
Identification of Rock Properties of
Rock Wall Cut by Roadheader Based
on PSO-VMD-LSSVM
Pengfei Qi, Jucai Chang, Xiao Chen*, Tuo Wang and Mengyun Wu

School of Mining Engineering, Anhui University of Science and Technology, Huainan, China

The problem of low digging efficiency and mining imbalance due to outdated digging
technology and low degree of equipment intelligence has long existed in coal mine
roadway excavation work. Lithology identification is the key to the intelligence of
roadheading equipment. Accurate lithology identification significantly affects the
automatic control of roadheader cutting conditions. Completing the identification of
lithology in the process of rock wall cutting by a roadheader involved the following
steps: building a tunneling experiment platform, making four rock specimens with
different lithologies, completing the tunneling simulation experiments on four lithologies,
obtaining current sensor data of four lithologies cutting, and finally proposing an intelligent
lithology identification method of PSO-VMD-LSSVM. The research results show that the
particle swarm algorithm (PSO) optimized the variational modal decomposition (VMD) with
minimum envelope information entropy as the fitness function can realize the adaptive
decomposition of the current signal of truncated motors. The signal reconstruction can
increase the signal-to-noise ratio of the current signal by selecting the eigenmodal
components according to the energy density and correlation coefficient criterion. The
multi-scale fuzzy entropy is used as the eigenvector of the reconstructed current signal as
the fuzzy entropy of different lithology cut-off motor currents has better differentiation at
different scales. The least-squares support vector machine (LSSVM) is used to classify the
feature vectors processed by custom decomposition parameter VMD and gives a
recognition rate of 87.5%. The recognition rate increases to 97.5% for the feature
vectors processed by PSO-VMD. The particle swarm algorithm optimizes the noise
reduction via VMD to effectively improve the lithology recognition rate. The research
results can provide a methodological reference for rock property recognition during rock
cutting by a roadheading machine.

Keywords: particle swarm optimization, variational modal decomposition, minimum envelope entropy, multi-scale
fuzzy entropy, least square support vector machine, identify rock properties

INTRODUCTION

Coal mining mainly involves underground mining, and several underground roadways are
required to ensure continuous and efficient coal production. As the key technology of coal mine
roadway, rapid roadway digging is directly related to the economy and safety of coal mine
production, an important guarantee for high and stable coal production. Yin studied the damage
characteristics of rocks, mainly based on semi-rock or whole rock, under the action of dynamic
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and static coupling to improve the safety of deep mining (Yin
et al., 2019). Methods to avoid the overlying rock layers being
affected by mining to prevent accidents were studied by
analyzing mining techniques and the mechanical properties
of rocks (Du et al., 2020a). Extensive research has been
conducted to minimize the impact of mining and ensure
the safety and efficiency of coal production (Yin et al.,
2012). However, reducing the impact of mining using
roadway boring machines must be studied to minimize
blasting vibrations and ensure a high degree of safety even
with continuous rapid digging. Roadheader excavation has
gradually become the main method of roadway mining, but
safe and efficient roadheading technology is still in the
exploration stage. In the process of excavation, cut-off rock
wall properties change drastically. However, the roadheader
driver cannot promptly adjust the cut-off speed, cantilever
swing speed, and other conditions according to the cut-off
lithology because of limited vision due to excessive coal and
rock dust. These limitations lead to unstable output of cutting
motor, excessive wear of cut-off teeth, abnormal collapse of
working face, thus significantly impacting mining, accelerating
the damage and aging of the digging equipment, and affecting
the safety of digging the working face. Therefore, if the rock
properties can be identified in the excavation, the efficiency of
excavation can be improved, the service life of the excavator
can be prolonged, the safety of excavation can be guaranteed,
and the impact on the working face can be reduced.

