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Despite numerous applications of physically-based models for incised

landscapes, their applicability for overland flow on unchanneled surfaces is

not known. This work challenges a widely used landscape evolution model for

the case of non-uniform rainfall and absence of rills using laboratory flume

experiment. Rainfall with an average intensity of 85 mm h−1 was applied for 16 h

during which high resolution laser scans of the morphology were captured. The

overland flow was modeled as a network that preserves the water flux for each

cell in the discretized domain. This network represented the gravity-driven

surface flow and determined the evolution direction. The model was calibrated

using the first 8 h of the experiment and was then used to predict the second

8 h. The calibrated model predicted, as expected, a smoother surface

morphology (and less detailed overland flow network) than that measured.

This difference resulted from quenched randomness (e.g., small pebbles) within

the experimental soil that emerged during erosion and that were captured by

the laser scans. To investigate the quality of the prediction, a low-pass filter was

applied to remove the small-scale variability of the surface morphology. This

step confirmed that the model simulations captured the main characteristics of

the measured morphology. The experimental results were found to satisfy a

scaling relation for the exceedance probability of discharge even in absence of

rills. However, themodel did not reproduce the experimental scaling relation as

the detailed surface micro-roughness was not accounted for by the model. A

lower cutoff on the scale of applicability of the general landscape evolution

equation is thus suggested, complementing other work on the upper cutoff

underpinned by runoff-producing areas.
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Introduction

The complexity of natural landscapes reflects the numerous

factors involved in their formation such as climate (Francipane

et al., 2015; Han et al., 2015; Hooshyar et al., 2019; van der Meij

et al., 2020), chemical and physical properties of the sediments

(Massong and Montgomery, 2000; Sklar and Dietrich, 2001;

Park and Latrubesse, 2015), episodic gully erosion (Pazzaglia

et al., 2015), different vegetation types (Istanbulluoglu and

Bras, 2005; Jeffery et al., 2014; Corenblit et al., 2015), tectonic

effects (Pedrazzini et al., 2016) and the rate of sediment

production (Reusser et al., 2015; Rodriguez-Lloveras et al.,

2015; Forte et al., 2016). Landscape formation and evolution

are not directly measurable in the field due to the time scales

involved. Consequently, suitably designed laboratory

experiments are of considerable value in that they provide

empirical data that are amenable to testing hypotheses of

mechanisms underlying observed geomorphological changes

(Paola et al., 2009).

Physically-based landscape evolution models (LEMs)

(Willgoose, 1989; Willgoose et al., 1991, 1992; Howard, 1994;

Whipple and Tucker, 1999, 2002) are useful tools to explain the

surface geometry in landscapes and laboratory experiments

(Mudd, 2016; Whipple et al., 2016, 2017; Sinclair, 2017). In

LEMs, the complex fluid-particle interactions within landscapes

are described by a governing equation for the surface elevation,

with an additional model for surface flow (Chen et al., 2014). For

catchments, the focus of surface flow is the stream/river drainage

network, rather than the overland flow. Typically, flow is

modeled in a simplified manner that conserves the volume

flux at each cell in the landscape (O’Callaghan and Mark,

1984; Freeman, 1991; Quinn et al., 1991; Costa-Cabral and

Burges, 1994; Tarboton, 1997). Broadly speaking, the relative

importance of the advective and diffusive processes described by

the LEM controls the landscape geometry produced. That is,

considering an initially non-incised morphology, localized

(channel-forming) landscape incision is favored when

advection (or surface shear stress) dominates, whereas more

gradually varying landscapes will result when (effective)

diffusion dominates.

There are numerous applications of LEMs to understand

different features of the surface morphology of natural

landscapes (Yang et al., 2015; Mudd, 2016; Whipple et al.,

2016, 2017; Sinclair, 2017; Bonetti et al., 2020; Hooshyar and

Porporato, 2021; Hu et al., 2021; Kwang et al., 2021; Shelef and

Goren, 2021; Litwin et al., 2022). For example, Perron et al.

(2008) derived an expression for the distance between first-

order valleys and validated the formula via measurements from

five different natural landscapes (Perron et al., 2009). Willett

et al. (2014) showed that in disequilibrium conditions, the

drainage divides between basins and migrates towards a

steady-state condition and thereby reorganize their structure.

