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Evaluating whether hydrological models are right for the right reasons demands

reproducible model benchmarking and diagnostics that evaluate not just

statistical predictive model performance but also internal processes. Such

model benchmarking and diagnostic efforts will benefit from standardized

methods and ready-to-use toolkits. Using the Jupyter platform, this work

presents HydroBench, a model-agnostic benchmarking tool consisting of

three sets of metrics: 1) common statistical predictive measures, 2)

hydrological signature-based process metrics, including a new time-linked

flow duration curve and 3) information-theoretic diagnostics that measure

the flow of information among model variables. As a test case, HydroBench

was applied to compare two model products (calibrated and uncalibrated) of

the National Hydrologic Model - Precipitation Runoff Modeling System (NHM-

PRMS) at the Cedar River watershed, WA, United States. Although the

uncalibrated model has the highest predictive performance, particularly for

high flows, the signature-based diagnostics showed that the model

overestimates low flows and poorly represents the recession processes.

Elucidating why low flows may have been overestimated, the information-

theoretic diagnostics indicated a higher flow of information from precipitation

to snowmelt to streamflow in the uncalibrated model compared to the

calibrated model, where information flowed more directly from precipitation

to streamflow. This test case demonstrated the capability of HydroBench in

process diagnostics and model predictive and functional performance

evaluations, along with their tradeoffs. Having such a model benchmarking

tool not only provides modelers with a comprehensive model evaluation

system but also provides an open-source tool that can further be developed

by the hydrological community.
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Introduction

Supported by advances in computational capacity, there is a

proliferation of hydrological models ranging from simple black

box data-driven models to complex integrated models. Similarly,

the application of these models ranges from local to regional and

continental-domain hydrological decision support tools. In this

regard, the U.S. Geological Survey’s National Hydrologic Model-

Precipitation Runoff Modeling System (NHM-PRMS) (Regan

et al., 2018, 2019) and National Oceanic and Atmospheric

Administration’s National Water Model (Cohen et al., 2018)

are examples of continental-domain models that strive to address

national-scale water balance, water supply, and flood risk

analyses. Although model adoption can be more of a function

of legacy than adequacy, models’ reliability rests on performance

evaluation (Adorr and Melsen, 2019). Performance evaluation,

which includes model benchmarking and diagnostic efforts,

benefits from standardized methods and ready-to-use toolkits

that implement those methods (Kollet et al., 2017; Nearing et al.,

2018; Lane et al., 2019; Saxe et al., 2021; Tijerina et al., 2021).

Standardized methods and toolkits also help modeling

communities and model users build trust in a model’s

operational reliability. As such, having a ready-to-use,

organized, and comprehensive model-agnostic (i.e., model-

independent) benchmarking tool is critical for advancing

modeling communities and modeling practice.

Hydrologic model performance evaluations often rely on

statistical metrics such as Nash-Sutcliffe efficiency and

correlation coefficient. However, as these metrics are

indicative of focused aspects of model performance, there is a

call of comprehensive model evaluation that includes process-

based model diagnostics (Gupta et al., 2008; McMillan, 2020,

2021) and functional model evaluations (Weijs et al., 2010;

Ruddell et al., 2019). Process-based model diagnostics evaluate

the hydrological consistency of the model with observations (e.g.,

through examination of hydrological signatures that capture

dominant processes), while the functional model performance

evaluation focuses on the interactions or information flows

among internal flux and state variables (e.g., uncertainty

reduction of streamflow by precipitation data). Thus, a

comprehensive model benchmarking tool may need to include

at least three types of metrics that 1) quantify model predictive

performances by comparing observations and their

corresponding model outputs, 2) reveal hydrological process

consistency and 3) assess the functional performance of the

model. As a whole, such a benchmarking practice helps

evaluate not only predictive performance but also reveals

whether the models are right for the right reasons (Kirchner,

2006).

Hydrologic model consistency, which refers to the

representation of dominant processes by the model, can be

evaluated by using hydrological process signatures. This

benchmarking strategy reveals a model’s ability to reproduce

observed process-informative signatures such as flow duration

curve, runoff coefficient, and recession curves. For instance,

Yilmaz et al. (2008) used flow duration curves to diagnose

model performance in capturing the different segments of a

hydrograph, while De Boer-Euser et al. (2017) showed the use of

flow duration curves in diagnosing model inadequacy. Similarly,

recession curves are employed to evaluate and derive models that

characterize subsurface processes (Clark et al., 2009; Kirchner,

2009). Meanwhile, numerous studies used a mixture of different

signature measures (e.g., McMillan et al., 2011; Tian et al., 2012;

Moges et al., 2016). These studies have shown that hydrological

signatures can highlight how well the model is capturing the

causal processes rather than being a mere predictive tool that

may suffer in out-of-sample tests.