The problem of rock identification has been extensively
studied since it was introduced in the 1960s (Li and Ouyang,
2017; Yang et al., 2020). There are two main methods classified
according to the means used: direct detection and indirect
detection. The direct detection methods are as follows: 1. The
natural ray method (Wang S. et al., 2021) uses the ray intensity
remaining after the ray penetrates the coal seam and determines
the thickness of the top and bottom coal seams according to the
attenuation law to achieve the purpose of identifying lithology.
However, this method is difficult to operate and has a small
adaptation range (K., H, Sampath et al., 2019); 2. The radar
detection method (Wang et al., 2016) determines the top coal
thickness based on the characteristics of the speed, phase,
propagation time of the reflected electromagnetic wave and
the frequency of the emitted wave. This method is applicable
only if large differences exist in the coal and rock properties as the
recognition rate is low if the coal and rock properties are similar.
3. Infrared detection method (Zhang et al., 2022) uses a highly
sensitive infrared temperature sensor to measure the temperature
difference change of the truncated part. The lithology is identified
after applying algorithm classification and artificial ray detection
methods (Zhang et al., 2017). In addition to these methods, there
are terahertz spectroscopy methods (Wang et al., 2018). Direct
detection methods are susceptible to environmental, terrain, and
working conditions due to direct contact with different
lithologies. These methods are also limited by low tolerance,
small application range, minimal feature extraction effects, and
low recognition accuracy.

Indirect electric parametric detection is an indirect
detection method. It uses image detection (Gao et al., 2021;

Wang and Zhang, 2020; Wang X. et al., 2021) and was used in
the early 20th century in the United Kingdom and the
United States. It has re-emerged now due to the
development of artificial intelligence and lithology
recognition methods. Different lithology pictures are
analyzed using modern image detection techniques to
identify the lithology. However, the method is susceptible to
working surface dust, light, and other conditions. Rocks
exhibit certain electrical properties such as cutting force
(Dai, 2020), current (He et al., 2020), and working voltage
(Wang et al., 2018). The acceleration sensor (Zhang et al.,
2020) and acoustic emission sensor (Du et al., 2020b) also
show different readings. These properties can form the basis
for distinguishing different lithologies. This method has the
advantages of strong anti-interference ability, wide application
range, clear feature extraction, and fast recognition. Moreover,
current acquisition requires only the placement of the current
sensor at the truncation motor, which is easy to perform with
little modification to the machine. In this paper, the current
signal is processed and used to identify rock lithology.

A simulated excavation experiment platform is built to
simulate the cutting process and obtain the current sensor
data of the excavator working on different lithologies to realize
the identification of rock properties while cutting rock walls to
improve the excavation efficiency. The current data are firstly
decomposed by adaptive variational modal decomposition and
the components are reconstructed according to the energy
density and correlation coefficient criterion, Next, the multi-
scale fuzzy entropy is used as the current signal feature vector.
Finally, the least-squares support vector machine (LSSVM) is
used to classify the features to achieve the purpose of identifying
different lithologies.

RESEARCH ON LITHOLOGY
IDENTIFICATION METHODS

Variational Modal Decomposition
Variational modal decomposition (VMD) is a nonlinear signal
processing method that determines the center frequency and
bandwidth of each component by iteratively searching the
variational model in the optimal solution to achieve the
effective separation of each signal component. VMD can
highlight the local characteristics of the data.

The constrained variational model constructed by the VMD
algorithm is (Dragomiretskiy and Zosso, 2013):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

{uk},{ωk}
⎧⎨⎩∑

k

�������dt[(δ(t) + j

πt
) · uk(t)]e−jωkt

�������
2

2

s·t· ∑
k

uk � f

(1)

Where uk is the component of each mode, ωk is the central
frequency of each mode component, δ(t) is the pulse function,
and k is the number of modes obtained by decomposition.

To solve the variational problem, the model is converted into
an unconstrained variational solution by introducing Lagrange
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multipliers λ and multiplicative factors α, where the extended
Lagrange operator equation is:

L({uk}, {ωk}, λ) � α∑
k

�������zt[(δ(t) + j

πt
) · uk(t)]e−jωkt

�������
2

2

+
���������f(t) −∑

k

uk(t)
���������
2

2

+ 〈λ(t), f(t)

−∑
k

uk(t)〉 (2)

Then the multiplier alternating direction method is used to
search for the extended Lagrangian expression, and the updated
equation for eachmodal component uk, central frequencyωk, and
Lagrangian operator is:

ûn+1
k (ω) �

f̂(ω) − ∑
i≠k

û(ω) + λ(ω)
2

1 + 2α(ω − ωk)2 (3)

ωn+1
k � ∫∞

0
ω|ûk(ω)|2dω∫∞

0
|ûk(ω)|2dω

(4)

λ̂
n+1(ω) � λ̂(ω) + τ⎛⎝f̂(ω) −∑K

k�1
ûn+1(ω)⎞⎠ (5)

If the following equation, with e> 0, is satisfied for a given
discriminant accuracy, then VMD can be achieved.