The criteria defining the reorganization direction were found by

using the steady-state solution of an LEM (Perron and Royden,

2013). It is noteworthy that the LEM equation in its original

formulation (where the local landscape-forming fluxes are

surrogated by total contributing area thus postulating

uniform precipitation) corresponds to the leading term of

the small-gradient approximation of the general mass-

balance equation under general reprametrization invariance

(Banavar et al., 2001). This has consequences, because at

steady state optimal channel networks (OCNs) are exact

constructions and each local, dynamically accessible

minimum proves to be a tree (Rodriguez-Iturbe and Rinaldo,

2001; Rinaldo et al., 2014).

Similar to their application to natural landscapes, LEMs were

also used in the analyses of laboratory experiments. Such

experiments permit exploration of different initial conditions,

e.g., a land surface composed of uniform and non-cohesive

sediment grains, with surface morphology changes induced by

rainfall. Advection-dominated setups focus on the evolution of

the network structure (i.e., surface incisions) (Hancock and

Willgoose, 2002; Bonnet and Crave, 2003; Hasbargen and

Paola, 2003; Lague et al., 2003; Bonnet and Crave, 2006;

Bonnet, 2009; Paola et al., 2009; Graveleau et al., 2012; Rohais

et al., 2012; Reinhardt and Ellis, 2015; Singh et al., 2015; Cheraghi

et al., 2018). Small raindrop sizes minimize the kinetic energy of

raindrop impact, leading to surface morphologies that evolve

almost exclusively through shear stress of surface flows. For

instance, Hasbargen and Paola (2000) set up an experiment in

an elliptical plot (98 cm × 87 cm) subjected to a constant uplift

rate. They pointed out that the oscillation of the erosion rate at

steady-state was the result of knickpoint migration in the

domain. The spatial patterns of landslides and knickpoints in

a steady-state landscape were measured by Bigi et al. (2006), who

found a power-law relation between the number of landslides

and drainage area. The power-law relation was consistent with

the gamma-distribution probability density function of

landslides in the field (Malamud et al., 2004). Sweeney et al.

(2015) analyzed landscapes subjected to rainfall events with

different droplet sizes considering the same initial condition.

For the different landscape patterns so-created, they showed that

the drainage density decreases with increasing droplet size

(i.e., relative increase in diffusion).

There are numerous similar studies that examined rill

formation on hillslopes (Parker, 1977; Bryan and Poesen,

1989; Gomez and Mullen, 1992; Brunton and Bryan, 2000;

Römkens et al., 2002; Pelletier, 2003; Raff et al., 2004; Rieke-

Zapp and Nearing, 2005; Tatard et al., 2008; Yao et al., 2008;

Oliveto et al., 2010; Gordon et al., 2011, 2012; Stefanon et al.,

2012; Shit et al., 2013; He et al., 2014; Bennett et al., 2015; Bennett

and Liu, 2016; Wu and Chen, 2020; Ren et al., 2021). In these

experiments, droplet sizes are large enough to induce splash-

impact erosion, which is manifested in changes in surface

morphology. For instance, Gómez et al. (2003) and Berger

et al. (2010) tested the minimal energy expenditure theory
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(Rinaldo et al., 1992) for rill networks considering different

slopes, rainfall intensities and initial conditions. They found

that, when the land was effectively incised, the total energy

dissipation decreased as the rills evolved. McGuire et al.

(2013) calibrated experimental data with the shallow water

flow equations coupled with a process-based erosion model

(Hairsine and Rose, 1991, 1992a,b; Simpson and Schlunegger,

2003; Simpson and Castelltort, 2006). They found that the

entrainment term differences between the models have a

greater effect on morphology predictions of the models than

the diffusive term.

In this work, we report a laboratory experiment with two

significant differences to those described above. First, by design

rainfall was highly non-uniform in space; and second, the surface

morphology did not become incised at all in the experiment

(i.e., rills did not form), but still exhibiting self-organized

aggregation. Cheraghi et al. (2018) showed that the

morphology measured in the laboratory flume exhibits the

same scale-invariant power laws during its evolution as found

for catchments. In other words, the statistical features of

catchment channel networks were found in the unchanneled

area when the morphology was captured and analyzed at high

resolution. That finding motivated this investigation based on a

widely-used catchment-scale LEM (Howard, 1994; Perron et al.,

2008) as a tool to predict the evolution of its unchanneled

morphology, i.e., for the situation where diffusive processes

dominate such that channels do not form. Previous

applications of this LEM considered an incised landscape in

which discharge occurs either as overland flow (to channels/

rivers), or as flow within the channels. In our experiment, only

overland flow occurs, and the surface is never incised.

