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The Triassic/Jurassic boundary section cropping out at Mt Sparagio in north-western Sicily
(Italy) consists of a thick and continuous peritidal succession typical of a Tethyan carbonate
platform. The combined chemostratigraphic and biostratigraphic study of this section
allowed us to parallel the environmental variations inferred by the isotopic records and the
extinction trends recorded by the benthic organisms. In the studied section, the isotope
data of C, O, and S are indicative of serious environmental perturbations related to the
Central Atlantic Magmatic Province (CAMP) activity, as recorded worldwide. Two negative
excursions in the C-curve (Initial-CIE andMain-CIE) confirm the acidification processes that
affected the benthic community. Moreover, the oxygen isotopes curve indicates a strong
warming-trend that corresponds to the reduction in biodiversity and size of the
megalodontoids in the upper part of the Rhaetian beds, probably due to the
deterioration of the photosymbiotic relationships of these pelecypods. We here present
some novel isotope data (Zn, Pb, Sr) from the Mt Sparagio section that offer additional
clues on a tight control of CAMP volcanism on the End-Triassic Extinction.

Keywords: Triassic-Jurassic boundary, end Triassic extinction, large igneous province, mass extinction, Zn-Sr-Pb
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INTRODUCTION

The End-Triassic Extinction (ETE) is one of the Big Five mass extinction events documented during the
Phanerozoic, which occurred close to the Triassic/Jurassic boundary (TJB) at about 201Ma (Sepkoski Jr,
1994; Hesselbo et al., 2002; Blackburn et al., 2013; Lindström, 2016). Several climate and environmental
perturbations occurred at the end of Triassic: a global warming estimated at 3°–4°C seems to be the result
of CO2 and CH4 release in the atmosphere by volcanism (McElwain et al., 1999; Beerling and Berner,
2002; Todaro et al., 2018; Song et al., 2021); subaerial deposits covered the end-Triassic platform deposits
implying a sea level fall (Hallam, 1997), even if its global extent is still under discussion; a decrease of
oceanwater circulation (Huynh and Poulsen, 2005) andwidespread anoxia involvedmany semi-enclosed
basins of Europe (Luo et al., 2018) and the mid-depth waters of oceans (Jost et al., 2017; He et al., 2020); a
low oxygen conditions also in shallow water setting from western Tethys (He et al., 2022); a perturbation
in the carbon cycle induced by an increase in atmospheric pCO2 (Capriolo et al., 2021), resulted in a
acidification of the ocean involved mainly bio-calcifiers organisms, such as corals, sponges and benthic
bivalves, causing their extinction (Greene et al., 2012; Todaro et al., 2018). A decrease in carbonate
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productivity is also observed in several stratigraphic sections from
Panthalassa (Guex et al., 2004; Ciarapica, 2007; Galli et al., 2007;
Wignall et al., 2007; Ruhl et al., 2009) and the Tethyan realm in
which the lithologies show a decrease of wt% carbonate at TJB. All of
these events might have contributed to the end Triassic mass
extinction (ETE). However, the causes of the ETE are still
unclear and debated, and it is largely accepted that this mass
extinction is linked to the emplacement of a large igneous
province known as Central Atlantic Magmatic Province (CAMP)
(Marzoli et al., 1999, 2004; Wignall, 2001; Deenen et al., 2010;
Schaller et al., 2011; Callegaro et al., 2014; Davies et al., 2017).

The biotic response to the environmental changes during the Late
Triassic is recorded both in marine and terrestrial successions.
Recent studies have demonstrated in detail two extinction pulses
recorded by both marine and terrestrial realms (Wignall and
Atkinson, 2020; Lindström, 2021). If on land the climatic
changes led to a turnover of megaflora (McElwain et al., 1999;
Lindstrom, 2021), in the marine realm high rates of extinction were
recorded by benthic biocalcifiers such as bivalves, foraminifers,
corals and sponges (e.g., Kiessling et al., 2007; Greene et al.,
2012; Todaro et al., 2018). The main cause of the biocalcification
crises was correlated to CO2-induced acidification processes
triggered by CAMP volcanism (Van De Schootbrugge et al.,

2008; Todaro et al., 2018). Increasing CO2 in the atmosphere is
thought to have caused an alteration of the carbon cycle recorded by
negative trends of the δ13C curve (Ruhl et al., 2011; Bachan et al.,
2012; Larina et al., 2021). Three major negative excursions known in
literature as “Precursor” (Ruhl and Kürschner, 2011), “Initial” and
“Main” CIEs (Hesselbo et al., 2002) were associated to the multiple
volcanic pulses that characterized CAMP emplacement (Marzoli
et al., 2004; Deenen et al., 2010; Davies et al., 2017; Zaffani et al.,
2018).

