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High-efficiency and high-quality detection of oil pipeline will significantly reduce
environmental pollution and economic loss, so an unconventional oil pipeline anomaly
detection convolutional neural network (CNN) algorithm based on attention mechanism is
proposed in this article. By taking the simulated ground-penetrating radar (GPR) data as
prior knowledge, the structure of the convolutional neural network based on the attention
mechanism is constructed, and finally, the location and working condition of the
underground oil pipeline are recognized in the simulation data and measured data. The
simulation results show that after using the new optimized convolutional neural network,
the accuracy rates of the leakage discrimination from horizontal data acquired along the oil
pipeline and the classification of the target from longitudinal data acquired perpendicular to
the oil pipeline are 94.5% and 84.6%, respectively. Compared with the original
convolutional neural network without an attention mechanism, the accuracy rates of
the leakage discrimination and the classification of the target are improved by 6.2% and
7.8%, respectively. We further train measured data with an optimized convolutional neural
network, results show that compared with a conventional network, the new network can
increase the corresponding accuracy rates of the leakage discrimination and the targets
classification by 5.4% and 6.9%, reaching 92.3% and 84.4%, respectively. According to
our study, the ground-penetrating radar oil pipeline recognition algorithm based on an
attention mechanism can well accomplish the identification of underground oil pipelines.

Keywords: unconventional detection, convolutional neural network, ground-penetrating radar, oil pipeline leakage,
attention mechanism

INTRODUCTION

The rapid development of the petroleum industry makes the research on the safety of oil storage and
transportation meaningful (Hu et al., 2021). The oil pipeline has become an important choice for oil
transportation because of its high safety, high speed, and reasonable cost (Chen et al., 2018). Under
the influence of external factors, the oil pipeline running for a long time is prone to leakage problems.
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After the oil pipeline leaks, it will not only waste a lot of resources
and cause economic loss, but also seriously pollute the
environment and affect human life. Efficient and high-quality
detection of oil pipelines will be able to monitor leakage in time
and effectively reduce resource waste and environmental
pollution (Wang et al., 2014). Therefore, an unconventional oil
pipeline anomaly detection algorithm based on the attention
mechanism is proposed.

Up to now, there are many detection methods for oil pipeline
leakage. For example, the negative pressure wave method,
ultrasonic detection method, optical fiber detection method,
etc. Negative pressure wave method is safe and simple. It also
has a wide detection range and fast response. However, this
method is difficult to successfully detect small and slow
leakage (Liang et al., 2010). The ultrasonic detection method is
complex and needs to fill the coupling agent between the probe
and the pipe wall (Yang et al., 2021). The optical fiber detection
method has good security and high sensitivity, but it needs to add
appropriate isolation materials and has a high cost (Zhou et al.,
2019; Zhao et al., 2021). Instead, the ground-penetrating
radar(GPR) has the characteristics of being nondestructive,
high efficiency, having high imaging resolution, and
penetrability (Cao et al., 1996). It is widely used in road and
bridge detection, building quality analysis as well as underground
target detection and classification (Hinton and Salakhutdinov,
2006; Vargas et al., 2017). After comprehensive consideration, the

unconventional method of ground-penetrating radar is proposed
to detect the state of the underground oil pipeline.

Interpretation of ground-penetrating radar (GPR) section data
highly depends on the subjective judgment of experts, which takes
a long time and has the risk of misjudgment (Kunihiko and Sei,
1982; Lu and Zhang, 2016; Wanjun et al., 2016). Therefore, it is of
great significance to explore an efficient automatic underground
target recognition algorithm. Several research studies have been
carried out to realize the automatic recognition of GPR section
features (Jia et al., 2007; Liu et al., 2017). The most classic image
recognition algorithm in GPR is Hough transform, mainly used
to identify hyperbola in GPR images (Windsor et al., 2013; Li
et al., 2016). However, due to the diversity of detected targets, the
corresponding signals of targets in GPR images are not limited to
hyperbola but complex and diverse. Dictionary learning method
and template matching method are also commonly used GPR
image recognition algorithms (Sagnard and Tarel, 2016; Terrasse
et al., 2016). But those similar approaches rely heavily on
dictionary models and templates, requiring a lot of parameter
configurations.