Nevertheless, we model the overland flow as a discharge

network, as done in other applications of the LEM.

Additionally, we test the ability of the model to simulate

directly the measured surface morphology, a test that is not

possible at the landscape scale, and was hitherto not attempted at

the laboratory experiment scale.

Materials and methods

Experiment

The same experimental data set was used previously

(Cheraghi et al., 2018), and only essential details are presented

here. We applied a nonuniform rainfall with an average intensity

of 85 mm h−1 on a 2-m × 1-m erosion flume with 5% slope

(Figure 1). There was no infiltration at the flume’s bottom. Sandy

sediment was added to the flume to a depth of 15 cm (Table 1).

Digital Elevation Models (DEMs) at 0.25, 0.5, 1, 2, 4, 8 and 16 h

were captured by a 3D laser scanner with about 4-mm resolution.

The rainfall stopped while the morphology was measured and

then restarted.

Landscape evolution model

We critically assess the applicability of Fokker–Planck form

of landscape evolution model at a scale which is less than a

computational cell of catchments. Due to large spatial scales,

the model is derived based on simplification of turbulent flows

and erosion mechanisms. In this work, the idea is to consider

the large-scale model at the plot scale and assess how well the

simple LEM can represent the complex fluid-particle

interactions during heterogeneous rainfall and in absence of

incision. The LEM used here is a modification of Howard’s

model (Howard, 1994) and is derived similarly to the approach

of Perron et al. (2008) with two differences: 1) it is based on the

critical stream power rather than critical shear stress, and 2)

instead of the drainage area at large scales, the discharge (Q) is

used in the nonlinear part of the advection term. In absence of

tectonic effects the model is:

zz

zt
� D∇2z − Kf QmS − Ωcr( ) (1)

where Cartesian coordinates are used. In this equation, z(x, y, t),

t, S, are elevation from the horizontal, time and slope,

respectively, and f(ζ) = ζ H(ζ) where H(ζ) is the Heaviside

FIGURE 1
Schematic of the flume experiment. The sediment elevation
was measured from the outlet (z = 0) and with respect to the
horizon. The relief height (the maximum elevation) was 0.19 m.
Details on the experimental setup are given in the
Supplementary materials of Cheraghi et al. (2018).

TABLE 1 Characteristics of the sand used in the experiment.

Bulk density Particle size
(d) range

d50 d < 0.6mm d > 2mm

1,584 (m3 kg−1) 0–6 mm 0.53 mm 70 (% mass) 12 (% mass)
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step function. The parameterΩcr is proportional to the critical stream

power by which fluvial sediment transport is initiated. The two

parameters D and K are functions of rainfall intensity, droplet size,

sediment properties (e.g., density, particle size, cohesion) and surface

roughness (Furbish et al., 2007; Dunne et al., 2010; Mahmoodabadi

and Sajjadi, 2016; Sadeghi et al., 2017). The exponentm takes values

in the range 0.41–0.857 (Willgoose, 1989; Rodriguez-Iturbe and

Rinaldo, 2001).We tookm= 1/2 as this value was also used in studies

on optimal channel networks based on the theory of minimum

energy expenditure for river network evolution (Rinaldo et al., 1992,

1993). At catchment scales, the first term on the right side of Eq. 1 is

dominant for hillslopes and includes different processes such as

weathering (Perron, 2017), soil creep and rain splash (Culling, 1960,

1963, 1965). The second term on the right is usually assumed to

model sediment transport within the river network (since elsewhere

this term vanishes). However, in our flume-scale experiment, there

were no surface incisions, and the overland flow is at all times

continuous across the entire flume. Thus, the overland flow in the

experiment is modeled as a network, although there is no river

network as found in previous applications of the LEM (Tucker and

Hancock, 2010; Benaïchouche et al., 2016; Whipple et al., 2016;

Hancock et al., 2017; Perron, 2017).

