. Therefore, it is
acceptable to directly apply the random field with a linear trend
for the reliability-based analysis of piles. However, a high-order
trend cannot be replaced by the arithmetic mean for qe in Eqs 2a,
2b. In this case, it is advised to further subdivide the soil into
different units and perform further analysis.

In a random field model, the linear trend can be determined by
linear regression analysis. The scale of fluctuation (δ) represents
the inherent spatial variability of a soil property. COV and δ are
used to describe the corresponding fluctuation component
(Phoon and Kulhawy, 1999; Phoon et al., 2003).

The Scale of Fluctuation and Spatial Averaging
The scale of fluctuation in the vertical direction (δv) or in the
horizontal direction (δh) indicates that the soil property values
show a relatively strong correlation within the lagging distance.
This study emphasizes the vertical random field parameters as the
piles are mostly installed vertically in layered soils.

The random field theory is simplified by the weak stationarity,
which requires that the means and variances of the data segments
in a soil profile are constant along with the coordinate (Jaksa et al.,

1997). For a weak-stationary soil profile, the autocorrelation
function (ACF) only depends on the intervals between two
observations rather than the absolute depth coordinates (z1
and z2). The ACF, which is normalized by the sample
variance, can be estimated as (Phoon et al., 2003; Uzielli,
et al., 2005)

R(τ � jΔz) ≈ 1
s2(n − j − 1)Σn−j

i�1 [w(zi)w(zi+j)] (6)

where τ is lagging distance, τ = |z1 – z2|; Δz is sampling interval; zi
= i(Δz) is depth coordinate of ith sampling point; n is the number
of data points; and s2 is the sample variance. Eq. 6 is accurate up
to a maximum lag of less than 1/4 of the total sample length,
i.e., j < n/4. In practice, only the initial parts of the ACF (i.e., R(τ)
> 1.96/

�
n

√
) are necessary for subsequent analysis according to

Uzielli et al. (2005). Eq. 6 should be calculated within the
sampling interval smaller than the δv.

Discontinuity of ACF can be observed when the lag distance
approaches zero, which is referred to as the nugget effect (Jaksa
et al., 1997). The nugget effect describes the impacts of the
random measurement error and spatial variability of soil
property in a small scale and also contributes to the imprecise
evaluation of uncertainties associated with geotechnical data.

The ACF obtained from Eq. 6 is discrete. Several theoretical
continuous autocorrelation models (ACMs) can be used to fit the
sample ACF based on the regression analysis (Phoon et al., 2003;
Uzielli, et al., 2005). The best-fitting ACM should be selected to
determine the δv of geotechnical data. Vanmarcke (1977)
suggested that the variance of geotechnical data can be
reduced by averaging data points within the range of δv. The
reduced variance is more representative than the raw
measurements as the performance of a single pile depends on
the averaged regionalized soil property, rather than the point
estimates of variance. Table 3 lists five common ACM and the
corresponding variance reduction functions (VRFs), which are
defined as the ratio of the variance of post-averaged data over that
of pre-averaged data.

TABLE 2 | Proposed lognormal distributions for Cs.

Zone Mean value μCs (%) Standard
deviation σCs (%)

Coefficient
of variation COV

CI (95%)

1 7.99 0.32 0.04 7.37–8.64
2 5.07 0.24 0.05 –4.62–5.56
3 2.41 0.19 0.08 2.06–2.80
4 1.09 0.12 0.11 0.87–1.34
5 0.46 0.07 0.15 0.34–0.60
1 and 2 6.40 1.03 0.16 4.62–8.64
1 and 3 4.51 1.71 0.38 2.06–8.64
1 and 4 3.25 2.08 0.64 0.87–8.64
1 and 5 2.41 2.38 0.99 0.34–8.64
2 and 3 3.49 0.90 0.26 2.06–5.56
2 and 4 2.46 1.23 0.50 0.87–5.56
2 and 5 1.77 1.44 0.81 0.34–5.56
3 and 4 1.63 0.50 0.30 0.87–2.80
3 and 5 1.13 0.65 0.58 0.34–2.80
4 and 5 0.72 0.26 0.36 0.34–1.34
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Coefficient of Variation
The coefficient of variation evaluates the absolute magnitude of
fluctuation about the trend. The COV of a soil profile in one soil
unit after removing a trend is defined as (Phoon and Kulhawy,
1999)

COV � σY
μY

�
�������������
1

n−1∑n
i�1[w(zi)]2

√
μY

(7)

where σY and μY are the standard deviation andmean of Y, n is the
number of data points in the profile, and zi is the depth of ith
sampling point.