∑
k

���ûk,n+1 − ûk,n
���2
2/���ûk,n

���2
2 < e (6)

Combined with the above VMD decomposition process,
there are four main parameters: decomposition mode number
k, penalty factor α, noise tolerance τ, and convergence error e.
Among them, the decomposition mode number k and penalty
factor α significantly influence the decomposition
performance; the decomposition signal will be incomplete if
the value of k is too small, while too large a value will lead to
over-decomposition and modal mixing. α will be large when
the bandwidth of decomposition mode is small, and the
bandwidth of decomposition mode will be small if α is too
large. Therefore, the key to determining the decomposition
modes is to determine the decomposition mode number k and
penalty factor α correctly.

Particle Swarm Algorithm Optimized
Variational Modal Decomposition
The particle swarm algorithm (Kennedy and Eberhart, 1995;
Eberhart and Kennedy, 2002) is a population-based
evolutionary algorithm. The core idea of the algorithm is that
each feasible solution is considered a “particle” and all solutions
are scales of particles, each of which has an adaptation value
determined by the fitness function. Each particle also has a
velocity that determines its position and direction. These
particles are updated iteratively in the solution space
following the optimal particle value gbest and the individual

extreme value pbest, and finally converge to the optimal
solution. The velocity and position update is performed as
follows:

vid(t + 1) � λvid(t) + κ1r1(pbest(t) − xid(t)) + κ2r2(gbest(t)
− xid(t))

(7)
xid(t + 1) � xid(t) + αvid(t) (8)

where d is the dimension of the particle; λ is the inertia weight, κ1
and κ2 are the learning factors, usually chosen between [0, 2], r1
and r2 are random values, and α is the constraint factor, which
controls the weight of the velocity. The position change and
velocity change should be constrained according to the actual
situation so that they do not exceed the boundary values.

The number of decomposition modes k and the penalty factor
α for VMD decomposition can be determined quickly using the
particle swarm algorithm; however, this optimization process
requires an objective function to qualify the optimization. The
information entropy can well reflect the sparsity of the

FIGURE 1 | Flow chart of PSO-VMD-LSSVM algorithm.
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decomposition signal, and the magnitude of its value can reflect
the uniformity of the probability distribution. The most uncertain
distribution will have the largest entropy value. Information
entropy is based on this concept. The envelope signal obtained
after applying the demodulation operation on the signal gets
processed into a series of probability distributions pi, and the
entropy value calculated from it reflects the sparsity of the
original signal. After the noise reduction process, the more the
information contained, the smaller the minimum envelope
information entropy is. In this paper, the minimum envelope
information entropy is used as the fitness function of the PSO
algorithm.

pi � ai∑N
i�1ai

, i � 1, 2, . . . . . . , N (9)

ai is the envelope amplitude of the i th point of the modal signal
after VMD decomposition, N is the length of the modal signal
after VMD decomposition, and pi is the normalized envelope of
the modal signal.

IMFFEE(k) � −∑N
j�1
pi log2(pj) (10)

IMFFEE(k) is the entropy of the envelope information of the k
modal signals.

MEE � min{IMFFEE(1), . . . . . . , IMFFEE(k)} (11)
The minimum value of envelope information entropy of k

modal signals is chosen as the minimum envelope information
entropy, which is the adaptation function MEE. When the
adaptation function reaches the minimum value, i.e., the
minimum envelope information entropy reaches the

minimum, the best decomposition modal number k and
penalty factor α are determined to achieve adaptive
decomposition.

Signal Reconstruction
When decomposing the current signal using PSO-optimized
VMD, the sampling rate may be insufficient, and spurious
intrinsic mode function (IMF) components may occur. This
problem is addressed by combining energy density and
correlation coefficient to reconstruct the components of the
current signal truncated from different lithology acquisitions.
The steps are as follows.

FIGURE 2 | Diagram of the tunneling experiment platform.