Numerical simulation and calibration

During the initial stage of the experiment, the surface

morphology at the flume exit changed rapidly due to the

location of the flume drain. Such behavior is not captured by

the model. Therefore, the scanned morphology at t = 15 min was

used as the initial condition for the numerical simulations. In

applying the LEM, at each time step, the pit points were removed

using the algorithm of Planchon and Darboux (2002). After

determining the flow direction via the d8 algorithm (O’Callaghan

and Mark, 1984), the discharge at the ith cell, Qi, was calculated

using:

Qi � ∑8
j�1

wji Qj + Ri ΔxΔy (2)

FIGURE 2
Rainfall distribution on theflume. The average precipitation and
the uniformity coefficient were 85 mm h−1 and 26%, respectively.

FIGURE 3
The wall boundary condition assuming �n as the outward unit vector normal to the wall. The term zze

zn |tw was calculated by linear interpolation
between the two consecutive scans before and after the time t.
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where the summation over j refers to the eight cells surrounding

the ith cell. The value of the element of the connectivity matrix,

wji (−) is unit if the cell j flows into cell i, and zero otherwise. Ri

(mmh−1) is rainfall intensity on the cell i (Figure 2) and Δx
(mm) and Δy (mm) are the grid sizes in x and y directions,

respectively. Numerical results presented here used cell sizes of

8 mm × 8 mm.

The numerical solution was obtained by two fractional

time steps (Press et al., 2007). The first step used the second-

order Runge-Kutta scheme to solve the advection term (Eq. 1),

while the second used the Alternating-Direction Implicit

(ADI) method for the diffusion part. This approach was

used previously by Perron et al. (2008), who explain it in

detail. At the side wall, a conditional boundary condition was

used as shown in Figure 3. At each time step, after the matrix

operations (Runge-Kutta + ADI), the gradient normal to the

boundary (zzzn|tw, where w refers to the wall) was calculated

using the experimental data (zzezn |tw), which were linearly

interpolated between scans. Afterwards, the sediment

elevations adjacent to the walls (ztw) were calculated based

on the gradients. In the decision block, the value of (ztw) was
checked; the condition was that the elevation had to decrease

at each time step (ztw < zt−Δtw ). If the condition was not met, the

slope remained unchanged (equal to the last time step (t − Δt))
and, based on that, the new elevation at the boundary was

calculated.

An evolutionary algorithm, Borg MOEA (Hadka and Reed,

2013), was used to find the optimal parameters. The initial

condition of the numerical modeling was the experimental data

at t = 0.25 h (results in Figure 4). The model was calibrated

using the root-mean-square error of the morphology (z) at

t = 8:

f �
�����������������∑N

i�1 zi,model − zi, exp( )2
N

√
|t�8h (3)

where zi,model and zi, exp are the modeled and measured elevations

for cell i.

Results and discussion

Here, we critically examine the LEM’s ability to reproduce

the experimental observations of Cheraghi et al. (2018).

Morphological evolution and the
corresponding discharge network

The calibrated parameters are presented in Table 2. The

average diffusion coefficient (D) is also higher than those

reported for the field scale (0.16–222.4 mm2 h−1) (Martin,

FIGURE 4
Numerical simulation of the LEM and the experimental data. In both experiment and simulation, the morphology evolves toward the high
precipitation area.

TABLE 2 Calibrated parameters (±95% confidence interval) for
the LEM.

D (mm2 h−1) K (mm−1
2 h−1

2) Ωcr (mm
3
2 h−1

2)

17,571 ± 50 0.184,997 ± 0.0024 13.0765 ± 0.60
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2000; Benaïchouche et al., 2016). This is consistent with the

lack of rilling in our experiments, as rill formation is favored

for lower diffusivities (Sweeney et al., 2015). In contrast to

the present experimental setup, previous laboratory

experiments analyzed with the LEM used fine particles,

low rainfall intensities and small droplets, i.e., they were

designed to produce rills (Hancock and Willgoose, 2002;

Bonnet and Crave, 2003; Hasbargen and Paola, 2003; Lague

et al., 2003; Bonnet and Crave, 2006; Bonnet, 2009; Paola

et al., 2009; Graveleau et al., 2012; Rohais et al., 2012;

Reinhardt and Ellis, 2015; Singh et al., 2015; Sweeney

et al., 2015).

