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In a recent paper [“Groundwater anomaly related to CCS-CO, injection and the 2018
Hokkaido Eastern Iburi earthquake in Japan” by Sano et al. (Front. Earth Sci., 2020, 8)], the
authors claimed that CO,-enriched fluid may have initially migrated through permeable
channels, blocking the fluid flow from the source region, increasing pore pressure in the
focal region and triggering a natural earthquake where the brittle crust was already critically
stressed. The proposed model is very interesting, but the authors have not shown any
quantitative evaluation supporting their conclusion. Here, through geomechanics model
analysis, even under extreme conditions, which overestimate the impact of the injection,
the impact of the CO, injection on the Iburi earthquake fault, whether the deep section or
shallow part of the fault, is much lower than that caused by Earth tides. In addition, no
convincing mechanism exists that would allow fluid channels to heal within a short period of
time and block the natural fluid flow along the fault. Therefore, the occurrence of
earthquakes was not related to CO, injection. Geological storage of CO, is expected
to become an effective option for global warming countermeasures, and the assessment
of its environmental impact must be carefully conducted.

Keywords: hokkaido earthquake, geological CO, storage, geomechanics, coupled thermal-hydraulic-mechanical
simulation, earthquake triggering

INTRODUCTION

As one effective option for mitigating global warming, the geological storage of carbon dioxide (CO,)
appears promising. Injecting a large amount of CO, fluid into an underground aquifer will inevitably
cause certain formation deformation and increase fluid pressure. There is therefore a risk of
accelerating the activation of pre-existing faults nearby and inducing/triggering earthquakes. In
several industrial applications that require the injection of fluids into the Earth’s crust, including
disposal of wastewater, development of unconventional oil and gas resources, enhanced geothermal
development, and well salt production, injection-induced seismicity, including destructive
earthquakes with a sizable magnitude (M > 5), has been observed and has attracted widespread
attention (e.g., Ellsworth et al., 2019; Atkinson et al., 2020; Lei et al., 2020). At the same time, it also
poses challenges for effective operation. At present, some demonstration projects of CO, geological
storage have been carried out around the world, but there are no reports of important induced
earthquakes related to these projects.
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FIGURE 1| Map view of the Tomakomai carbon capture and storage (CCS)-CO, injection site and earthquake epicenters observed from 1990 through 2019 (from
the Japan Meteorological Agency (JMA) earthquake catalog) overlaid on geological map (from (Japan, 1995)). The pink square indicates the injection site. Line A-A’
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The carbon capture and storage (CCS) demonstration project
in Tomakomai, Hokkaido, Japan, is a medium-scale CO, offshore
storage and has injected approximately 300,000 tons of CO, into
a porous sandstone aquifer at a depth of approx. 1,000 m from
April 2016 to November 2019. During this period, on September
5, 2018, at 18:08 (UTC), a JMA (the Japan Meteorological
Agency) magnitude 6.7 earthquake occurred in the eastern
Iburi region in Hokkaido. The focal depth of the earthquake is
37 km, and the epicenter is approx. 20 km east from the injection
location (Figure 1). Joint inversion of strong motion and geodetic
data shows that a large slip occurred at a depth of approx. 22 km,
which is shallower than the hypocenter (initial rupture) depth.
This indicates that the main seismogenic fault is an east-dipping
high-angle reverse fault, which is consistent with the Ishikari-
Teichi-Toen fault zone (ITTFZ) (Kobayashi et al., 2019). Based
on detailed 3D injection simulation, the predicted pressure
buildup at the end of the injection is limited within a few
kilometers from the injection well (Kano et al, 2014). By
considering that the stress disturbance caused by CO,
injection cannot reach the ITTFZ, it is generally believed that
the earthquake is not directly or indirectly related to CO,
injection. However, recently, a previous study (Sano et al,
2020) determined isotopes of commercially available mineral
water produced from a depth of approx. 100m in a well
located 13km from the injection site, showing dissolved
components of injected CO,. Furthermore, the steady flow of
deep celestial fluid along the ITTFZ is speculated to be blocked,
which increased the fluid pressure in the deep part of the fault and

triggered the earthquake. The model proposed in the paper is very
interesting, but making such an assumption without any
geomechanical analysis may not be valid.

The purpose of the present brief study is to investigate the
validity of the above assumption. First, the theoretical solution of
a simple two-dimensional radial flow model is used to analyze the
decay of fluid pressure with distance. Then, a simplified three-
dimensional (3D) and coupled thermal-hydraulic-mechanical
(THM) model is constructed to quantitatively analyze the
influence range and degree of actual CO, injection under
some extreme conditions.