This study aims to couple published data on the climatic
changes, marine environmental perturbations and biotic crises
recorded by a continuous Triassic-Jurassic peritidal carbonate
succession from northwestern Sicily (Italy) to new isotopic
data from Sr, Zn and Pb. These new results support the idea of
a tight correlation between the CAMP volcanism pulses and
the extinction trend at the end of Triassic.

GEOLOGICAL SETTING

The Mt Sparagio section is located in the north-western sector of
Sicily (southern Italy, Figure 1). From the structural point of view
this area, named as San Vito Peninsula, is a segment of the

FIGURE 1 | (A) Paleogeography of the central Mediterranean area during the Late Triassic (modified after Di Stefano et al., 2015; paleolatitude after Muttoni et al.,
2015). (B) Schematic structural map of the Central Mediterranean area. (C) The three informal units described in the Mt Sparagio section differentiated on the basis of the
fossil associations in the subtidal facies (Modified after Todaro et al., 2018).
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Maghrebian chain and consists of a south-verging nappe pile
(Giunta and Liguori, 1972; Abate et al., 1991). Each individual
thrust is floored by Upper Triassic to Lower Jurassic shallow
water carbonates transitional upward to pelagic carbonates of
Middle Jurassic-Eocene age, with local intercalations of slope
rudist limestones (Randazzo et al., 2020a; 2020b). The Upper
Triassic to Lower Jurassic shallow water carbonates were part of a
wide carbonate shelf that floored the south-western sector of the
Tethys (i.e., Siculo-Tunisian Platform sensu Di Stefano et al.,
2015). Part of this carbonate shelf was not involved in the
Maghrebian orogeny, and today is preserved in the subsurface
of the foreland areas of Sicily, e.g., the Sicily Channel and the
Hyblean Plateau (Patacca et al., 1979; Antonelli et al., 1988;
Todaro et al., 2021).

The internal part of the shelf was characterized by a wide
subsiding peritidal area in which up to 3 km of carbonates were
accumulated during Late Triassic and Early Jurassic (Patacca
et al., 1979). These were transitional to evaporitic (sabkha-type)
environments cropping out in the Egadi Islands, westernmost
Sicily (Lo Cicero, 1986; Martini et al., 2007; Todaro et al., 2022)
and are known by wells in the subsurface of the Tunisian offshore
(Kamoun et al., 2001). During the Late Triassic the extensive
lagoons were rimmed by a barrier reef dominated by
hypercalcified coralline sponges that are recorded in several
thrust sheets from Palermo to the Madonie Mountains
(Senowbari Daryan et al., 2015 and references therein)
(Figure 1). According to Zarcone et al. (2010) and Di Stefano
et al. (2015) the Triassic carbonate shelf was flanked toward east
by a deep and wide basin (Imerese-Sicanian Basin, sensu Di
Stefano et al., 2015), connected to the Ionian Tethys (Finetti et al.,
2005). However, due to the severe shortening induced by the
Maghrebian orogeny during Neogene times, the paleogeographic
relationship of this platform with the adjacent deep-water basin is
subjected to different interpretations (Catalano et al., 2001).

Even if the carbonate successions pertaining to the Upper
Triassic/Lower Jurassic platform are well exposed in several areas
of western Sicily, a continuous section encompassing the TJB is
not easy to find due to a deep erosional truncation that affected
mostly the marginal sector of the rimmed platform (e.g., Palermo
andMadonie Mountais, Zarcone and Di Stefano, 2010) or to local
effects of dolomitization that do not allow to assess reliable bio-
chronostratigraphic evaluations.

Only in boreholes from the Hyblean foreland, clear Rhaetian
beds have been recognized on the base of the presence of Triasina
hantkeni (Patacca et al., 1979). More recently the presence of
Rhaetian shallow water carbonates with Triasina hantkeni has
been reported from the Sciacca area and Mt Sparagio (Cacciatore
et al., 2010). However, a careful description of the TJB section at Mt
Sparagio, was first performed by Todaro et al. (2017). In this light the
Mt Sparagio section can be considered as unique in Sicily.