After spatial averaging, the reduced COVr of Y in each soil
unit is

COVr �
�������
Γ2(h)σ2Y

√
μY

� Γ(h)COV (8)

Random Field Model in Layered Soils
Piles are generally installed in layered soil strata rather than
homogeneous soil. For layered soil strata, the random field
model can be applied for a soil profile without separating
different soil units, as commonly used in geotechnical
literature. However, it is suggested to apply the random
field model for each soil unit since the COV of geotechnical
data can be highly overestimated if different soil units are
mixed up together (Phoon et al., 2003; Uzielli, et al., 2005). The
autocorrelation structure can be also highly overestimated if
different soil units are not identified properly. It has been
observed that the estimated δv depends on the scale of
observation (Cafaro and Cherubini, 2002). If the whole soil
strata are modeled as one random field, then the qe readings in
a soil unit are merely a fluctuation component of the whole soil
profile. This observation contributes to the conclusion that qe
is highly correlated in space. Even if a linear trend is removed,
the CPTU readings are still close to each other at adjacent
locations. If different soil units are investigated individually,
the δv should be smaller and more representative of spatial
variability of qe.

Based on the aforementioned analysis, the random field model
of soil strata containing N soil units is recommended as shown in
Figure 2. The random field model is constructed individually for
each soil unit, including the influence zone. The size of the

TABLE 3 | Autocorrelation models and variance reduction functions (Vanmarcke, 1977; Phoon and Kulhawy, 1999); Phoon et al., 2003; Uzielli, et al., 2005).

Autocorrelation model Equation Variance reduction function

Single exponential (SNX) R(τ) � exp(−2|τ|
δv
) Γ2(h) � 1

2 (δvh )2(2hδv − 1 + exp(−2h/δv))
Binary noise (BIN)

R(τ) � {1 − |τ|/δv |τ|≤ δv
0 otherwise

Γ2(h) � {1 − h/(3δv)
(δv/h)[1 − δv/(3h)]

h≤ δv
otherwise

Cosine exponential (CSX) R(τ) � exp(−|τ|
δv
)cos(|τ|δv ) Γ2(h) � (δvh )2[ hδv − exp(− h

δv
)sin( h

δv
)]

Second-order Markov (SMK) R(τ) � exp(−4|τ|
δv
)(1 + 4|τ|

δv
) Γ2(h) � δv

2h {2 + exp(−4h
δv
) − 3δv

4h [1 − exp(−4h
δv
)]}

Squared exponential (SQX) R(τ) � exp[−π( τ
δv
)2] Γ2(h) � 1

π (δvh )2{πhδv F(
�
π

√
h

δv
) + exp[−π( h

δv
)2] − 1}

where h is the length for spatial averaging; if h < δv, then Γ2(h) = 1.

FIGURE 2 | Random field model for layered soils.

FIGURE 3 | Calculation scheme of the correlation between two
segments.
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influence zone directly impacts the correlations among qei of
different soil units.

Correlations Among Geotechnical
Parameters
Another source of the uncertainties associated with qe is the
covariance, which describes the linear relationship between
paired geotechnical parameters. For a soil profile shown in
Figure 3, Vanmarcke (1977) proposed the following formula
to estimate the product-moment correlation (ρY12) between
two segments (ws1 and ws2):

ρY12 �
z20Γ

2(z0) − z21Γ
2(z1) + z22Γ

2(z2) − z23Γ
2(z3)

2Δz1Δz2
�������������
Γ2(Δz1)Γ2(Δz2)

√ (9)

where z0 = |c - b|; z1 = |c - a|; z2 = |d - a|; z3 = |d - b|; Δz1 = |b - a|;
Δz2 = |d - c|; a and c are the upper bounds of ws1 and ws2,
respectively; b and d are the lower bounds of ws1 and ws2,
respectively; and Γ2(•) is the variance reduction function of
the whole profile.

Vanmarcke (1977) has proven that the above equation is still
applicable even if the two segments are overlapped (i.e., c > b).
According to the above formula, the correlation between any two
qe profiles of non-overlapped soil units approximates to zero. But
for two soil units overlapped, the correlations should not be
ignored.