ANALYSIS BASED ON GEOMECHANICS

Geological Environment of the Tomakomai

Carbon Capture and Storage-Injection Site
Figure 2 shows a simplified 3D geological model of the
Tomakomai CCS-CO, injection site and distribution of
earthquakes from the JMA catalog. The geological model is
modified from the summary of time report of the Tomakomai
CCS large-scale demonstration test 300,000 tons injection (METT,
NEDO, and JCCS, 2020) METI, NEDO, and JCCS. There are two
potential reservoirs, Moebetsu formation and Takinoue
formation, for CO, storage. The Moebetsu formation is
located at a depth of approx. 870 to 1,200 m. The upper part
of the formation, which is dominated by silt/mudstone, acts as a
cap layer. The lower part of the formation (below 1,070 m),
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FIGURE 2 | (A) A simplified 3D geological model of the Tomakomai CCS-CO5 injection site (modified from (METI, NEDO, and JCCS, 2020)). (B) Vertical section
showing the P velocity (from (Matsubara et al., 2017)) and the earthquake (from JMA catalog) distribution. Ishikari-Teichi-Toen fault zone (ITTF2).
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dominated by sandstone, is a potential CO, reservoir. Another
potential reservoir is the Takinoue formation at a depth of
approx. 2,400 to 3,000m, which is a volcanic formation
composed of Neogene lava and tuff. Although the reservoir
pressure is hydrostatic in the Moebetsu formation, the
Takinoue formation is characterized by heterogeneously
distributed overpressure zones. The temperature gradient is
3.7-4.4°C/100 m (Kano et al.,, 2014).

The injection was started in April 2016 and ended in Oct.
2019, achieving a cumulative injection of 300,012 tons in the
Moebetsu reservoir. The maximum injection rate was approx.
18,000 tons/month, and the maximum pressure increase was
12.6 MPa. Only 98 tons was injected into the Takinoue reservoir
by two short tests (METT, NEDO, and JCCS, 2020). Thus, we only
focus on the injection in the Moebetsu formation in this study.

Two-Dimensional Radial Flowing Model

As shown in Figure 2, the Moebetsu sandstone aquifer in the CCS
site is quite stable and relatively flat over a few tens of kilometers.
Thus, it is valuable to make a rough estimate of some key
parameters using simple models for which theoretical
solutions are available. To this end, a two-dimensional (2D)
radial flowing model of an infinite and isotropic horizontal

layer was tested. Under the assumption that Darcy’s law holds,
the theoretical solution of the pore pressure change is given as
(Barker, 1988):

aptry =107 (1)
&) =Qam '\ % i
k
D= 5= 9B rhp) @)

where I represents the Gamma function, ¢ (s) is the time since the
start of injection, r (m) is the distance from the injection well, Q
(m?/s) is the pumping/injection rate, H (m) and k (m?) are the
thickness and permeability of the layer, D (m?/s) is the hydraulic
diffusivity, # (Pa-s) is the dynamic viscosity of water, ¢ is the
porosity, S, (Pa™') is the unconstrained specific storage
coefficient, and fg (Pa™") and Bov (Pa™!) are the
compressibility of the fluid and pores, respectively. This kind
of model has been successfully applied to represent fluid pressure
and strain observed during pumping tests in soft sedimentary
formations (Lei et al., 2019).

The thickness of the Moebetsu formation surrounding the
injection well is greater than 100 m, and the permeability and
porosity are 50 mD and 0.15, respectively (Kano et al., 2014). We
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FIGURE 3 | (A) Increase in fluid pressure as a function of distance from
the injection well as estimated from two-dimensional radial flowing model. (B)
Pressure fronts after 780 days of continuous water injection.

assume that H = 100 m, ¢ = 0.15, and k from 1 to 100 mD. In
order to perform an overestimation, the injection rate of water is
assumed to be Q = 0.0143 m?/s, approx. 270,000 tons/year, which
is greater than the actual mean injection rate of CO, (less than
100,000 tons/year). For the case of K = 10 mD, the predicated
pressure buildup surrounding the injection well falls in the range
from 22 to 25 MPa after one to 10 years of injection, which is
greater than the actual maximum injection pressure (12.6 MPa).
Even so, the fluid pressure front (pressure increased by 0.01 MPa)
is far from the ITTFZ, even at the end point of the 10-years
injection (Figure 3A). As shown in Figure 3B, the pressure front
increases with increasing K. Even for the worst case of K =
100 mD, the front did not reach the fault at 780 days after
injection started.

Three-Dimensional
Thermal-Hydraulic-Mechanical-Coupled

Simulation

The coupled THM simulation was used to predict injection-
induced changes in rock properties, formation deformation,
stress redistribution, and fracture/fault stability. In the present
study, Tough2 and Flac3D were selected for the coupled THM
simulation. Tough?2 is a multiphase reservoir simulation program
developed by the U.S. Lawrence Berkeley National Laboratory
(LBNL). Flac3D is commercially available software for stress
analysis (Itasca, 2000). As a promising combination, the

CCS-COs, Injection and Geomechanics

“Tough-Flac3D" approach with couplers and post-processing
tools has proven useful in the analysis of deformation
accompanied with fluid flow within reservoirs of hard and soft
rocks (Itasca, 2000; Todesco et al., 2004; Rutqvist et al., 2008;
Rutqvist et al., 2015; Sorai et al., 2015; Lei et al., 2017).