With the gradual maturity of deep learning, it has been widely
used in exploration techniques in recent years, such as fracturing
design optimization, sweet spot detection, production forecasting,
GPR data interpretation, etc, (Wang and Chen, 2019; Tang et al.,
2020; Xiong et al., 2020). Lei W et al. (2019) used the R-CNN
network to identify hyperbolic features in GPR B-scan images. It can

FIGURE 1 | Experiment configuration when obtaining oil pipeline B-scan data by GPR. (A) Acquisition model of horizontal B-scan data along oil pipeline; (B)
acquisition model of longitudinal B-scan data perpendicular to the oil pipeline.
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determine whether there are buried objects in the detected
underground space. Kang et al. (2020) constructed 3D radar data
of underground targets, and then put it in the deep convolutional
neural network for training. The accuracy of cavity and pipeline
classification was 92% and 98%, and the false alarm rate was 8% and
2%, respectively. Lei et al. (2020) combined the convolutional neural
network and the long-short-term memory artificial neural network
to extract the hyperbola in the B-scan image of the ground-
penetrating radar. However, the existing research mainly focuses
on the data processing of the whole B-scan image. Classification
output often stays in the recognition of thewhole image, and itsmain
research objectives are the existence of underground targets and the
recognition of target materials. Further exploration of the geometric
features, size, condition, and position of the target is still insufficient.
Therefore, a novel convolutional neural network based on the
attention mechanism is proposed for further feature recognition
of the underground oil pipelines.

Numerical Simulation Mechanism and
Realization of Underground Oil Pipeline
A GPR oil pipeline recognition system based on the attention
mechanism requires a lot of training and test data, which need to
be real data or close to them. The data obtained by

electromagnetic simulation can be generated in batches with
simple locations. Moreover, the target location is clear from
the data, and the actual situation can be accurately
represented. Therefore, a large amount of electromagnetic
simulation data is initially obtained in this study to provide
data support for neural network construction. Furthermore,
these simulation data help a lot for the acquisition, processing,
and network structure adjustment of measured data.

To achieve a reasonable numerical simulation of
underground pipeline objects in an interested
environment, a direct relationship between soil physical
properties and the overall dielectric response of soil
components (soil particles, water, and air) is established
using dielectric mixing models. According to a semi-
empirical model proposed by Peplinski et al. (1995), the
soil simulation model is constructed to simulate the
electromagnetic properties of real soil. In this model, the
soil is composed of clay, silt, and sand. The diameter of clay,
silt and sand is below 0.002, 0.002–0.02 mm, and 0.02–2 mm,
respectively. Different soil types can be constructed by
changing the proportions of different components. Soil
water content also has a certain influence on its
electromagnetic properties. Therefore, the complex
permittivity of soil ε(ω) can be expressed as Eq. 1:

FIGURE 2 | 3D and B-scan images of oil pipeline simulation model. (A) 3D image of normal operation; (B) 3D image of leakage; (C) B-scan image under normal
operation; (D) B-scan under leaking condition.
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ε(ω) � ε′(ω) − jε″(ω) (1)

ε′(ω) � 1.15[1 + ρb
ρs
(εαs ) +mβ′

v ε′
α
fw −mv]

1/α

− 0.68 (2)

ε″(ω) � [mβ″
v ε″

α
fw] (3)

In the aforementioned formula, ε′(ω) and ε″(ω) are the real and
imaginary parts of the complex dielectric constant ε(ω),
respectively. ρb and ρs are the total density of soil and the
density of sandy soil composition (unit: g/cm3), respectively. a
is an empirical constant with a value of 0.65. β′ and β″ are the
constants related to soil composition, and their expressions are:

β′ � 1.2748 − 0.519S − 0.152C (4)
β″ � 1.33797 − 0.603S − 0.166C (5)

where S and C are the proportions of sand and clay, respectively
(0 < S < 1, 0 < C < 1).