METHODS

The descriptions of the most common macro and microfacies
was based on the classification of carbonate rocks of Dunham
1969) integrated by Embry and Klovan (1972). About 200 thin

sections were analysed through a Leitz Laborlux 12 Pol optical
microscope under transmitted light for the petrographic and
biostratigraphic characterization of the microfacies. The
biostratigraphic analysis of the Mt Sparagio section was
based on the biozonal schemes adopted for the Upper
Triassic-Lower Jurassic sections of Tethyan inner-carbonate
platform realms (Gazdzicki, 1983; De Castro, 1990;
Chiocchini et al., 1994; Barattolo and Romano, 2005;
Mancinelli et al., 2005; Romano et al., 2008; Coskun
Tunaboylu et al., 2014).

The stable isotopic analyses were obtained from 70 samples of
micritic limestone exclusively collected in the subtidal facies. O and
C analyses were performed at the Department of Geosciences of the
University of Padova by using GasBench II connected to the
continuous flow system of a DELTA V Advantage mass
spectrometer (Thermo Scientific) while S isotope analyses were
performed at the Cohen Geochemistry Laboratory using an
Elementar PYRO cube coupled to an IsoPrime continuous flow
mass spectrometer following the procedure described by He et al.
(2020) (for detailed methodology see Supplementary Materials).

Several laboratory analyses were carried out in order to
identify any diagenetic alteration of the collected samples,
including possible dolomitization. SEM (FESEM-JEOL)
analyses data, performed at the Department of Chemical
Engineering of University of Palermo, allowed to calculate the
wt% of Mg2+ (0.2–0.7) confirming the absence of dolomite in the
bulk samples. Cathodoluminescence observations, carried out at
the School of Earth, Atmospheric and Environmental Science of
Manchester University by an Olympus CCL 8200 mk3 and
elemental indicators (Mn/Sr, Mg/Ca) analysed by He et al.
(2022) demonstrated a minor influence of dolomitization or
diagenetic processes.

These data confirm the primary nature of the collected bulk
samples, supporting the use of stable isotopic analyses (O, C, S)
for the Mt Sparagio section (Todaro et al., 2018; He et al., 2020;
He et al., 2022).

Strontium, lead and zinc isotope analyses were carried out at
the Department of Earth Sciences (University of Geneva) by
Thermo Neptune PLUS Multi-Collector ICP-MS in static mode
following procedures described by Chiaradia et al. (2020) for Sr
and Pb and by Chiaradia et al. (2018) for Zn (see
Supplementary Materials for detailed description).

THE MT SPARAGIO SECTION

This section is exposed along the northern slope of an east-west
trending ridge about 20 km long that is part of a major thrust
sheet in the southern zone of the San Vito Peninsula. This ridge is
a south-dipping ramp anticline that is crosscut by NW-SE and
NE-SW oriented Plio-Quaternary extensional and strike-slip
faults (Nigro and Renda, 2002). However, a clear continuous
sector crops out in the western part of the ridge (Mt Cocuccio,
38°3′ 44.18″ N, 12°43′9.19″ E) about 5 km north-east from the
village of Custonaci. The section consists of parallel beds, the
thickness of which ranges from 50 to 150 cm, dipping south from
35 to 80°. The lower part of the section is dolomitized and covered
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by eluvial-colluvial deposits and it is assumed to be Norian in age
by the stratigraphic position. Upward, the studied section consists
of 430 m thick, parallel-bedded, greyish to whitish limestones
spanning the Rhaetian–Hettangian interval.

The macrofacies observations recognized peritidal carbonates
formed by subtidal, intertidal and supratidal facies. Up to
13 facies-types were differentiated along the studied section
(Supplementary Table S1). Most of the described facies are
organized in shallowing-upward cycles (for a comprehensive
description of facies-types and cycle stacking see Todaro et al., 2017).

On the basis of the palaeontological content in the subtidal
facies, the Mt Sparagio section was divided into three informal
units (Figure 1):

Unit A shows the common presence of large megalodontids
and dicerocardids shells (Figure 2D, E, F), either in growth
position or with disarticulated valves, in association with
corals, benthic foraminifera and calcareous algae
(Figure 3A, B). The estimated thickness of this unit is
111 m from the base of the measured section and it is well
exposed along several quarries. The intertidal facies consists of
stromatolite and loferite horizons that are capped by supratidal
facies exhibiting black- and flat-pebble conglomerates and
thick reddish-yellowish paleosoils.