FIGURE 3 | Four similar simulated specimens.
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1) Perform energy analysis on the four components obtained and
calculate the energy density of each IMF:

Ek � 1
K

∫ |Ck(t)|2dt � 1
K
∑K
d�1

[xk(d)]2 (12)

where Ek is the energy density of the k
th energy mode, k is the length

of the IMF, and xk(d) is the amplitude of the kth IMF component.

2) Analysis of the correlation between the IMF component and
the cutting current signal.

Rk � E[(Ck − μk)(y − μ)]
σkσ

(13)

Rk denotes the mathematical expectation, μk is the mean of the
IMF components, μ is the mean of the original signal y, σk is the
standard deviation of the IMF components, and σ is the standard
deviation of the original current signal.

The average energy of the IMF components of the intercepted
current signals of the four lithologies multiplied by the correlation
coefficient. The three IMF components with the largest product
are selected and superimposed to reconstruct the simulated
current signals of the four lithologies.

Feature Extraction
The relevant features, such as the input for recognition, need to be
extracted from the reconstructed current signal. Multi-scale fuzzy
entropy is based on fuzzy entropy with the addition of scale
factors. The fuzzy entropy value of the same time series under
different scale factors, which can effectively overcome the defects
of single-scale fuzzy entropy value, is used to measure the possible
abrupt changes of time series to effectively measure the

FIGURE 4 | Diagram of tunneling simulation experiment.

TABLE 1 | Four types of ratios and rock mechanical properties.

Lithology Sand to
Glue Ratio

Water to
Paste Ratio

Density/(g/Cm3) Compressive
Strength/MPa

Modulus of
Elasticity/MPa

Lithology1 4:1 3:7 1.731 3.101 560.084
Lithology2 5:1 7:3 1.823 2.445 451.744
Lithology3 6:1 6:4 1.957 1.965 345.873
Lithology4 7:1 5:5 1.623 1.132 265.463

FIGURE 5 | Cut-off lithology 1 cut-off motor current sampling graph.
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nonlinearity and complexity changes of the current signal. The
algorithm description of multi-scale fuzzy entropy is:

1) Construct a new coarse-grained vector yj(τ) for the
reconstructed current signal Xi � {x1, x2, . . . , xn}, where N
denotes the sequence length

yj(τ) � 1
τ

∑jτ
i�(j−1)τ+1

xi, 1≤ j≤
N

τ
(14)

Where τ � 1, 2, . . . , n denotes the scale factor. When τ � 1,
{y1(1), y2(1),/, yn(1)} � Xi is the original time series.

FIGURE 6 | VMD with custom parameters to process the truncated lithology 1 motor current signal graph. (A) IMFs obtained by truncating the lithology 1 motor
current signal by VMD processing with custom parameters (B) Spectrogram obtained by truncating the lithology 1 motor current signal by VMD processing with custom
parameters.
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FIGURE 7 | Truncationcurrent decompositionparameters corresponding to the
iterative process of envelope entropy. (A) Lithology 1 Lithology 1 current decomposition
parameters corresponding to envelope entropy iterative diagram (B) Lithology 2
Lithology 1 current decomposition parameters corresponding to envelope
entropy iterative diagram (C) Lithology 3 Lithology 1 current decomposition parameters
corresponding to envelope entropy iterative diagram (D) Lithology 4 Lithology 1 current
decomposition parameters corresponding to envelope entropy iterative diagram.

FIGURE 8 | Results of truncated motor current signal decomposition of
PSO-VMD for four lithologies. (A) Lithology 1 IMFs (B) Lithology 1
Spectrogram (C) Lithology 2 IMFs (D) Lithology 2 Spectrogram (E) Lithology 3
IMFs (F) Lithology 3 Spectrogram (G) Lithology 4 IMFs (H) Lithology 4
Spectrogram.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8846337

Qi et al. Lithology Identification

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


2) Fuzzy entropy solutions of all time series yj(τ) are converted
into the corresponding scale factor function.

Rockiness Identification
The LSSVM is an improvement of the support vector machine,
using equations instead of inequality constraints, and applying
the linear least-squares criterion to the optimization of the loss
function to improve the convergence efficiency, with the
following process (Fu et al., 2021):

1) The training data set {(x1, y1), (x2, y2),/, (xn, yn)} in which
xi is the i

th input sample and yi is the output variable, and the
kernel function mapping is used to construct the regression
function in the high-dimensional space as follows:

y(x) � ω · φ(x) + b (15)

where ω is the weight vector and φ(x) is the normal vector and b
is the intercept of the hyperplane in the high-dimensional space.