The numerical results are compared with the experimental

data in Figure 4. The model is able to capture the main

characteristics of the morphology, i.e., the downstream area

(z < 60 mm) has a symmetric shape while the upstream (z ≥
60 mm) area is being eroded. In agreement with the

experiment, the model shows a noticeable erosion and

growth of downstream region (z < 60 mm) at t = 4 and 8 h.

Recall that the model was calibrated using measurements at

8 h, and then used to predict the morphology at t = 16 h, where

the agreement is satisfactory. The evolution of the surface

elevation change in both experiment and model is more

evident in the high precipitation area (right hand side of

the flume).

Despite simulating the main characteristics of the

morphology evolution, some differences are seen between

the model and the experiment. These differences are likely

due to the local scale fluid-particle and particle-particle

interactions that are not accounted for in the model. One

of these processes is the armoring effect (Polyakov and

Nearing, 2003; Wang et al., 2014; Cheraghi et al., 2016;

Lisle et al., 2017). Due to shorter erosion time scales, the

fine sediment particles are rapidly removed while the larger

particles are deposited on the surface or are not moved at all,

resulting in a surface covered by pebbles (Figure 5).

Nonetheless, the calibrated LEM can reproduce the main

features of the morphology.

In the LEM (Eq. 1), the advective term is involved in the

computation when the value of Q1/2S exceeds the critical value

of Ωcr. At the catchment scale, the advection-dominated area

are observed as rivers networks (Howard, 1994; Perron et al.,

2008). However, in this experiment, there is no visual

geomorphological criterion to identify the advective regions

as there is no incision.

Spectral analysis

The differences in the modeled and measured morphologies

were quantified by taking 2D Fourier transforms of each. We

present the resulting power spectral densities (PSD) for the

FIGURE 5
Flume surface at t = 0 (A) and t = 16 h (B). This figure is from Cheraghi et al. (2018).

FIGURE 6
Power spectral density of themorphology at t=8 h. The error
bars of the experimental data are based on the standard deviation
from the azimuthally averaged PSD in the wave number domain.
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morphologies at t = 8 h (plots for other times are similar) in

Figure 6, where we show results as a function of the horizontal

wave number (azimuthally averaged). The results show that

measured and modeled PSD agree up to a wave number of

5–9 m−1. To check the effect of the differences in the spectra,

we applied a low-pass filter (Blackman window, Blackman

and Tukey (1958)) to both measurements and modeled

morphologies, with a cutoff wave number of about 7 m−1. In

Figure 7, the original morphologies of the model and

experiment are compared with the filtered ones. Filtering

removes the small scale roughness (the large deposited stones

shown in Figure 5B) of the experiment while the model results are

much less sensitive to the low-pass filtering. In Figure 8, the

discharge was calculated via Eq. 2 using the original and

filtered morphologies. For the experiment, the complex flow

patterns of the measured surfaces (due to microtopography,

small scale roughness and armoring) are removed by filtering.

On the other hand, there is little change to the discharge network

of themodel. In short, after filtering, the flow networks for both the

experimental measurements and model results are in good

agreement. Note that the cutoff wave number and the

difference between drainage network before and after

filtering are a function of many factors such as sediment

particle distribution, microtopography, grain size, cohesion

(which does not exist in this experiment) and

precipitation rate.

The discharge network of the filtered experimental results

are compared with the model network in Figure 9. In both

experiment and model, the network has a dendritic form at

t = 0.5 h. Afterwards, the network becomes more

concentrated and the flow from the upstream is directed to

two main streams. The two streams migrate from the left to

the right of the flume as the precipitation proceeds. This

migration is responsible for the dynamic change in the

erosion pattern of the upstream (Figure 4). The model is

able to reproduce the migration of the concentrated flow to

the right hand side, which induces the downstream

morphological evolution.

FIGURE 7
The original morphology of and the low-pass filtered morphology at t = 8 h.
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An important factor to be investigated in future research

would be the scanning resolution. At the catchment-scale, the

effect of resolution on the hydrological features such as landslide

susceptibility mapping (Meena and Gudiyangada Nachappa,

2019), stream network position (McMaster, 2002), and flood

modeling (Muthusamy et al., 2021) is studied. Muthusamy et al.