By applying Eq. 9, the soil profile should be stationary in the
second-moment sense because the correlation structure can be
described using a consistent ACM. The stationarity of a
geotechnical profile can be checked rigorously using the
modified Bartlett’s test proposed by Phoon et al. (2003). The
non-stationary points of the soil profile may correspond to the
soil boundaries. Uzielli et al. (2005) showed that cohesionless soils
are more variable than cohesive soils. The variance of fluctuation
components can be hardly constant with the depth caused by
non-stationarity. For a single soil unit, weak stationarity is often
an acceptable assumption after a specific trend is removed
(Vanmarcke, 1977; Stuedlein et al., 2012; Bong and Stuedlein,
2017).

Including the uncertainties of Cp, qea, Csi, and qei, the
variability of Qu can be estimated by the random field
theory. In this research, the following strategy is adopted
when the N different soil units are identified properly from
a soil profile:

(1) The qe data of different soil units along the pile shaft are
uncorrelated to each other, while they are autocorrelated in
the same soil unit

(2) If the influence zone contains at least two soil units, then the
qea of the influence zone is assumed to be uncorrelated to all
the qe along the pile shaft and the correlation matrix of (Cp,
qea, Csi, qei) is simply an identity matrix

(3) If the influence zone is limited in the Nth soil unit,
then the correlation between qea and qeN is estimated
using Eq. 9, whereas qea and qei (i = 1, 2, . . . , N-1) are
uncorrelated

RELIABILITY INDEX OF PILE BEARING
CAPACITY

The most advantage of reliability analysis is to quantify the
uncertainties of design parameters and to manipulate those
uncertainties consistently. In this section, the basic concept of
reliability analysis is introduced firstly. Then, data transformation
is discussed to conduct the reliability analysis. An Excel-based
reliability analysis framework is illustrated to evaluate the
ultimate axial bearing capacity of piles in layered soils by
spatial variability and the FORM analysis.

Reliability Analysis Theory
Reliability analysis originates from the limit state design concept.
The limit state function of the vertically loaded pile can be
written as

M � Qu − S (10)
where Qu is the ultimate bearing capacity, S is the load, and M is
the margin of safety. If Qu and S are normally distributed, thenM
is also normally distributed with a mean of μM and a standard
deviation of μM. If Qu and S are further uncorrelated, then a
dimensionless reliability index, β, is defined as (Baecher and
Christian, 2005)

β � μM
σM

� μQu
− μS�������

σ2Qu
+ σ2

S

√ (11)

Here, M represents the geometrical distance from a design
point to the limit state in the unit of capacity. Eq. 11 indicates that
β is a standardized representation of M. β evaluates the distance
from a design point to the failure criteria in the standardized
space. Eq. 11 assumes that the margin of safety is expressed as a
linear sum of uncorrelated normal random variables. However,
when the M is expressed in terms of design parameters (Cp, qea,
Csi, qei and S), this assumption is contradictory to the geotechnical
practice, because the capacity of piles is often expressed as a
nonlinear function of non-Gaussian variables. After proper data
transformation, β can be directly defined in the multivariate
standard normal space. So the FORM provides a more
rational estimation of the probability of failure (pf). Data
transformation for each variable and the correlations among
those variables are introduced in the following sections.

Data Transformation
In this research, S is also assumed as a lognormal random variable
with a mean of μS and standard deviation of σS. Then, the
correlated Y variables can be individually converted to
correlated standard normal variables (Vi) using the following
simple transformation:

β � μM
σM

� μQu
− μS�������

σ2Qu
+ σ2

S

√ (12)

where Ti = lnYi, μTi and σTi are the mean value and standard
deviation of Ti, respectively. The μTi and σTi can be obtained using
(Low and Tang, 1997) the following expression:
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μTi
� ln(μYi

) − 0.5ln(COV2
Yi
+ 1) (13a)

σTi �
������������
ln(COV2

Yi
+ 1)√

(13b)
where μYi and σYi are the mean value and standard deviation of Yi,
respectively.

Due to the nonlinear transformation, the product-moment
correlation coefficient between Vi and Vj, ρVij, is different from
the initial correlation coefficient ρYij. However, shifting or scaling
two variables will not change the product-moment correlation
between them. Therefore ρVij should be the same as the product-
moment correlation (ρTij) between Ti and Tj.