2) According to the structural risk minimization criterion, ω and
b must be optimized. The optimization equations are:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min J(ω, ζ) � 1

2
‖ω‖2 + γ

2
∑n
i�1
ξ2i

s.t.yi � ωT · φ(xi) + b + ξi

(16)

Where γ is the regularization parameter and ξi is the relaxation
variable.

3) Construction of Lagrangian function

L(ω, b, ξ, α) � 1
2
‖ω‖2 + γ

2
∑n

i�1ξ
2
i −∑n

i�1αi(ω · φ(xi) + b − yi

+ ξ i)
(17)

Here αi is the Lagrangian multiplier corresponding to xi.

4) Find the partial differential for ω, b, ξ, α, get the optimal value,
and establish the regression function

y(x) � ∑n
i�1
αiK(x, xi) + b (18)

where K(xi, xj) is the kernel function.
In lithology identification with LSSVM, the choice of kernel

function significantly influences the identification performance of
LSSVM. It is known from the literature that the prediction
accuracy of radial basis kernel function is higher (Jiang et al.,
2016); hence, the radial basis kernel function is chosen as the
kernel function of LSSVM in this paper.

K(xi, xj) � exp( −
����xi, xj

����2
2σ2

) (19)

Where σ is the kernel width.
The flow chart of PSO-VMD-LSSVM based lithology

identification method is shown in Figure 1.

CUT-OFF MOTOR CURRENT SIGNAL
ACQUISITION
Experimental Platform for Simulating
Roadheading
As shown in Figure 2, the roadheading experimental platform,
mainly comprising the propulsion system, the cutting system, and
the signal acquisition system, was built to obtain the current
sensor data of the roadheader under different lithology cutting
work. The propulsion system comprises a 0.75 kW servomotor as
the cutting propulsion motor and two slide rails as the walking
guide. The cutting system uses a 1.5 kW, 60:1 reduction ratio gear
motor with a frequency converter to control the cutting drilling

FIGURE 8 | (Continued).
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speed. A cutting head of the roadheader with equal proportional
reduction is used as the cutting tool for cutting different rock
properties. The signal acquisition system uses 1.4 J LT series
three-phase AC sensor; the output is analog with a range: 0 ~ 5 V
and response time is under 1 ms. LabJack T7-PRO data
acquisition card, used to collect the analog output of the
current sensor, is connected to the upper computer; the upper
computer processes and analyzes the collected current data.

Lithology Specimen Production
When studying the damage process, the damage of rocks is
related to the force and the different rock properties (Du et al.,
2020c), and the difference of compressive strength, density,
and elastic modulus of similar materials can be used as a basis
for different lithologies (Liu et al., 2020). In this paper, four
specimen blocks with four different lithologies were prepared
with four different ratios to realize the identification of
lithology in the process of cutting off rocks wall using a
roadheader. We selected quartz sand as the aggregate,
cement and gypsum as the cementing material, and borax
as an additive, collectively in four ratios (Shi et al., 2015).
After weighing, mixing, compacting, resting, and air-drying,
four similar simulated specimens with different lithologies
were prepared as shown in Figure 3; the ratios of the four
lithologies and rock mechanical properties are shown in
Table 1.

As seen from Table 1, the mastic sand ratio plays a major role
in controlling the uniaxial compressive strength and elastic
modulus of similar materials; these quantities decrease
significantly with the increase of the mastic sand ratio. The
density, compressive strength, and elastic modulus of similar
materials made with the selected four ratios are uniformly large
and different. Thus, the simulated specimens can represent four
kinds of lithologies.

Digging Simulation Experiment
After the four pieces of specimens were left to air-dry and
stabilize, the tunneling simulation experiment was carried out
for the four specimen blocks with different lithologies by
controlling the reducer motor parameters; the cutting
head was rotated at a speed of 10 r/min and the propulsion
motor at a propulsion speed of 0.5 m/min, as shown in Figure 4.

As shown in Figure 4, the four roadheader cut-offmotor currents
were obtained by conducting the tunneling simulation experiments
on the four simulated rock specimens of different lithologies, using
2048 sampling points. The results of the cut-off motor current
sampling for cut-off lithology 1 are shown in Figure 5.