In Eqs 2, 3, ε′fw and ε″fw, respectively, represent the real and
imaginary parts of free water in the soil, and their expressions are:

ε′fw � εw∞ + εw0 − εw∞

1 + (2πfτw)2 (6)

ε″fw � 2πfτw(εw0 − εw∞)
1 + (2πfτw)2 + σeff

2πε0f
(ρs − ρb)
ρsmv

(7)

εw∞ is the limit of ε″fw at high frequencies. τw is the relaxation
time constant of free water. εw0 is the static relative permittivity of
water, and its value is 80.1. σeff is the effective conductivity,
which is given by the empirical Eq. 8:

σeff � 0.0467 + 0.2204ρb − 0.4111S + 0.6614C (8)
Through the aforementioned mechanism, the real soil

environment can be simulated and fitted. Figure 1 shows the
experimental configuration when using GPR to obtain B-scan
data of the oil pipeline. We set the length of the entire space as L,
ranging from 500 to 2500 cm, the height to 200 cm, the width to
100 cm, and the diameter of the single grid to 2 cm. Soil consists
of variable sand and clay with a density of 2.66 and 2 g/cm3,
respectively. Its water content varied from 0.1% to 1%. The
frequency of the antenna is selected from 100 to 600 Mhz. The
initial position of the antenna is 20 cm from the left edge of the
model, and the distance between transmit and receive antennas is
5 cm. The acquisition of the horizontal B-scan data along the oil
pipeline is shown in Figure 1A. The radius of the oil pipeline is set

FIGURE 3 | 3D and B-scan images of water pipeline simulation model. (A) 3D image of normal operation; (B) 3D image of leakage; (C) B-scan image under normal
operation; (D) B-scan under leaking condition.
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as R, ranging from 10 to 72 cm. The depth of the oil pipeline is H1
with the range of 0 to (200-2R) cm. When the oil pipeline leaks,
the depth of leakage area is depicted as H2, changing from 0 to
200 cm according to the position of the oil pipeline. Similarly, the
acquisition of longitudinal B-scan data perpendicular to the oil
pipeline is shown in Figure 1B. The radius of oil pipeline 1 is R1,
varying from 10 to 72 cm. The depth of 1 is H1 with the range of 0
to (200-2R) cm.When leakage occurs, the depth of leakage area is
H2, ranging from 0 to 200 cm according to the position of the oil
pipeline. The depth of oil pipeline 2 is H3 and the radius is R2,
which is consistent with those of oil pipeline 1.

The simulated B-scan data of the oil pipeline are obtained
using the experimental setup for the field measurement with
GPR. Figures 2A and B show the three-dimensional (3D)
simulation model of the oil pipeline under the condition of
normal operation and leakage, respectively. The pipeline is full
of oil with a buried depth of 0.65m, a horizontal coordinate of
2.75 m, and a radius of 0.3 m. The leak area is filled with oil,
directly below the oil pipeline. And its length, height, and width
are set to 50, 30, and 50 cm, respectively. The soil is composed of
50% sand and 50% clay.

Figures 2C and D show the corresponding simulation results
of the twomodels in Figures 2A andB. A great difference exists in

the B-scan image when leakage occurs or not. Concretely, the
hyperbolas of the pipeline without leakage are more clear and
non-intersecting, as shown in Figure 2C. Because the leakage area
overlaps with the pipeline, a portion of the hyperbola
representing leakage will intersect the original hyperbola of the
pipeline, as shown in Figure 2D. Therefore, the GPR can clearly
identify underground targets. However, due to the continuous
reflection of electromagnetic waves among the leakage area, the
pipeline area, and the stratum surface, the pipeline and leakage
can only be clearly characterized at the top of the B-scan image.
The hyperbolas superimpose on each other in Figure 2D and
become too disordered to extract their representations.