Since Ti and Tj follow the normal distribution, (Ti + Tj) is still a
Gaussian variable with means and variances as

μTi+Tj
� μTi

+ μTj
(14a)

σ2Ti+Tj
� σ2Ti

+ σ2
Tj
+ 2ρTijσTiσTj (14b)

Therefore, YiYj = exp(Ti + Tj) follows lognormal distribution
with the expected value as

μYiYj
� exp[μTi

+ μTj
+ (σ2

Ti
+ σ2

Tj
+ 2ρTijσTiσTj)/2]

� exp[(μTi
+ σ2Ti

/2) + (μTj
+ σ2

Tj
/2) + ρTijσTiσTj]

� μYi
μYj

exp(ρTijσTiσTj)
(14c)

Combining Eqs 13a, 13b, Eqs 14a, 14b, 14c, the following
expression can be derived:

ρVij � ρTij �
1

σTiσTj

In⎛⎝μYiYi
− μYi

μYj

μYi
μYj

+ 1⎞⎠
� 1
σTiσTj

In⎡⎣cov(Yi, Yj)
μYi

μYj

+ 1⎤⎦
� ln(ρYijCOVYiCOVYj + 1)�������������������������

ln(COV2
Yi
+ 1)ln(COV2

Yj
+ 1)√ (15)

It is noted that ρVij is the (i,j)th entry of correlation matrix KV.
So KV can be determined from the correlation matrix KY,
especially in the situation that the COVs of Yi and Yj are
small (e.g., COV <0.3). ρVij may approximate ρYij because ln(1
+ x) approximates x very well when x is close to zero. After
obtaining the transformed correlation matrix, the last issue in Eq.
11 is that the correlated Gaussian variables need to be converted
to uncorrelated Gaussian variables. Transformation for
uncorrelated Gaussian variables with the definition of
reliability index is introduced subsequently.

Reliability Index
The Cholesky decomposition method converts the correlated
standard normal variables to uncorrelated variables with no
change in the normality of the correlation matrix. Since KV is
asymmetric and positive definite matrix, it can be factored into
two matrices transposing each other (Baecher and Christian,
2005):

KV � WWT (16a)
where W is a lower triangular matrix. Then, the vector of
uncorrelated standard normal variables, X, can be obtained as

X � W−1V (16b)
where X = (X1, X2, . . . , X5) is the vector of uncorrelated standard
normal variables, V = (V1, V2, . . . , V5).

Finally, all correlated lognormal Y variables are converted to
uncorrelated standard normal X variables. Assuming that the
limit state function can be approximated by the sum of
transformed uncorrelated Gaussian variables, the reliability
index, β, can be estimated using the following formula
(Baecher and Christian, 2005):

β � ����
XTX

√ �
�������
VTK−1

V V
√

(17)
To consistently demonstrate the sensitivity of β on Yi, a

sensitivity factor (αi) is defined as Xi/β. A large absolute value
of αi indicates high influence of Yi on β (Teixeira et al., 2012,
Teixeira et al., 2014). The reliability index (β) defined in Eq. 17
indicates the minimal distance between the critical data point in
the limit state function and the origin of uncorrelated
multivariate standard normal space. Therefore, the FORM
analysis becomes the problem of finding minimal β and
corresponding critical design points under the constraint of
limit state function.

Algorithm for Reliability Index
Many algorithms for conditional minimization are available in
the statistic literature. The algorithm procedure proposed by Low
and Tang (1997) can be modified to conveniently solve the
minimization problem. The procedure is updated to account
for the transformation of correlations among variables as follows:

1) Define the means, standard deviations, and correlation
matrix (KY) of (Y1, Y2, . . . , Y5) using the random field model

2) Convert Yi to Xi individually using the logarithm
transformation with a standardizing procedure, using Eq.
12, Eq. 13a, Eq. 13b

3) Convert the correlation matrix KY to KV using Eq. 15
4) Assign initial values for each Vi variable and obtain the

corresponding Yi variable
5) Obtain the margin of safety, M = f(Y1, Y2, . . . , Y5)
6) Define reliability index, β, according to Eq. 17
7) Invoke the “Solver” command in the Excel software to

minimize β by changing the values of Vi subject to the
constraint that M = 0

8) Obtain the critical values of (V1, V2, . . . , V5) and
corresponding β

9) Perform Cholesky decomposition on the KV, obtain the
critical values of (X1, X2, . . . , X5) using Eqs 16a, 16b,
and evaluate the sensitivity factors (αi)

10) Estimate the probability of failure using pf = Φ(-β)

The modified algorithm is suitable for both correlated and
uncorrelated random variables. An Excel-based framework for
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the reliability design of pile foundations by the CPTU-based
UniCone method is developed, as shown in Figure 4. Using the
proposed framework, seven case studies in two sites are analyzed
to investigate the difference of estimated pf by separating soil
units properly or not.