EXPERIMENTAL RESULTS AND
DISCUSSION

To verify the effectiveness of adaptive modal decomposition, the
current signal of the truncatedmotor on lithology 1 working steadily
for 4s, is first subjected to variable modal decomposition with
custom decomposition parameters. The input parameters are
chosen as follows: decomposition modal number k = 3, penalty
factor under α = 3000, noise tolerance τ = 0 and convergence error e
= 10−7, to obtain the decomposition results shown in Figure 6.

As seen in Figure 6, using VMD with custom decomposition
parameters will lead to no decomposition results at frequencies
0–70 Hz, incomplete signal decomposition, modal mixing at
114–138 Hz as the main frequency separation is not complete
because the signal mainly contains the frequency signal and is not
completely decomposed. Therefore, the particle swarm algorithm
with the minimum envelope information entropy as the fitness
function is used to optimize the selection of the parameters of the
variational modal decomposition. The parameters of the particle
swarm algorithm are initialized to the following values: dimension of
particles, d = 2; r λ = 0.8; learning factors κ1 and κ2 are 1 and 2,
respectively; number of iterations = 15; particle population size = 30.
The selection of VMD parameters is optimized, and the penalty
factors of the four lithologies and the number of decomposition layers

TABLE 2 | Truncated motor current signal IMF component average energy
density table.

E IMF1 IMF2 IMF3 IMF4

Lithology 1 0.4573 0.0049 0.0073 0.0048
Lithology 2 0.4567 0.0043 0.0066 0.0042
Lithology 3 0.5938 0.0011 0.0017 9.8963
Lithology 4 0.6069 0.0035 0.0036 0.0023

TABLE 3 | Truncated motor current signal IMF component correlation
coefficient table.

R IMF1 IMF2 IMF3 IMF4

Lithology 1 0.4985 0.5756 0.6318 0.5078
Lithology 2 0.4903 0.5629 0.6186 0.5004
Lithology 3 0.5231 0.5020 0.5497 0.4022
Lithology 4 0.3656 0.5333 0.5910 0.5134

FIGURE 9 | Fuzzy entropy values of the four current reconstruction
signals with scale factor.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8846339

Qi et al. Lithology Identification

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


corresponding to the envelope entropy part of the selection point
iteration curve are shown in Figure 7.

As seen in Figure 7, using PSO to optimize the VMD parameter
selection first uses the envelope entropy as the objective function to
randomly select the decomposition modal number k and penalty
factor α as the initial positions of the particles, and then calculates the
envelope entropy value corresponding to each particle position.
Next, the optimization function continuously compares the
envelope entropy values and selects the minimum value of the

envelope entropy for each update and determines the parameters k
and α at this minimum position as the local extremes. Finally, the
global minimum as the final decomposition modal number k and
penalty factor α are selected. The lithologies of the four truncated
motor current simulation signals are determined by the particle
swarm algorithm as the best decomposition parameters with
different penalty factors, wit the number of decomposition layers
set to 4. Under these parameters, the fitness function of the particle
swarm algorithm, i.e., the envelope entropy, reaches the minimum.

TABLE 4 | Signal-to-noise ratio comparison before and after signal reconstruction.

Current Signal Lithology
1 Current Signal

Lithology
2 Current Signal

Lithology
3 Current Signal

Lithology
4 Current Signal

Signal-to-noise ratio before reconstruction 20.1807 4.7738 20.5560 16.9654
Signal-to-noise ratio after reconstruction 25.0162 8.6162 22.6319 19.4205

FIGURE 10 | LSSVM recognition result graph. (A) LSSVM results for rockiness classification of current signals processed by VMD with custom parameters (B)
LSSVM results for lithology classification of current signals processed by PSO-VMD.
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The variable modal decomposition of the cutter motor current
signal after the particle swarm algorithm optimizes the value of the
excavator under the four different lithologies is shown in Figure 8.

As seen from the above figure, the PSO-VMD determines the
optimal decomposition parameters modal number k and penalty
factor α. The VMD decomposition of the truncated currents of the
four lithologies achieves an adaptive and completely non-recursive
decomposition, effectively separating each modal component of the
four current signals and overcoming the problems of endpoint effects
and modal component mixing, with a good decomposition effect.