Because no appropriate leaking oil pipelines exist, water is
selected to replace oil to simulate leakage due to environmental
pollution and safety issues. Figures 3A and B show 3D
simulation model under the condition of normal operation
and water leakage, respectively. The water pipeline has a
buried depth of 0.4 m, a horizontal coordinate of 2.5 m, and a
radius of 0.1 m. The leakage is a mixture of water and soil, with an
area of about 0.06 m2. The leftmost and rightmost horizontal
coordinates of the leakage are 2.1 and 2.7 m, respectively. Both
models use the stratified soil with a surface part composed of a
mixture of sand and silt (70%) as well as clay (30%), and a bottom
half composed of a mixture of sand and silt along with clay each
accounting for 50%.

Figures 3C and D show the corresponding simulation results
of the two models in Figures 3A and B. Similar to the B-scan
images of oil pipelines, a great difference exists between water
pipelines with and without leakage. The multiple disjoint and
vertically distributed hyperbolas in Figure 3C are caused by the
back and forth bounces of electromagnetic waves between the
pipeline and the stratum surface. A horizontal line will also be
generated at the formation interface due to the reciprocating
reflections of electromagnetic waves between the formation
interface and the surface. While in Figure 3D, the hyperbolas
superimposed on each other and the characteristic echo at the
formation interface is also not obvious.

In the batch generation of simulation data, parameters of each
simulation model, such as soil composition, the shape, size, and
working state of the target, and the obtained simulation results
should be different. The simulation data generator replaces the
random key parameters that need to be adjusted with
placeholders and sets the predetermined range of the parameters.
The process for producing bulk simulation data are demonstrated in
Figure 4. Each time the program runs, the first step is to generate a
model configuration file. During this procedure, parameters
represented by placeholders will first generate and input data of a
limited range into the configuration file. After saving the file, the
program will realize the corresponding simulation operation.

Detection Model of Underground Oil
Pipeline Based on Attention Mechanism
The attention model is divided into soft attention and hard
attention. When choosing information, soft attention does not
extract just one information from multiple information, but
calculates the weighted average of this information and then

FIGURE 4 | Flow chart of the program generating bulk simulation data.
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inputs it into the neural network for calculation. Hard attention is
to select a certain piece of multiple information, which can be
selected according to the magnitude of the probability. Generally,
the soft attention model is used to deal with neural network
problems of its differentiable nature. There are three types of
attention domain models in soft attention, namely the spatial
domain model, the channel domain model, and the mixed
domain model of them (Convolutional Block Attention
Module, CBAM), which can extract attention in the channel
and spatial dimensions (Woo et al., 2018). Compared with the
attention mechanism that only focuses on one separate domain, it
can achieve better results.

When the input feature is F ∈ RL×W×C, and the three-
dimensional information of the input feature map is L, W,
and C. The final output feature map F″ is obtained after the
input feature map F passes through the spatial attention module
MS ∈ RL×W×1 and the channel attention module Mc ∈ R1×1×C.

F′ � Mc(F) ⊗ F (9)
F″ � Ms(F) ⊗ F′ (10)

Because the input features and refined features are of a
consistent size, the original parameters of the neural network
remain unchanged after extraction by the CBAM module. The
new features extracted by the convolutional neural network
contain multiple channels representing different kinds of
original ones, which have different effects on the final content
identified by a convolutional neural network. While channel
domain attention model is to generate the weight of each
channel according to its degree of importance, and finally
emphasizes attention to key channels as well as reduces
attention to non-key ones. The structure of the channel
domain attention model is shown in Figure 5A.