UNCERTAINTY ANALYSIS OF AXIAL PILE
CAPACITY

The impacts of uncertainties of geotechnical parameters on the
reliability design are assessed in terms of the probability of failure
factor of safety (pf–FS) curve by different interpretations of soil
profiles. The FS represents the averaged influence of resistance on
the load, since a large mean value of capacity with a small mean
value of the load leads to a high FS. Then, the mean value of S is
determined using μS = μQu/FS. The COV of S is selected as 15% as
commonly used in literature (Zhang et al., 2004; Chen and Zhang,
2013; Tang and Phoon, 2018; Bueno Aguado et al., 2021). If soil
profiles are interpreted in different ways, the values of δv and
COV should change accordingly. Deviations in β and pf could be
expected due to different values of δv and COV at the same FS
level. Seven driven piles designed in layered soils are analyzed by
the proposed framework to demonstrate the importance of
identifying different soil units properly. For convenience, Type
I indicates the uncertainty analysis by dealing with the soil strata
as an integrated unit, while Type II indicates the uncertainty
analysis by identifying different soil units from a soil profile.

Site Condition
The seven design case studies are located in Nanjing and Suqian,
Jiangsu, China. Table 4 lists the dimensions and required axial
capacities of the driven piles. These piles include closed-end pre-
stressed high-strength concrete (PHC) pipe piles and pre-stressed
concrete (PC) pile. The piles are driven into the bearing layers.
The bearing layers locate in the last soil units as listed in Type II
method. The pile types do not influence the estimations of
bearing capacity by the UniCone method as discussed previously.

In Table 4, Case 1–Case 4 are in the Nanjing sites. In Case 1
and 2, soil strata consist of sand and silt units, while in Case 3 and
4, the soil strata consist of silty clay with soft clay. In Table 4, Case
5–Case 7 are in the Suqian sites. The soil strata in Case 5–Case 7
contain relatively loose silt over median sandy silt. Therefore, the
study on Case 1 and 2 illustrates the performance of reliability-
based analysis in mixed cohesionless deposits. The study on Case
3 and 4 checks the performance of reliability analysis in mixed
cohesive deposits. The investigation on Case 5–7 evaluates the
performance of reliability-based analysis in mixed silts. Case 1 is a
representative example of qe profile for the spatial variability
analysis.

Spatial Variability Analysis
In the proposed framework, the spatial variability of qe has been
analyzed. The results of spatial analysis are concluded in Table 5.
Figure 5 presents a representative example of qe profile measured
at one of the Nanjing sites in Case 1. Three soil units are identified
from the CPTU profile according to the adjacent borehole data, as

FIGURE 4 | Flowchart for the uncertainty analysis of axial pile capacity in layered soils by the UniCone method.
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shown in Figure 5. The first unit is silt from the ground surface to
a depth of 6.8 m. The second unit is silty sand from 6.8 to 11.4 m
in depth. The last soil unit is sandy silt from 11.4 to 19.0 m
in depth.

For Type I analysis, a global trend is removed and the δv is
estimated from the corresponding fluctuation component, as
shown in Figure 5. For Type II analysis, the linear trends are
estimated and removed individually for three identified soil units,
as shown in Figure 5. The δv values of three soil units are then
determined by fitting ACMs respectively. The linear trend can be
directly estimated using the “Trend” function in Excel. Eq. 6
indicates that under the assumption of weak stationarity, the
autocorrelation coefficient at a given lag distance can be
approximated by the Pearson correlation coefficient. In a soil
unit, if the residuals of qe are recorded as (w1, w2, . . . , wn), at the
jth (j = 0, 1, 2, . . . , n/4) lag distance, the ACF can be estimated
simply using the “Pearson” function in the Excel software as
“Pearson(w1:wn-j, wj+1:wn)”.

Figure 5 and Table 5 illustrate the estimated ACFs compatible
with fitted ACMs for Case 1. For Type I analysis, the random field
parameters of qe along the pile shaft are μqe = 7,094 kPa, COVqe1

= 0.43, δvqe1 = 1.06 m with the SNX model. For Type II analysis,
the random field parameters of qe of three soil units are estimated
as: 1) Unit I: μqe1 = 2,227 kPa, COVqe1 = 0.35, δvqe1 = 0.19 m with

SMK model; 2) Unit II: μqe2 = 10,253 kPa, COVqe2 = 0.25, δvqe1 =
0.26 mwith CSXmodel; and 3) Unit III: μqe3 = 9,499 kPa, COVqe3

= 0.27, δvqe3 = 0.24 m with the SMK model. Since the pile is 16 m
in length and 0.4 m in width, the influence zone is determined
ranging from 12.8 to 17.6 m in depth. The estimated ratio of qeg to
qea is 0.95. Assuming that the fluctuation component of qe with a
linear trend in the influence zone is stationary enough in the
second-moment sense, the random field parameters of qea are
estimated as μqea = 9,177 kPa and COVqea = 0.28, δvqea = 0.22 m
with the CSX model. The nugget effect is not observed in the
curve fitting of ACM to ACF. Therefore, the random
measurement errors associated with qe measurements are
neglectable in this research.