The results of calculating the average energy density and
correlation coefficient for the decomposed current signal
eigenmode function are shown in Tables 2, 3.

The average energy of the IMF components of the current
signals of the four lithologies are correspondingly multiplied by
the average energy. The three IMF components with the largest
product are superimposed to reconstruct the current analog
signals of the four lithologies. The signal-to-noise ratio before
and after signal reconstruction is shown in Table 4.

The PSO-VMD reconstructs the eigenmodes based on the
correlation coefficient and energy density to reduce the noise of
the original truncated current signal (Liang et al., 2021).

After noise reduction of the current signal, multi-scale fuzzy
entropy is calculated, with the scale factor set to 8 and the
similarity tolerance limit of 0.15. Fifty sets of 8-scale fuzzy
entropy are taken for each of the current signals truncated on
the four lithologies to obtain a total of 200 sets of 8-scale fuzzy
entropy. Part of the 8-scale fuzzy entropy is shown in Figure 9.

As seen from Figure 9, the fuzzy entropy values of lithology 1
and lithology 3 overlap when the scale factor is 2. When the scale
factors are 3, 4, and 5, the scale factors of lithology 2 and lithology
4 do not differ much. Finally, when the scale factors are 5, 6 and 7,
the scale factors of lithology 1 and lithology 3 are closer, but they
do not overlap. In general, the multi-scale fuzzy entropy of each
lithology is distinguishable and can be used as a feature vector for
identifying these four lithologies.

Forty sets of 50 sets of multiscale fuzzy entropy for each lithology
were randomly selected as the training set and 10 sets as the test set.
Finally, the four lithologies are classified using a least squares support
vector machine with kernel function as the radial basis function.
Considering the regularization parameter γ as 3.1 and the kernel width
σ as 10, the lithology was identified using LSSVM for the eigenvectors
of the current signal withVMDof customparameters; the recognition
rate was 87.%. Further, the lithology was identified for the current
signal optimized using PSO-VMD, and the final recognition rate was
97.5%. The recognition results are shown in Figure 10.

As seen from Figure 10, using LSSVM to identify the lithology of
the current signal processed by VMD with custom decomposition
parameters, three of the ten test groups of lithology 1 failed to identify
lithology 1 as lithology 3, and two of the test groups of lithology 3
identified lithology 3 as lithology 1, possibly due to the inconspicuous
difference between the features of lithology 1 and 3 by multi-scale
fuzzy entropy. While identifying the PSO-VMD processed current
signals using LSSVM, only lithology 3 was identified as lithology 1 in
one test group; the identification effect was better, and the recognition
rate was improved by 10% relative to the custom parameter
processed VMD.

In this study, we first obtained the eigenmode function by PSO-
VMD, and then obtained the reconstructed current signal by
summing the eigenmode function with energy density and
correlation coefficient criterion. Multi-scale fuzzy entropy was used
as the feature vector, and finally, the LSSVM was used to identify
different lithologies. Further improvement of the recognition
efficiency could be realized by applying other methods to improve
the signal-to-noise ratio before and after noise reduction, or feature
vectors with better differentiation between different lithologies.

CONCLUSION

Aiming to resolve the lithology identification problem of cut-off
rock walls during excavation, we obtained current sensor data by
building an excavation experiment platform and proposed an
intelligent lithology identification method of PSO-VMD-LSSVM.
The following conclusions are mainly obtained.

1) The particle swarm algorithm using the minimum envelope
information entropy as the fitness function can optimize the
parameter selection of the variational modal function of the
current signal, ensuring that the parameters of the VMD can
be selected adaptively.

2) The energy density and correlation coefficient criteria are used to
reconstruct the modal components of the current signal after the
VMD to increase the signal-to-noise ratio of the current signal.

3) Multi-scale fuzzy entropy is used as a feature vector for truncating
the reconstructed current signal of different lithologies. It can be
used as a feature vector for recognition because it has better
differentiation for different lithologies under different scale factors.

4) The lithology classification by the LSSVM is performed for the
VMDwith custom decomposition parameters and the PSO-VMD;
the recognition results are 87.5 and 97.5%, respectively. Thus, the
PSO-VMD can improve the recognition rate of the LSSVM.
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