Model functional performances can be evaluated using

information-theoretic metrics that quantify information flows

between flux and state variables. These metrics are used as 1) a

better measure of dependence between simulations and

observations than linear metrics such as the Pearson

correlation coefficient and similar L-norm based metrics

(Pechlivanidis et al., 2010, 2014; Weijs et al., 2010), 2) tools

that reveal model internal interactions among all variables

(termed “process networks”) (Ruddell and Kumar, 2009;

Bennett et al., 2019; Moges et al., 2022), and 3) quantitative

measures of the synergies or tradeoffs between predictive and

functional performance in a model. L-norm based metrics

quantify the actual differences between observed and

simulated values as opposed to information flow metrics that

quantify differences in probabilistic distributions. Here, synergies

refer to simultaneous improvements in both predictive and

functional performance, while tradeoffs refer to gains in either

functional or predictive performance leading to a loss in the other

(i.e, between “right answers” versus “right reasons”) (Kirchner,

2006; Ruddell et al., 2019). The use of functional model

performance metrics, particularly a model’s process network,

helps to evaluate the validity of the model’s constitutive

functional hypotheses in light of both expert judgment and

model intercomparisons. However, as some of these tools

were developed only recently, there is a lack of widespread

application and ready-to-use interfaces accessible to the wider

community.

Reproducibility is central to science and one of the key

features of the geosciences paper of the future (Gil et al.,

2016). It involves the full documentation, description, and

sharing of research data, software, and workflows that

underpin published results. However, multiple disciplines

including hydrology have indicated that there is a

reproducibility crisis (Stagge et al., 2019). Thus, similar to the

call for model diagnostics and benchmarking, there is a drive

towards hydrological research reproducibility. Hutton et al.

(2016) indicated that the lack of common standards that

facilitate code readability and reuse, well-documenting

workflows, open availability of codes with metadata, and
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citation of codes are key challenges in hydrological

computational reproducibility. As a potential solution, recent

tools in computer science are enabling ease of documenting,

collaborating, self-descriptiveness, and sharing of codes and

workflows. These tools can likewise be used to support

reproducibility in computational hydrology. Furthermore, as

these tools are user-friendly and interactive, they can be used

to support not only modelers but also decision-makers who are

not as equally code-adept and trained as modelers.

One way to meet the call for an organized (less fragmented)

system of comprehensive model evaluation and reproducibility is

to have a readily available tool. For instance, the Toolbox for

Streamflow Signatures in Hydrology (TOSSH) was recently

developed as a Matlab ® toolbox that provides a variety of

hydrological process signatures (Gnann et al., 2021). Similarly,

Hydroeval focuses on statistical predictor metrics (Hallouin,

2021). Although these tools are available, they are limited in

their focus to one set of diagnostics and lack interactivity. For

instance, Hydroeval is focused on multiple predictive

performance measures such as the Nash-Sutcliffe coefficient

while TOSSH provides an extended list of hydrological

signature measures to evaluate process consistency.

Furthermore, they do not incorporate the recent information-

theoretic toolsets that quantify model functional performances.

On the other hand, although various Jupyter based tools that

support reproducibility are being developed in hydrology (for

example, Peñuela et al. (2021) on reservoir management), they

cannot typically produce benchmarking and diagnostic metrics.

Building on the existing model benchmarking and diagnostic

tools, HydroBench (https://emscience.github.io/

HydroBenchJBook/HydroBenchIntroduction.html) serves as

an open-source, model agnostic hydrological diagnostics

platform that emphasizes reproducibility. As a comprehensive

model performance evaluation tool, HydroBench consists of

three sets of metrics that include 1) predictive performance

metrics, 2) hydrological signatures, and 3) functional

performance metrics that use information-theoretic concepts.

The tool can be used to help modelers diagnose potential issues

with their models, users to reproduce model performance

evaluations, decision-makers to quickly evaluate and

understand model performances interactively, and educators

to teach hydrological science students about both model

diagnostics and reproducibility. In order to demonstrate its

usefulness and application, HydroBench is applied to the

NHM-PRMS product at the watershed scale near Cedar

River, WA.