(2021) concluded that the resolution has to be finer than the

considered river width for modeling. In the absence of rills, it is

highly possible to have similar limitation for the LEM simulation

based on the grain sizes and the inter-particle distance after

armoring.

Drainage area network statistical analysis

Here we examine the ability of the model to reproduce

experimental scaling laws derived from the drainage area

network. The drainage area at the ith cell, Ai, was calculated using:

Ai � ∑8
j�1

wji Aj + ΔxΔy (4)

where the summation over j and wji has the same definition as

in Eq. 2.

In the analysis of Cheraghi et al. (2018), the experimental
data followed a time-invariant power-law relation (Hack’s law,
A = lh) between upstream length (l) and drainage area (A) with
the scaling exponent h in the range [0.54–0.6] during the
network evolution. Furthermore, even though no rills were
observed, the exceedance probability of drainage area (P(A >
a) = a−β) and the exceedance probability of length (P(L > l) =

l−ψ) had time-invariant exponent values of β = 0.47 and ψ = 0.75.

These findings show that, at the flume-scale and in absence of

incision, the surface morphology is statistically similar to

catchments (Rinaldo et al., 1992; Rodriguez-Iturbe and

Rinaldo, 2001) in that the same scalings are observed in

each case.

FIGURE 8
The original discharge network and the network extracted from the low-pass filtered morphology at t = 8 h.
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FIGURE 9
Discharge distribution at different times (logarithmic scale). The experimental network was calculated based on the filtered morphology.

FIGURE 10
Relation between the upstream length and drainage area (Hack’s law) for the model and experiment. The model results differ from the
(unfiltered) experimental data, but agrees with the experimental data subjected to the low-pass filter.
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The relation between the upstream length (l) and drainage area

(A) and the exceedance probabilities for the LEM, original

experiment and its low-pass filtered morphology are presented

in Figure 10, Figure 11, Figure 12. The results show that the LEM

deviates from the original experimental data for the metrics shown

in each plot. However, the results each plot show that the model

agrees with the low-pass filtered experimental data. These

comparisons further confirm the ability of the model to capture

the low-pass filtered experimental morphology, but not the micro

roughness. On the other hand, the results for the unfiltered

experimental data produce scaling laws that agree with previous

results for catchments (Rinaldo et al., 1992; Rodriguez-Iturbe and

Rinaldo, 2001). Higher order streams of the network (higher

drainage area, A > 2 × 104 mm2) are not affected by the low-

pass filtering. As a result, both model and filtered experimental

results are in agreement with the original experiment in this range.

Conclusion

This study introduced the large scale landscape evolution

model (LEM), coupled with the d8 algorithm for shallow

overland flow, as a robust simulation tool for describing land

surface morphology changes in the absence of rills. By calibrating

only three model parameters, the LEM was able to capture

morphological changes that evolved under a heterogeneous

rainfall. This is a manifestation of a simple and efficient

model as highlighted by Paola and Leeder (2011). The erosive

processes captured by the LEM are broadly characterized as

raindrop impact-induced diffusion and surface flow-induced

shear stress. Unlike previous investigations, here the surface is

continuously covered by overland flow, which is modeled as a

flow network.

As described by the LEM, shear stress-driven erosion does not

occur until a soil-specific flow rate is exceeded. The LEM-based

analysis revealed that even for the considered situation where the

morphological evolution is dominated by diffusive processes (and so

the surface is not incised), the advective term in the LEM is still

necessary to predict the surface evolution. Similarly to natural river

networks at catchment scale and incised surfaces in previously

reported laboratory experiments, a power-law relation was

observed in the discharge exceedance probability for the

experimental data. The intricate surface flow details captured by

the detailed surface scans of the experimental flume were, however,

FIGURE 11
Exceedance probability of drainage area for themodel, original experiment and its low-pass filteredmorphology. Themodel results and filtered
experimental results agree at all times.
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not present in themodeled surface. Low-passfiltering of themeasured

andmodeled surfacesmarkedly improved the agreement between the

calculated flow networks. However, in that case, the discharge

exceedance scaling relationships were not maintained. In general,

the LEM could reproduce the low-pass filtered experimental results,

i.e., small scale variability due surface roughness that increased over

the course of the experiment is not present in the LEM, and had to be

removed to obtain reasonable agreement between the experimental

measurements and the model results.
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