Unit B shows a marked reduction in diversity and size of
megalodontids whereas the dicerocardids disappear and only a

few species of small megalodontids persist (Figure 2A, B, C).
Despite this drastic biotic turnover, there are not significant
variations in the benthic foraminifer assemblages and
calcareous algae as observed in Unit A (Figure 3C). The top
of Unit B is signed by an oolitic level intercalated in the
subtidal facies (Figure 3D). Unit B reaches a thickness of
179 m. The intertidal-supratidal facies are similar to those of
Unit A.

Unit C consists of shallowing-upward peritidal cycles
lacking the typical fossil associations of Units A and B in
the subtidal members. Only an oligotypic assemblage of
encrusting algae characterizes the fossils content of the
subtidal facies (Figure 3F). The stromatolitic facies are
thicker than in the lower units representing two thirds of
the total cycle thickness. Palaeosoils are thinner and less
common and are represented by green-marly horizons. The
total thickness of Unit C is 140 m. Between Unit B and Unit C a
10 m thick barren interval occurs consisting exclusively by
calcitic spherules (up to 200 µm) (Figure 3E).

BIOSTRATIGRAPHY

The biostratigraphic record in the subtidal facies across all the
studied section is very complete. Unit A and B, show the common

FIGURE 2 |Megalodontoids association in the Mt Sparagio section. (A), (B) and (C) small megalodontids association in Unit B. (D–F) common presence of large
megalodontids and dicerocardids shells in Unit A.
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presence of a benthic foraminifera association that comprises
Triasina hantkeni (Majzon), Auloconus permodiscoides
(Oberhauser), Duotaxis birmanica (Zaninetti & Bronnimann),
Tetrataxis inflata (Kristan), Aulotortus sinuosus (Weynschenk),
Aulotuortus sp., Glomospira sp., Glomospirella sp., Trochammina
sp., Frondicularia sp., Nodosaria, sp. and Textularia sp. Nodular
thalli of porostromata (Cayeuxia sp., Orthonella sp.) are
concentrated in a few levels, whereas Thaumatoporella
parvovesiculifera and fragments of dasycladales, such as
Griphoporella curvata, are very rare (Todaro et al., 2017)
(Figure 3A, B, C).

The occurrence of Triasina hantkeni with its large size test (up
to 1 mm) allow to assign a Rhaetian age for Unit A and B
(Gazdzicki, 1983; Di Bari and Rettori, 1996). The thickness of
the T. hantkeni biozone (Unit A and B) is about 290 m, however,
the base of this biozone could not be defined as the downward
prosecution of the section is not exposed.

In Unit A, abundant and well preserved Dicerocardium spp.
along with Neomegalodon spp. characterize the bivalve
associations (Figure 2D). The size of the shells reaches giant
dimensions up to 40 cm for dicerocardids (Figure 2E) and 25 cm
for megalodontids (Todaro et al., 2017, 2018). Scleractinian corals
carpets (Retiophillia sp.) also occur in this unit (Todaro et al.,
2017).

In Unit B the scleractinian corals and the dicerocardids
disappear and the bivalve community is represented only by
small specimens of Neomegalodon and Triadomegalodon sp., the
size of which does not exceed 10–15 cm (Todaro et al., 2018)
(Figure 2A, B, C). The top of Unit B corresponds to the last
occurrence (LO) of T. hantkeni and megalodontoids and to the
presence of a discontinuous level up to 20 cm thick consisting of

oolitic grainstone and interpreted as a storm layer (Figure 3D). A
10 m thick barren zone dominated by calcitic sphaerules (up to
200 µm in diameter) separates Unit B fromUnit C (Figure 3E). In
the subtidal facies of Unit C the fossil content consists almost
exclusively by the encrusting alga Thaumatoporella
parvovesiculifera associated with rare Aeolisaccus dunningtoni
(Figure 3F). Upsection, the first benthic foraminifer
Siphovalvulina sp. occurs about 10 m above the base of Unit C.