The channel attention module initially uses the average and
maximum pooling operations to aggregate the information of the
feature map on each channel, and generates two different channel
context descriptors Fc

mea and Fc
max, as shown in Eqs 11, 12:

Fc
mea �

1
L × W

∑L
i�1
∑W
j�1
xc(i, j) (11)

Fc
max � Max(xc(i, j)), i ∈ [1, L], j ∈ [1,W] (12)

FIGURE 5 | Structure diagram of attentional mechanism model. (A) Structure of channel domain attention model; (B) structure of spatial attention model.
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where Fc
max and Fc

mea are the maximum and average pooling
features on channel C, respectively. The length and width of the
feature map are L and W, respectively. xc represents channel C.

Then average and maximum pooling features are input into
the multilayer perceptron network, respectively. Combining the
output values of them, the weight parameters of combined output
feature can be obtained. The calculation formula is as follows:

Mc(F) � σ(mlp(Pmea (F)) +mlp(Pmax (F)))
� σ(w1(w0(Fc

mea)) + w1(w0(Fc
max))) (13)

where Pmax (F) and Pmea (F) represent maximum and average
pooling operations, respectively. w0 and w1 are the weight values
of multi-layer perceptron. σ represents the activation function.

There are various interferences when using GPR B-scan
imaging, and the image content is complicated. It is

FIGURE 6 | Block diagram of complete neural network. (A) Classification network model structure; (B) regression network model structure.

TABLE 1 | Parameters of underground target recognition classification network
structure.

Layer Type Parameter

1 Convolution layer 32 6 × 6 filters; ReLu activated
2 CBAM layer 32 input and output features
3 Convolution layer 64 4 × 4 filters; ReLu activated
4 CBAM layer 64 input and output features
5 Convolution layer 128 4 × 4 filters; ReLu activated
6 CBAM layer 128 input and output features
7 Convolution layer 256 4 × 4 filters; ReLu activated
8 CBAM layer 256 input and output features
9 Fully connected layer 128 neurons; ReLu activated
10 Dropout layer Dropout rate: 0.5
11 Fully connected layer 64 neurons; ReLu activated
12 Dropout layer Dropout rate: 0.5
13 Fully connected layer 6 neurons; softmax activated
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particularly important to focus on and classify the regions with
prominent features. Based on the features extracted by the
convolutional neural network, the spatial domain attention
model further explores the connections between features of
different regions. In this way, weights of different regions are
generated to highlight critical regions and weaken unimportant
ones. The spatial attention module, delineated in Figure 5B,
mainly focuses on the spatial relations among features and plays
as a supplement to channel attention.

After average and maximum pooling of input features, two
independent feature maps, Fs

mea ∈ RL×W×1 and Fs
max ∈ RL×W×1,

are generated.

Fs
mea �

1
N

∑N
c�1
sij(c) (14)

Fs
max � Max(sij(c)), c ∈ [1, N] (15)

where N represents the number of feature channels, sij(c) is the
element at coordinates (i, j) on the cth feature map. Fs

max and F
s
mea

are the maximum and average fusion feature on each channel,
respectively. After putting the two merged feature maps into the
convolutional layer, we can get the attention weight in spatial

dimension. Where σ is the activation function, f is the
convolution operation, and n×n is the size of convolution kernel.

Ms(F) � σ(fn×n([Pmea(F);Pmax(F)]))
� σ(fn×n([Fmea

s ;Fmax
s ])) (16)

In order to identify the location and working state of an
underground oil pipeline, the initial convolutional neural
network structure is composed of a convolution layer, pooling
layer, and full connection layer. The generalization ability of the
network is weak, and the calculated accuracy rates of the
horizontal pipeline leakage identification and longitudinal
target location are low. In order to solve the problem of weak
generalization ability and improve the accuracy rates, dropout
technology is introduced. Dropout technology can mitigate
overfitting and regularize. The core idea of dropout is to
discard some neurons with a certain probability during
network training. Then the over-fitting of the network is
reduced and the generalization ability of the model is
enhanced. In order to further improve the accuracy rates of
the horizontal pipeline leakage identification and longitudinal
target location, a convolutional attention module CBAM is
introduced. The convolutional pooling operation in a
convolutional neural network defaults to the same importance
of each channel in the feature map. However, the amount of
information carried by each channel is different, so it is
unreasonable to assign the same importance to each channel.