In the coupled simulation, permeability is revised within every
time step by built-in functions. Following previous works,
permeability has been expressed as a function of volumetric
strain (e,) (Chin et al., 2000; Cappa and Rutqvist, 2011) as.

n

k:k()(f) $=1-(1-@)e™ 3)
¢

Where ¢ and k are porosity and permeability, respectively, with ¢,

and k; being the initial values. A n of ~20 results in a 2-order-of-

magnitude permeability increase for a fully reactivated fault, as

estimated by in situ testing (Ohtake, 1974) and laboratory

experiments (Alam et al., 2014).

A numerical model covering an area of 80km x 80 km
centered at the Tomakomai CCS injection site was
constructed. The ITTFZ is taken as the thin fault zone. Since
the upper limitation of temperature of Tough2 is 300°C, we only
focus on the uppermost 6 km (Figure 4). The model is divided
into grids by steps so that the volumes of the fault and injection
well are split into small parts while the surrounding matrix
becomes coarser as the distance from the fault increases. The
total number of grids and elements are 18,954 and 16,796,
respectively. The hydraulic and mechanic properties for all
nine formations and the fault zone are listed in Table 1. The
hydraulic properties are similar to that used in previous studies
(e.g., Kano et al., 2014). The upscaled mechanical properties are
based on laboratory tests on core samples from the site at 10 MPa
confining pressure. The most sensitive parameters are the
permeability of porosity of the Moebetsu formation, which
were firstly determined based on the permeability profile
estimated from injection tests using salt water and logging
data (METI, NEDO, and JCCS, 2020) and then optimized by
tuning simulation. Aided by the 2D radial flow analysis results,
the determination of the optimal parameters required only a few
tuning steps. At the same time, we also performed calculations for
different permeability (10, 20, 50, 100 mD) and porosity (0.1,
0.15) to examine the influence of the uncertainty of these sensitive
parameters on the results. Due to the lack of monitoring data on
rock mechanical responses, in-depth studies on the uncertainty of
mechanical parameters cannot be carried out. The only water
injection pressure data can be well fitted by modifying the
reservoir hydraulic parameters (METI, NEDO, and JCCS, 2020).

First, simulation was carried out without any injection in order
to obtain a hydraulic and thermal steady state. The top layer (air)
has a constant pressure (0.1 MPa) and temperature (10°C), and
the temperature gradient is assumed to be 4°C/100 m. Roller
boundary conditions were imposed on the four sides and bottom
of the model. The fluid pressure at the four sides was assumed to
be hydrostatic and was kept constant during injection simulation.
Both the flow rate and heat flux were fixed at the lower boundary.
The in-site stress values are installed in all zones, and also applied
as loads acting on the far-field boundaries. The vertical stress oy,
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FIGURE 4 | Three-dimensional numerical model (A), pressure/CFS increase after injection for three years (B,C), and distribution of CO, saturation after injection for
three and 100 years (D). Permeability of 50 mD and porosity of 0.15 were assumed for the injection layer.

TABLE 1 | Mechanical properties.

Property\Formation 1 2 3 4 5 6 7 8 9 Fault
#
Bulk modulus (GPa) 3.6 5.7 5.7 5.7 5.7 5.7 3.6 3.6 7.8 6.0
Shear modulus (GPa) 3.3 5.2 5.2 5.2 5.2 5.2 3.3 3.3 6.2 4.0
Ini. Perm. (ko) (mD) 100 10 3.5E- 10,20,50,100 3.5E- A 3.5E- 3.5E- .002 1
5 5 5 5
Perm. (k) (m?) Equation 3 ,n = 20
Porosity .25 15 .05 1,0.15 .05 15 .01 .01 .02 0.05
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FIGURE 5 | Pressure and flow rate at key points. A: Injection point within the fault at a depth of 6 km. B: Intersection of the fault and the Moebetsu injection layer.
The results of different permeability and porosity for the Moebetsu formation consistently show that CO, injection has no effect on fluid pressure at the deep part of the
fault event after 100 consecutive years of injection.

was calculated from assumed density values. Because the main
rock of the model is soft rock, the maximum and minimum
horizontal stress values were assumed as oy = 1.3 0y, and 07, = 1.2
oy, respectively. Since the main purpose of the present study is to
assess the impact of water injection activities on faults, the
background tectonic stress itself is not important. During the
coupled simulation, the permeability increases with increasing
volumetric strain. The peak well head pressure during injection is
12.6 MPa (METI, NEDO, and JCCS, 2020) and decreases rapidly
with increasing distance from the injection zone. Thus, we only
consider the elastic behaviors.