ISOTOPIC DATA

CAMP Influence (Sr, Zn, Pb)
The newly determined 87Sr/86Sr values of the Mt Sparagio section
range between ~0.7075 and ~0.7087 (Figure 4), with the greatest
majority of them overlapping the end-Triassic seawater
composition ~0.70771-0.70776 (McArthur et al., 2001). Only
six samples deviate significantly from the end-Triassic
seawater composition (Figure 4). Two samples at the base of
Unit B (Z15 and Z23) have less radiogenic Sr isotope
compositions than seawater, overlapping with the
compositional field of CAMP. The sample (Z18) that is
stratigraphically comprised between these two samples shows
an end-Triassic seawater Sr composition. In Unit C three samples
have significantly more radiogenic 87Sr/86Sr values than end-
Triassic seawater (TJ45, TJ48, TJ56), and are intercalated in the
stratigraphic section by a sample (TJ54) with a87Sr/86Sr value less
radiogenic than end-Triassic seawater, shifted towards the CAMP
isotope composition. The topmost sample of the investigated
section (TJ58) is also slightly less radiogenic than end-Triassic
seawater.

FIGURE 3 |Microfacies types in units A, B and C. (A) Glomospirella friedli in sp in Unit A; (B) grainstone with Triasina hantkeni belonging to Unit A; (C) grainstone
with Triasina hantkeni of Unit B; (D) ooidal grainstone at the top of Unit B; (E) calcitic sphaerule belonging to the barren interval between Unit B and Unit C; (F) grainstone
with Thaumatoporella parvovesiculifera belonging to Unit C.
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The δ66Zn values of the Mt Sparagio section range between
+0.25 and +1.00‰ (Figure 4). The greatest majority of them fall
in the isotopic compositional range (~+0.3 to +0.4‰) of
continental rocks and riverine input (Chen et al., 2013; Little
et al., 2014). At the base of Unit B, two samples (Z15 and Z23)
with CAMP-like Sr isotope compositions are characterized by
δ66Zn values between +0.9 and +1.0‰, similar to modern surface
seawater (Maréchal et al., 2000; Little et al., 2014). Sample Z18,
stratigraphically comprised between Z15 and Z23, which is
characterized by an end-Triassic seawater Sr composition, has
a continental Zn isotope signature. Therefore, the three samples
in this part of the section show an anti-correlation between Sr and
Zn isotope compositions. Three samples (Z39, Z58, Z62) in the
middle part of the Unit B display erratic spikes marginally (δ66Zn
values of +0.45 and +0.48‰) to significantly heavier (δ66Zn
~+0.58‰) than the dominant continental Zn recorded by the
bulk of the section. The Unit C is characterized by a package of
five stratigraphically sequential samples that show slightly but
consistently higher δ66Zn values (~+0.48 to +0.54‰) with respect
to the continental Zn isotope range. This interval of the section
corresponds to the samples that have either significantly more or
slightly less radiogenic Sr than end-Triassic seawater. The
topmost levels of Unit C returns to a continental Zn isotope
signature.

Because of the very low concentrations of Pb in the
investigated samples, only six of them returned reliable results
(i.e., not affected by poor uncertainty and large uncontrolled
instrumental mass fractionation due to low counting statistics).
Two samples are those from the base of the section which
returned CAMP-like Sr isotope compositions, two are from
the middle part of the section with an end-Triassic seawater Sr

isotope composition, and two are from the upper part of the
section with a highly radiogenic Sr isotope composition
(Figure 5). Initial isotope ratios of 206Pb/204Pb, 207Pb/204Pb
and 208Pb/204Pb, corrected for time-integrated decay of U (and
Th) at 200 Ma using U/Pb (and Th/Pb) ratios of Mesozoic Sicilian
carbonates of comparable environment, are comprised between
18.27-23.21, 15.62-15.86, 38.15-38.82, respectively. The samples
with CAMP-like Sr isotope compositions from the base of the
section and those from the middle part of the section returned Pb
isotope compositions consistent with CAMP (Figure 5). The
samples from the upper part of the section, which have the most
radiogenic 87Sr/86Sr values, have also the most radiogenic Pb
isotope composition (outside CAMP), with high 207Pb/204Pb
values that are indicative of derivation from relatively old
continental rocks with high µ (238U/204Pb) values (Figure 5).