Applying the above procedure to other cases, the random field
parameters of qe can be determined for both Type I and Type II
analysis, as listed in Table 5. In Type II analysis, the standard
deviations (mean and COV) of qe in different soil units are
seldom similar. Hence, assuming the fluctuation component of
the whole profile is stationary, perhaps over-simplified. It is
reasonable to assume that qe data from different soil units are
uncorrelated because measurements in one soil unit can hardly
provide information on the adjacent soil unit. The range for
spatial averaging in each unit is determined as the length of the
pile shaft along with the corresponding unit. Then, the reduced

TABLE 4 | Basic information of site strata and piles.

Site Case
no.

Interpretation Soil
strata

Soil
type

Depth
(m)

Cs or Cp Pile
type

Qu

(kN)
L
(m)

qeg/qea

μ COV

Nanjing sites Case 1 Influence zone Mixed soil 12.8–17.6 1.00 0.10 PHC 3,108 16 0.95
Type I All Silty mixture 0–19.0 0.016 0.30
Type II Unit I Silt 0–6.8 0.024 0.08

Unit II Silty sand 6.8–11.4 0.011 0.11
Unit III Sandy silt 11.4–19.0 0.011 0.11

Case 2 Influence zone Sandy silt 5.8–10.0 1.00 0.10 PC 810 9 0.98
Type I All Silty mixture 0–10.0 0.025 0.50
Type II Unit I Loose Silt 0–3.0 0.05 0.05

Unit II Sandy silt 3.0–10.0 0.011 0.11
Case 3 Influence zone Mixed soil 11.8–16.5 1.00 0.10 PC 600 15 0.85

Type I All Clayey mixture 0–16.5 0.035 0.26
Type II Unit I Silty clay 0–4.0 0.024 0.08

Unit II Soft clay 4.0–13.0 0.05 0.05
Unit III Silty clay 13.0–16.5 0.024 0.08

Case 4 Influence zone Mixed soil 16.8–21.6 1.00 0.10 PHC 1,050 20 0.63
Type I All Clayey mixture 0–26.5 0.035 0.26
Type II Unit I Silty clay 0–3.2 0.01 0.08

Unit II Soft clay 3.2–19.4 0.05 0.05
Unit III Silty clay 19.4–26.5 0.024 0.08

Suqian sites Case 5 Influence zone Sandy Silt 0–19.0 0.011 0.11 PHC 2,400 16 0.97
Type I All Silty mixture 12.8–17.6 1.00 0.10
Type II Unit I Silt 0–4.0 0.011 0.11

Unit II Sandy silt 4.0–19 0.011 0.11
Case 6 Influence zone Sandy Silt 0–20.0 0.011 0.11 PHC 2,700 16 0.97

Type I All Silty mixture 12.8–17.6 1.00 0.10
Type II Unit I Silt 0–4.2 0.011 0.11

Unit II Sandy silt 4.2–20 0.011 0.11
Case 7 Influence zone Sandy Silt 0–21.0 0.011 0.11 PHC 2,650 16 0.97

Type I All Silty mixture 12.8–17.6 1.00 0.10
Type II Unit I Silt 0–5.0 0.011 0.11

Unit II Sandy silt 5.0–21.0 0.011 0.11
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COVs can be obtained for all the variables and are imported to the
FORM analysis.

Reliability Analysis
The Excel-based algorithm modified from Low and Tang (1997)
is developed for reliability analysis to account for the variation of
the correlation matrix after data transformation. Figure 6
presents the Type II analysis of Case 1. Type I analysis is
similar but more simple. Basic functions for the operation of
matrices are also illustrated in Figure 6. Decomposition of the
correlation matrix can be achieved using the “CHOL” function in
“RealStats.xlam”. “RealStats.xlam” is developed for statistical
analysis using Excel and is available on the website (http://
www.real-statistics.com/). The “Solver” command in Excel can
be used to obtain the minimal β subjected to the constraint of
limit state function by changing V or X values.