FIGURE 7 | Results of 3,000 training rounds. (A) Loss rate function
curve; (B) accuracy rate curve.

FIGURE 8 | Classification network identification results. (A) Pipeline
leakage model; (B) pipeline leakage B-scan diagram; (C) pipeline
discrimination probability; (D) leak discrimination probability.
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The convolutional attention module CBAM, based on the
mechanism of the human visual system, will place more
attention on important areas and reduce the weight of
unimportant factors. Therefore, different feature maps and
different regions of feature maps have different degrees of
attention. Finally, the accuracy rates of the horizontal pipeline
leakage identification and longitudinal target location are further
improved.

Finally, in order to better recognize the horizontal position,
state, depth, and cross-sectional area of the underground target,
two convolutional neural networks based on the attention
mechanism are proposed. They are the classification network
for target horizontal position and state recognition, and the
regression network for target depth and cross-sectional area
detection.

Classification Network
The initial classification network and its relevant parameters are
shown in Figure 6A and Table 1, respectively. However, the
CBAM layer and dropout operation are not used. The network
contains 4 convolutional layers, and the size of the convolution
kernel in the first layer is set to 6 × 6 to modularize corresponding
data features with high efficiency. The size of the following
convolution kernel decreases with the progressively smaller
feature map, which can increase the fitting expression ability
of the network. Through these four convolution layers, the
network can reduce the parameters and the amount of

calculation while retaining the characteristics, and greatly
improving the calculation efficiency. After each convolutional
network layer, an attention module CBAM layer is added, which
does not change the size and quantity of data but increases the
weight of the key areas of the image. Add a pooling layer after the
CBAM layer is to reduce data size and increase channel number.
Then, two full connection layers and one output layer are
designed. These three layers help classify the data extracted by
the convolutional neural network. The last output layer is
proposed to determine whether the output result is no target,
pipeline, or pipeline leakage in the case of pipeline leakage
detection. The activation function of this layer is softmax,
which is suitable for data classification and can enable the
network to represent the probability of each attributed type
through machine learning. The maximum probability is set as
the output target classification to further accomplish the
classification and discrimination of the B-scan images.

Regression Network
The initial classification network its relevant parameters are
shown in Figure 6B, but the CBAM layer and dropout
operation are not used. For the prediction of target depth, the
output function needs to be adjusted to give the discrete output
value. Transformation is made on the basis of a classification
network to construct the regression network. The target cross-

FIGURE 9 | Results of pipeline depth. (A) and leakage area; (B)
identification

FIGURE 10 | Measurements in different directions. (A) Horizontal
detection line; (B) longitudinal detection line.
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sectional area and depth prediction can be carried out by
changing the output layer function from softmax to liner, the
output results of which are continuous real numbers. The front
part of the regression network structure is the same as that of the
classification network, and relevant parameters are adjusted
during training to improve the recognition accuracy.

Simulation Results and Analysis
The convolutional neural network based on the attention
mechanism is used to train the simulation data at first. GPU
parallel acceleration and a GeForce GTX 1080 Ti graphics card
are employed during training. When training the network, Adam
is selected by the optimizer, where the learning rate is 0.0001, the
loss function is “categorical_crossentropy,” and the accuracy rate
is “keras.metrics_accuracy.” The batch size is set as 90, and each
training round consequently takes 32 s. As demonstrated in
Figure 7A, the loss rate function declines rapidly at the initial
stage, from 0.65 to 0.1 after 1,000 rounds of learning. After that, it
gradually slows down and approaches 0 in oscillation. In
Figure 7B, the accuracy rate increased rapidly from 0.7 to
0.95 at first, and then it is infinitely close to 1. This is similar

to the normal learning process, indicating that our network keeps
improving in learning so that the recognition result keeps
approaching the given label. The gradually improving
recognition ability of the designed network makes it more
suitable for the identification of test data.