C,O and S
The new Sr and Zn isotope results are integrated with previously
obtained C, O (Todaro et al., 2018) and S (He et al., 2020) isotope
curves in Figure 6. The δ13Ccarb curve shows two main negative
excursions separated by a positive peak with values ranging from
-2.58‰ to 3.03‰ close to the base of the studied section (Todaro
et al., 2018). The first negative trend shows a rapid decrease from
ca. +1‰ to −2‰ at the top of Unit A followed by a return to more
positive values up to +3‰. The second negative trend shows a
decrease to more negative values of about −2.5‰ along the Unit
B. After the second negative excursion, the carbon curve shows a
gradual return tomore positive values up to ca. +2.5‰ along Unit
C (Figure 6).

The δ18Ocarb values were used to assess a possible climate
change around the TJB (Todaro et al., 2018). At the top of Unit A,

FIGURE 4 | 87Sr/86Sr values and δ66Zn values of the Mt Sparagio section correlated to the three Units and to the extinction events (not in scale).
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the first warming trend (low δ18Ocarb values) is followed by a
short cooling interval and then by a second more prolonged
warming trend along the Unit B. A positive δ18Ocarb shift, at the
TJB, crossing the interval between Unit B and Unit C, suggests
instead the end of the warming phase (Figure 6).

The δ34SCAS curve shows a stable trend except for a large
positive shift with a magnitude of >10‰ recorded at the top of

Unit B (He et al., 2020) and coincident with the extinction of the
Triassic benthic community (Figure 6).

DISCUSSION

The Mt Sparagio section offers at present the most complete
record of the biostratigraphic and chemostratigraphic variations
across the TJB in a continuous shallow water setting.
Biostratigraphically, the Mt. Sparagio is easily comparable to
other shallow water section described from the western
Tethys, such as Croci di Acierno (Southern Apennines, De
Castro 1990), Mt Messapion (Greece, Romano et al., 2008),
Tahtaiskele (Karaburun Peninsula Turkey, Tunaboylu et al.,
2014) and Mt Cefalo (Southern Apennines, Bachan et al.,
2012), where similar extinction and recovery patterns of
microfossil associations are described. As far as concern the
macrofossil associations, in many of the Tethyan sections the
presence of gigantic specimens of megalodontoids in the Rhaetian
beds is reported by several authors (Végh-Neubrandt, 1982;
Allasinaz, 1992, among others). The huge shell size reached by
these pelecypods is attributed to the presence of photosymbionts
(Végh-Neubrandt, 1982; De Freitas et al., 1993) as occurred in the
Wallowaconchidae during the Upper Triassic of western North
America (Yancey and Stanley, 1999), and their reduction in size
has been attributed to the cessation of this symbiotic partnership
(van de Schootbrugge and Wignall, 2016). At Mt Sparagio, the
megalodontoids extinction trend shows two main pulses during
the Rhaetian as high-diverse and giant species are confined to
Unit A, while only few and small species are present in overlying
Unit B, before the total extinction recorded in Unit C. The factors
that controlled the reduction in biodiversity and size seem to have
played a little role on the Rhaetian foraminifer association, except
for the foraminifer Triasina hantkeni that recorded a diameter
reduction between Unit A and B (Todaro et al., 2017).

The two extinction pulses recorded by the bivalve community
are strictly correlated with the environmental perturbations
documented as variation trends of the isotopic curves. In
particular, the two pulses match well with the two δ13Ccarb

negative excursions (Figure 6). The link between carbon
isotope variations in the sedimentary record (Schobben et al.,
2019) and mass extinction events (Raup and Sepkoski Jr, 1982)
has typically been interpreted as caused by perturbations in the
geological carbon cycle (Suarez et al., 2019) due to massive
injection of isotopically light C, the ultimate effects of which
would be global warming, oceanic acidification and a decrease of
available carbonate in marine waters. Although the origin of this
C is still debated (Suarez et al., 2019), there is now documented
evidence (Wignall, 2001) for a likely role played by a surge of
volcanic gas emissions during the emplacement of Large Igneous
Provinces (LIP), including the CAMP that occurred right at the
TJB (Hautmann et al., 2008; Greene et al., 2012; McRoberts et al.,
2012; Al-Suwaidi et al., 2016). This interpretation of a LIP trigger
has traditionally been hampered by the lack of sufficient
information on the CO2 abundance in these magmas (Black
and Gibson, 2019). However, there is growing evidence that
CAMP magmas may have been CO2-rich (Capriolo et al.,