In addition to the injection of CO, in the Moebetsu formation,
a water source was added at the bottom of the fault to simulate
natural flow along the ITTFZ. First, fluid flow along the fault zone
was carried out at an injection rate of 10,000 tons/year for
1,000 years to reach a relatively stable state of fluid flow and
heat flux. The CO, injection was then started at an injection rate
of ~183,600 tons/year for 100 years. This is the base model
(Model-1). For comparison, a simulation was also carried out
without CO, (Model-2) to verify whether CO, injection alters
deep fluid flow along the fault.

The simulation results show that after three years of
injection, by which point more than 550,000 tons of
supercritical CO, were injected into to the Moebetsu
formation, the injected CO, is distributed within a few
hundred meters around the injection well (Figure 4D),
which is slightly larger than that revealed by the 3D seismic
exploration implemented in 2019 (METI, NEDO, and JCCS,
2020). This result is expected since larger injection rate was
assumed in the simulation. The pressure buildup is still beyond
the fault for both models (Figures 4B,C). As compared with
Model-1, the pressure front of Model-2 is farther from the fault
zone due to the background flow from deep in the fault. The
change of the Coulomb Failure Stress (CFS) acting on the fault

planes, which have the same strike, dip, and rake with the
seismogenic fault of the 2018 Hokkaido Eastern Iburi
earthquake, is governed by fluid pressure. Although there is
a redistribution of flow velocity at the intersection of the fault
and the reservoir, the resulted fluid pressure (P(A) in Figure 5)
by Model-1 of different permeability and porosity for the
Moebetsu formation is exactly the same as Model-1,
consistently show that CO, injection has no effect on fluid
pressure at the deep part of the fault event after 100
consecutive years of injection (Figure 5).

DISCUSSION AND CONCLUSION

The results of the present study show that, even under extreme
conditions, when CO, is injected at a rate of ~180,000 tons/
year (actually less than 100,000 tons/year) for 10 consecutive
years (actually less than three years), the 0.01-MPa front of the
fluid pressure increment is far from the hypocenter of the
Iburi Earthquake. After three years injection, the injected CO,
is distributed within a few hundred meters around the
injection well, which is slightly larger than that revealed by
the 3D seismic exploration implemented in 2019 (METI,
NEDO, and JCCS, 2020) after injection 207,208.9t CO,. If
the injected CO,, including dissolved CO,, could rapidly
migrate beyond 10 km as claimed in Sano et al. (2020), 3D
seismic exploration would either see nothing or show
anomalies on a large area, but this is not the case. Detailed
discussion on geochemical issues is interesting but beyond the
scope of this study. In the absence of wide-area groundwater
flow, the distribution of gaseous and dissolved CO, is also
limited within a small zone of only a few kilometers at most.
Even if there is a wide area of groundwater flow, the
distribution range of CO, has expanded, compared with
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the stable fluid pressure before water injection, the range
where the fluid pressure has increased still does not change
significantly. The changes in fluid pressure and pore-elastic
effects at the intersection of the ITTFZ and the Moebetsu layer
20 km away are much smaller than the changes caused by daily
tidal action, not to mention the 37-km depth of the fault,
where the 2018 Hokkaido Eastern Iburi Earthquake initiated.
For reference, tidal stress amplitude thresholds required to
trigger earthquakes, for static and dynamic triggering, have
been estimated to range from 0.01 to 0.03 MPa (pore pressure:
0.015-0.05 MPa) (King et al., 1994; Cochran et al., 2004).
Therefore, the implementation of the Tomakomai CO,
geological storage demonstration project is unlikely to be
the triggering factor of the earthquake.

In our simulation, the dissolution of injected CO, into the
groundwater of the aquifer was counted but other chemical
processes, such as mineralization were ignored. In general,
minerals, such as silica in the deep source hydrothermal fluid,
precipitated to the pressure drop caused by earthquake to heal the
fault reduce the permeability of the fault (Saishu et al., 2017).
However, no convincing mechanism exists that would allow fluid
channels to be healed within a short period of time and block the
natural fluid flow along the fault during CO, injection, which
increases the fluid pressure.

As mentioned above, the geological sequestration of CO, is
important in mitigating the global warming trend.
Demonstration projects of various scales are for the
development of technology and the verification of the safety
and effectiveness of the corresponding technology. With
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The model proposed by Sano et al, (2020) is worth
investigating for commercial applications of large-scale and
long-term CO, storage. Thermally, hydraulically, mechanically,
and chemically coupled geomechanics modeling will be a key
technology.
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