An identification result of pipeline leakage together with
the corresponding model and the B-scan image are displayed
in Figure 8. Obviously, the network proposed in this study
can accurately distinguish pipelines, leakage areas and
untargeted areas. Compared with given data labels, the
accuracy of simulated training results reaches about 93%,
implying that this classification network is well competent for
underground oil pipeline classification and recognition.
Furthermore, comparing the recognition results of the
simulation data with their input labels, the calculated
accuracy of the horizontal pipeline leakage identification,
and longitudinal target location are 94.5% and 84.6%,
respectively. Using the initial convolutional neural network
without the attention module for training, the calculated
accuracy rates of the horizontal pipeline leakage
identification and longitudinal target location is 88.3% and

FIGURE 11 | Cross-sectional models of actual oil pipeline detection (A) and simulated oil pipeline leakage area (B).
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76.8%, respectively. The optimized network improves the
accuracy rates of the horizontal pipeline leakage
identification and longitudinal target location by 6.2% and
7.8%, respectively. It can be seen that the optimized networks
with attention modules can greatly improve the recognition
results.

As for the judgments of depth and leakage area, the designed
network can get results with an average accuracy rate of 95.1%
(Figure 9A) and 96.4% (Figure 9B), respectively.

Measured Results and Analysis
In order to verify the applicability of the underground target
recognition method based on the attention mechanism to real
data, we went to the Tahe Oilfield in Xinjiang to provide measured
data support for a neural network. According to the prior
knowledge obtained from simulation, the measured parameters
of GPR are set as follows. The antenna is 250 Mhz, the time
window is 100 ns, the sampling interval is 0.4 ns, and the antenna
step is 0.05 m. With the aforementioned parameter settings, the
effective detection depth is 3 m and the resolution is 0.2 m.

As shown in Figure 10, the experiment was mainly conducted
in a desert environment with undulating topography. The soil
within the detection depths is composed of gray-white fine sand
and silt sand layers with a yellow-gray clay layer. The oil pipeline
is buried in the soil to a depth of about 1–2 m. Considering the
conditions of the test environment and oil pipeline laying, both
longitudinal and horizontal detection lines were adopted. A
horizontal line was set to collect relatively comprehensive
information along the oil pipeline laying direction. The
longitudinal line is perpendicular to the oil pipeline laying
direction, which can supplement the detection of abnormal
sites and extract the reflection characteristics of an oil pipeline.

The actual detection area is roughly modeled in Figure 11A.
As for the lack of leaking oil pipeline, simulated leakage points
were set up along the oil pipeline line. As the cross-section of the
simulating leakage model shown in Figure 11B, two 50 × 50 ×
60 cm sandpits were excavated directly above the simulated
leakage points and filled with water. These sandpits were
backfilled and tamped after the natural infiltration of water.
GPR was used for longitudinal and horizontal detections
before and after simulating leakage. The different
characteristics of reflected waves received by radar before and
after the change of physical properties of the surrounding
medium are analyzed from the obtained data.

The experiment data are grouped according to the
horizontal and longitudinal lines and input into the neural
network for learning after being associated with their
respective label data. This indicates that the network is
running properly. Take the loss value function curve and
accuracy curve of data from the horizontal line as examples.
When training the network, Adam is selected by the optimizer,
where the learning rate is 0.0001, the loss function is
“categorical_crossentropy,” and the accuracy rate is
“keras.metrics_accuracy.” After 500 rounds of training,
namely 500 epochs, the loss value gradually decreases, while
the accuracy rate gradually increases and approaches 1, as
shown in Figure 12. The loss value and accuracy of the
longitudinal line are similar to those of the horizontal line,
indicating that the network is running properly.