FIGURE 5 | 87Sr/86Sr, 207Pb/204Pb, and 208P/204Pb versus 206Pb/204Pb
plots of six samples of the sequence that returned measurable Pb isotope
ratios. Black dots are CAMP data from GeoRoc (http://georoc.mpch-mainz.
gwdg.de/georoc/). Blue lines show density contours generated with
RStudio software. For discussion see text.
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2021), and modern volcano analogues (Aiuppa et al., 2021)
indicate that magmas in rift and ocean island environments,
can transport potentially large quantities of carbon to potentially
trigger environmental change upon atmospheric injection if
sourced deep in the upper mantle. In addition to perturbation
of the carbon cycle, a temperature increase was also attributed to
the CAMP activity (McElwain et al., 1999; Lindström et al., 2017).
This is also well observable in the Mt Sparagio section by the
trend of the δ18Ocarb curve (Figure 6). In particular, the
biocalcification crisis characterized by a reduction of
megalodontoids biodiversity seems strongly related to warmer
temperatures recorded by low δ18Ocarb values while the end of
this warming phase is marked by a positive δ18Ocarb shift and
correlated to the extinction of the Rhaetian benthic community
(Todaro et al., 2018). Warming and CO2-induced ocean
acidification are likely to have resulted eventually in oceanic
anoxia, as fully supported by δ34SCAS curve (Figure 6). This
exhibits a stable trend that is interrupted by a positive peak in
correspondence of the extinction of Rhaetian benthic
community, suggestive of the onset of anoxic conditions. The
persistence of the positive trend throughout the barren interval
suggests that anoxic conditions prevailed over the entire TJB
interval (He et al., 2020).

Clues From Zn, Sr and Pb Isotopes
Zn isotopes are increasingly used to better understand processes
related with mass extinctions and following biological recovery
(Kunzmann et al., 2013; Liu et al., 2017). This opportunity is

favoured by the Zn isotope compositions of seawater being
significantly heavier than those of magmatic rocks and riverine
input into oceans (δ66Zn ~0.2–0.4‰: Chen et al., 2013; Little
et al., 2014; Figure 4). The heavier Zn isotope composition of
seawater is due to the preferential uptake of light Zn (64Zn) by
phytoplankton (using Zn as a micronutrient), resulting in a
relative increase of the heavier Zn isotopes (e.g., 66Zn) and
therefore in higher δ66Zn values in seawater (Marechal et al.,
2000).

Similarly to Sr (Veizer, 1989), Zn in carbonates can derive
either from dissolved Zn in seawater (from which carbonates
chemically precipitate) or from continental Zn (if carbonates
contain a detrital clay component) (Liu et al., 2017). The
combined use of Sr and Zn isotopes in the same rock sample
can therefore help better resolving seawater vs detrital origins
for elements (Figure 7). Most of the samples in the investigated
section show Sr isotope compositions consistent with that of
end-Triassic seawater (Figure 7). This observation argues
against a major detrital contribution from the continents,
suggesting that the Zn isotope composition of the samples
should also reflect the composition of seawater. However, the
Zn isotopic signature of the largest part of the sequence is typical
of riverine input and magmatic rocks, especially in the median-
upper part of Unit B and in the barren interval (Figures 4, 6),
suggesting that the biological activity was strongly to completely
suppressed in the greatest part of the investigated section. In
fact, biological activity should drive the dissolved Zn introduced
into seawater by riverine input magmatic activity with initial

FIGURE 6 | Isotopic curves obtained in the Mt Sparagio section. The trends of the curves indicate environmental perturbations (acidification, climatic changes,
marine anoxia, CAMP-influence) correlated with the two extinction pulses of the benthic community in the Rhaetian horizons. Black intervals represent the supratidal
members of the peritidal cycles. The δ13Ccarb and δ18Ocarb are illustrated in Todaro et al. (2018), the δ34SCAS curve is after He et al. (2020).
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δ66Zn ~0.2–0.4‰ to heavier isotope composition because of
preferential uptake of light Zn by phytoplankton. Our data
therefore support the use of Zn isotopes to track biological
crises in the sedimentary record during pre- and syn-extinction
levels, as also documented in the end-Permian mass extinction
(Liu et al., 2017).