DISCUSSION

For Case 1, the relationship between pf and FS can be estimated
by both Type I and Type II analysis with those parameters
shown in Figure 5 and Figure 6. Similar conducts may apply to

the other cases in Table 5. The results for Nanjing sites and
Suqian sites are displayed in Figure 7 and Figure 8,
respectively.

Effects of Spatial Variability
In Figure 7, at a small FS level, the difference between Type I
and Type II is small, whereas, at a high FS level, the difference
becomes conspicuous. In Case 1, when FS = 1.5, the pf of Type I
is 7.5 × 10–2 while the pf of Type II is 6.5 × 10–3, the difference
between the two pf values is almost within one order of
magnitude. When FS = 4.0, the pf of Type I is 1.26 × 10−8

while the pf of Type II is 5.3 × 10–18. The difference between the
two pf values is about ten orders of magnitude. A similar
observation is confirmed in other cases in Nanjing sites. Since
all the different soil units are modeled as a homogeneous
random field, the COV and δv can be highly overestimated.
The overestimated COV and δv contribute to a high pf value at
the same FS level. This inference is applicable for cohesionless
and cohesive soil deposits in Nanjing sites.

In Figure 8, the difference between Type I and Type II is
relatively small at the same FS level. However, at a high FS
level, the difference between Type I and Type II is still distinct
in Case 5 to Case 7. In Case 5, when FS = 4.0, the pf of Type I is

TABLE 5 | The results of spatial analysis of qe.

Site Case no. Interpretation Soil strata Random field parameters of qe

μ (kPa) COV δv (m) ACM

Nanjing sites Case 1 Influence zone 9,177 0.28 0.22 SQX
Type I All 7,094 0.43 1.06 SNX
Type II Unit I 2,227 0.35 0.19 SMK

Unit II 10,253 0.25 0.26 CSX
Unit III 9,499 0.27 0.24 SMK

Case 2 Influence zone 3,716 0.14 0.34 SMK
Type I All 2,328 0.21 0.75 SNX
Type II Unit I 494 0.36 0.09 SMK

Unit II 3,108 0.15 0.40 SMK
Case 3 Influence zone 1,169 0.43 0.19 SQX

Type I All 764 0.70 2.18 SNX
Type II Unit I 1,039 0.41 0.24 SQX

Unit II 392 0.25 0.26 SNX
Unit III 1,412 0.38 0.17 SQX

Case 4 Influence zone 1,262 0.53 0.76 SNX
Type I All 890 0.95 2.97 SNX
Type II Unit I 770 0.44 0.39 SNX

Unit II 270 0.22 0.85 SNX
Unit III 2,345 0.42 0.28 SNX

Suqian sites Case 5 Influence zone 6,907 0.23 0.44 CSX
Type I All 7,005 0.36 1.83 SNX
Type II Unit I 3,964 0.23 0.20 CSX

Unit II 7,810 0.27 0.77 SNX
Case 6 Influence zone 6,634 0.28 1.55 SNX

Type I All 6,847 0.22 0.31 SMK
Type II Unit I 4,190 0.28 0.43 SMK

Unit II 7,283 0.22 0.62 SNX
Case 7 Influence zone 6,034 0.31 0.90 SNX

Type I All 7,978 0.25 0.91 SNX
Type II Unit I 2,662 0.40 0.21 SQX

Unit II 7,094 0.27 0.70 SNX
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7.0 × 10–12, while the pf of Type II is 8.9 × 10–16. However, the
difference between the two pf values is about four orders of
magnitude. A similar observation is confirmed in other cases in
Suqian sites.

In Case 1–Case 4, the spatial variability of geotechnical
parameters in Type I is significantly different from that in Type
II because the soil strata consist of different soils. In Case
5–Case 7, the means and COVs of Cs in Type I are the same as
those in Type II because of the same soil strata, but the
random field parameters of soils are vary greatly. In an
idealized case, if the soil profile contains only one
homogeneous soil unit, the reliability results of Type I and
Type II are expected to be the same by the proposed
framework. But even if soil strata consist of the same soil
types, different interpretations of soil profiles may lead to
different reliability results.

Effects of Uncertainties of Empirical
Correlation Coefficients
It is of interest to investigate the impact of uncertainties of
design parameters (Cp, qea, Csi, qei, S) on pf in terms of the
sensitivity factor. The design parameters are ordered according
to the soil strata. Case 1 and Case 5 are studied to illustrate the
influence of Type I and Type II interpretation methods on the

sensitivity factors, as shown in Figure 9 and Figure 10
respectively.