The measured data may output three cases, including oil
pipeline, leakage and no target. Results are given in terms of
the probability of each type being present at a certain location. In
the aforementioned three cases, the case with the highest
probability is output as the final recognition result. The
discrimination time of artificial intelligence method for single
GPR data is about 20 s, which is greatly improved compared with
manual interpretation method. Notably, for the case that leakage
and oil pipeline exist simultaneously, the output discrimination
result of proposed network will be leakage, because the simulated
leakage area is located above the oil pipeline.

Selecting a set of oil pipeline leakage identification results from
horizontal detection data for further discussion. The cross-
section of the experimental area is modeled in Figure 13A,
and the identification result, as well as the B-scan image, are
shown in Figure 13B. There are multiple echoes in the B-scan
image (Figure 13B), which strongly interfere with the results of
manual discrimination. Instead, thetraining results of the novel

FIGURE 12 | Results after 500 times of training with horizontal test data.
(A) Loss rate function curve; (B) accuracy rate curve.
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network in this study can be perfectly matched with the labeled
experimental data. During the detection, marks were made at F1
and F2 to indicate the occurrence of leakage with the abscissa
ranging from about 4.67 to 5.94 m. As marked with a red frame in
Figure 13B, the proposed network gives the classification with
the highest probability from 4.74 to 6.14 m, corresponding well to

the marked area. This implies that our network can avoid
distractions and output the results only representing targets of
interest.

Similarly, a set of longitudinal oil pipeline leakage identification
results is also chosen for analysis. The cross-section of the simulated
experimental model and the result of the B-scan image after network

FIGURE 13 | (A) Cross-section of simulated model for horizontal oil pipeline leakage detection. (B) Corresponding leakage identification results.

FIGURE 14 | (A)Cross-section of simulatedmodel for longitudinal oil pipeline leakage detection. (B) Identification results of simulated leakage and oil pipeline under
normal working condition.
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identification are successively shown in Figure 14. The simulated
leakage is marked from 5.4 to 6.2 m along X-coordinate, and an oil
pipeline is marked at 14.8 m. After network training, the identified
leakage section, represented by the red frame in Figure 14B, locates
at 4.7 and 6.5 m on the horizontal axis, and the identified oil pipeline
part, represented by the blue frame in Figure 14B , is 14.4–15m. The
output results are in good agreement with the given labels. In
addition, there are some interferences at about 2 and 9.4 m in
the B-scan image. However, our network does not take these
interferences as target signals and the identification results
exclude them from the targets of concern.

Comparing the identification results of the test data after network
training with their input labels, the calculated accuracy rates of the
horizontal oil pipeline leakage data and longitudinal target data are
92.3% and 84.4%, respectively. Using the initial convolutional neural
network without the attention module for training, the calculated
accuracy rates of the horizontal pipeline leakage identification and
longitudinal target location are 86.9% and 77.5%, respectively. The
optimized network improves the accuracy rates of the horizontal
pipeline leakage identification and longitudinal target location by
5.4% and 6.9%, respectively. The optimized networks with the
attention module help improve the recognition results. To sum
up, the constructed network in this article can be well applied to the
measured GPR data.

CONCLUSION

Through the optimized convolutional neural network based
on the attention mechanism, the key information of the target
of the underground oil pipeline can be identified. The
simulation results show that after using the optimized new
convolutional neural network, the accuracy rates of the
leakage discrimination from horizontal data acquired along
the oil pipeline and the classification of the target from
longitudinal data acquired perpendicular to the oil pipeline
are 94.5% and 84.6%, respectively. Compared with the
original convolutional neural network without an attention
mechanism, the corresponding accuracy rates are improved
by 6.2% and 7.8%, respectively. Furthermore, the field

measured results show that after using the optimized
network, the accuracy rates of the leakage discrimination
and the classification of the target are 92.3% and 84.4%,
respectively. Compared with that of the conventional
network, the accuracy rates of the leakage discrimination
and the targets classification are improved by 5.4% and 6.9%,
respectively. The research results show that the proposed
network models are competent for the underground oil
pipeline targets recognition with the simulated and
measured data with high accuracy.
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