In contrast to this behaviour, at the base of Unit B (samples
Z15 and Z23), Sr and Zn isotopes exhibit some peculiar
signature (Figures 4, 6). In this part of the section, the
least radiogenic Sr isotope compositions are observed, and
are associated with the most positive δ66Zn compositions in
our dataset (Figures 4, 6, 7). We stress that, as no
petrographic evidence has been found for secondary/
diagenetic processes, these Sr-Zn isotope signature must
reflect sin-depositional processes. Moreover, the unusually
low radiogenic 87Sr/86Sr signatures combined with Pb
isotopes (Figure 5) overlap with the compositional field of
CAMP volcanism. We thus propose that these isotopic
compositions likely reflect a dominant and local input of
“detrital” Sr derived from CAMP, either in the form of
eroded particulate materials or volcanic fallout. The
proximity of this CAMP-related Sr input is supported by
the fact that seawater Sr isotope compositions are thought
to be rapidly (within the timescales of the sedimentary record)
homogenized throughout all oceans (Veizer, 1989). A local
input also fits with the low Pb residence time in seawater.

The corresponding heavy (Figure 7) Zn isotope
compositions (δ66Zn of +0.9 and +1.0‰) are more puzzling
to interpret. One possibility is that they reflect episodic and
short events of increased biological activity, perhaps related to
transient increased ocean productivity caused by micro-
nutrient input during CAMP volcanism. Elevated volcanic

nutrient supplies, perhaps related to oceanic deposition of
volcanic ash (Jones and Gislason, 2008), have been recently
suggested as drivers for the late Ordovician extinctions
(Longman et al., 2021). However, this interpretation clashes
with the evidence of detrital Sr at the base Unit B (samples Z15
and Z23). Since CAMP material contains several tens of ppm
Zn, whereas seawater Zn concentrations are <1 ppb, it seems
unlikely that the incorporation of “detrital” CAMP material
(suggested by Sr isotopes) would have not resulted into a
continental Zn isotopic signature (i.e., δ66Zn +0.2–0.4‰)
for these samples. A possible explanation is that there is a
decoupling between Sr and Zn during the precipitation of
carbonate rocks, in which the Zn would be more sensible to
biological (rather than detrital) drivers. We finally note that
the unusual composition of these two samples does not affect
the general interpretation, discussed above, of the bulk
sequence representing conditions of suppressed biological
activity.

The top part of the sequence also shows some peculiar isotope
compositions in Unit C, where an unusually radiogenic Sr (Figs.,
4, 5, 6) and Pb (Figure 5) signature is observed. These
compositions reveal a clear input of non-seawater, detrital Sr
(and Pb) at the top of the sequence, with the radiogenic Sr and Pb
signatures implying an old continental crustal source. We
propose that this crustal contribution was derived from
weathering of Variscan Calabrian-Peloritan Orogen (Fiannacca
et al., 2019).

Interestingly, the samples belonging to Unit C exhibit a
consistent Zn isotope signature that is slightly heavier than
that of continental zinc (Figures 6, 7), suggesting that the
input from a more proximal continental crust basement was
associated with the onset of a renewed biological activity and

FIGURE 7 |Combined graph of Sr and Zn for the Mt Sparagio section used to resolve seawater vs detrital origins for elements. The end-Triassic (201–201.5 Ma) Sr
seawater composition is from McArthur et al. (2001).
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consistent with the recovery phase of the Lower Jurassic
carbonate factory.

CONCLUSION

The present study aimed to highlight a tight relationship
between the environmental variations inferred by the
isotopic records and the ETE pulses recorded by the Mt
Sparagio section.

In the studied section, the isotope data of C, O, and S are
indicative of serious environmental variations as recorded
worldwide and related to the CAMP activity. The two
negative excursions documented by the C-curve (Initial-CIE
andMain-CIE) confirm the acidification processes that involved
the benthic community. Moreover, the climate variations
estimated from the oxygen isotopes indicate a warming-trend
that corresponds to the reduction in biodiversity and size of the
megalodontoids in the upper part of the Rhaetian beds. This
warming trend could have deteriorated the photosymbiotic
relationships of these pelecypods as inferred by several
authors to explain their gigantism.

In the studied section, the total extinction of the Rhaetian
benthic association is clearly related to a long-lasting carbon
negative excursion (Main-CIE) coupled to a further
warming trend.

Although the influence of CAMP on the ETE is well
described in many TJB sections, the new isotope data (Zn,
Pb, Sr) from Mt Sparagio section offer substantial
documentation of a tight control of the Large Igneous
Provinces on mass extinction events.
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