For Case 1, three soil units are identified from the soil
profile. In Figure 9, the pf of Type I mainly depends on the
uncertainties of the Cs and S, whereas the influences of qea and
qe are relatively small. During spatial averaging, the
uncertainties involving qea and qe are reduced, but the
uncertainties of Cs are highly overestimated (COV of Cs =
0.30) in Type I. However, in Type II, the main factor
influencing the failure probability is only the load,
indicating that the uncertainties of the geotechnical
parameters are evaluated exactly. It can be concluded that,
in Type I analysis, the uncertainties of the empirical
correlation coefficients will impact the failure probability
significantly.

For Case 5, two soil units are identified from the whole soil
profile. In Figure 10, the impact of Cs in Type I is the same as that
in the Type II analysis. This can be well understood because the
means and COVs of Cs are the same in Type I and Type II
methods for Case 5. In Type I analysis, the absolute values of
sensitivity factors of qea and qe are slightly larger than those in
Type II. In Type I analysis, the performance of the pile is more
influenced by the uncertainties of CPTU data. This is consistent
with the observation that the variability of qe is over-estimated in
Type I analysis.

FIGURE 5 | Estimation of random field parameters of the qe profile in Case 1.
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FIGURE 6 | Procedure for evaluating failure probability of pile foundations (modified from Low and Tang (1997))

FIGURE 7 | FS–Pf relationships for Nanjing sites.
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A rational design can be achieved when different soil units are
identified properly from the soil profile in the reliability analysis.
If different soil units are not identified properly, uncertainties of
CPTU data and empirical correlation coefficients should be over-
estimated, the pf may be also over-estimated, leading to a
conservative design. Christian and Baecher, (2011) emphasized

that over the past few decades, the failure probability of
geotechnical foundations in reliability analysis is significantly
overestimated, compared to the frequency of failures in
practice. The failure probability of piles in layered soils can be
reduced when different soil units are identified properly from a
soil profile in the reliability analysis.

FIGURE 8 | FS–Pf relationships for Suqian sites.

FIGURE 9 | Sensitivity factors for Case 1.
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CONCLUSION

In this study, an Excel spreadsheet-based framework is developed for
the uncertainty analysis of the ultimate axial bearing capacity of piles
in layered soils. The uncertainty analysis is based on the UniCone
direct piezocone method involving spatial variability of CPTU data
and variations of empirical correlation coefficients. Proper
identification of different soil units from a soil profile is crucial
for estimating the failure probability of pile capacity in the reliability
analysis.

The main conclusions are summarized as follows:

(1) Different interpretations of spatial variability of a soil profile
may lead to different reliability results. The spatial variability
of soil strata in layered soils can be evaluated accurately when
different soil units are identified properly from a soil profile
in the reliability analysis.

(2) For a soil profile consisting of the same soil types, the
empirical correlation coefficients are the same, the spatial
variability of different soil units also makes a great influence
on the reliability results.

(3) As FS ranges from 1.0 to 4.0, the pf values estimated by Type I are
consistently higher than those of Type II in all cases at the same
FS level, because the Type I method over-estimated uncertainties
of geotechnical parameters than the Type II method.

(4) In the Type II method, uncertainties of geotechnical
parameters are reduced by the proper identification of

different soil units from each other in a soil profile,
producing rational reliability results.
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GLOSSARY

a Ratio of qeg to qea

Ab Section area of the pile

As Superficial area of pile shaft

B Diameter of design piles

COV Coefficient of variation

Cp Toe correlation coefficient

Cs Shaft correlation coefficient

fp Unit pile shaft resistance

fs Sleeve frictional resistance

FS Factor of safety

M Margin of safety

pf Probability of failure

qb Unit end resistance at the pile base

qe Effective piezocone penetration resistance

qea Arithmetic mean of qe

qeg Geometric mean of qe

qt Cone tip resistance

Qb End bearing capacity

Qs Friction resistance along the shaft

Qu Ultimate axial bearing capacity

load S load

u2 Pore water pressure

αi Sensitivity factors

β Reliability index

δ Scale of fluctuation

δh Scale of fluctuation in the horizontal direction

δv Scale of fluctuation in the vertical direction

Δz Sampling interval

μ Mean value

ρ Product-moment correlation

σ Standard deviation

τ Lagging distance

Φ Cumulative density function of standard Gaussian distribution
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