Methods

HydroBench helps answer the following model performance

evaluation questions in a reproducible manner:

1) How good a predictor is the model with respect to statistical

predictive performance measures?

2) How consistent is the model with a suite of observed

hydrological behaviors (i.e., signatures)?

3) How well do the model’s internal dynamics replicate

interactions among observed system variables?

These three questions are addressed within HydroBench

through three types of hydrological benchmarking metrics

that aid in model performance diagnostics. In this section, we

first highlight the software ecosystem that underlies HydroBench

and supports reproducible research and then discuss the three

sets of benchmarking metrics.

Reproducibility and the jupyter ecosystem

Model diagnosis and benchmarking require evaluation

strategies that are applicable to any watershed or model

(i.e., “model-agnostic”). Standardizing model benchmarking

and diagnostics in a reproducible and collaborative manner

will allow modelers to better focus their time on research

development, rather than on reinventing the model evaluation

wheel. In this regard, the Jupyter ecosystem (https://jupyter.org/)

FIGURE 1
HydroBench supports computational hydrology and water
resources decision making by facilitating reproducibility,
collaboration, and computational interactivity. Voila is a widget
rendering tool that enables interactive computation (https://
github.com/voila-dashboards/voila), while Xarray is a standardized
data format that eases working on multidimensional datasets
(https://docs.xarray.dev/en/stable/).

Frontiers in Earth Science frontiersin.org03

Moges et al. 10.3389/feart.2022.884766

https://emscience.github.io/HydroBenchJBook/HydroBenchIntroduction.html
https://emscience.github.io/HydroBenchJBook/HydroBenchIntroduction.html
https://jupyter.org/
https://github.com/voila-dashboards/voila
https://github.com/voila-dashboards/voila
https://docs.xarray.dev/en/stable/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.884766


provides foundational tools that are intended to facilitate

reproducibility and collaboration.

In HydroBench, we followed a three-pillar scheme to support

hydrological model benchmarking and diagnostics: 1)

reproducibility, 2) collaboration and 3) interactive

computation (Figure 1). To support reproducibility, we used

Jupyter Notebook, Binder and JupyterBook (Project Jupyter 2022

| https://jupyter.org/). Jupyter Notebooks are open-source

documents that merge code, results, texts and interactive

widgets to narrate a computational story (Pérez and Granger,

2007). By narrating a computational story rather than presenting

mere codes or results, notebooks make computational workflows

self-descriptive. Furthermore, as notebooks can be viewed and

shared easily, they also facilitate collaboration and

reproducibility. For a detailed description of Jupyter

Notebooks, the ten best practices of using Jupyter Notebooks

are outlined in Rule et al. (2019) while ten best practices of

reproducible research are outlined by Sandve et al. (2013).

Hydrological computations may require the use of more than

one Jupyter Notebook or a very long single notebook. Having

long or multiple notebooks leads to story fragmentation. To

avoid this fragmentation, a Jupyter Book can be used to bind

together multiple notebooks (Community, 2020 - https://

jupyterbook.org/intro.html). A Jupyter Book is a compilation

of notebooks and markdown (text) readme-files. This

compilation can then be published as a traditional book

narrating the computational story from its multiple components.

One way to facilitate scientific reproducibility is by openly

sharing a complete, re-runnable workflow over the cloud. Binder

is a web-based cloud platform that enables sharing and executing

codes by recreating the computational environment without

installing packages locally (Jupyter et al., 2018). Since the

computational environment is recreated on the cloud, Binder

makes reproducing codes and their results a single-click task.

Thus, Binder not only provides a reproducible environment but

also simplifies the user experience.

Collaboration is key in both model development and

diagnostics. Git is a version control state-of-the art tool for

code development and collaboration, while GitHub and other

similar platforms are online repositories that enable sharing and

collaboration on codes. Through its version-control features, Git

enables a reproducible workflow among groups of collaborators

on a project. In addition to collaboration on code developments,

open-source hydrological data are also critical for community-

wide model benchmarking, as they enable modelers to test their

hypotheses beyond local watersheds and over a broad range of

time against consistent information. Examples of large-sample

open-source data in hydrology include the MOPEX, CAMELS,

EMDNA, and CHOSEN datasets (Duan et al., 2006; Addor et al.,

2017; Tang et al., 2021; Zhang et al., 2021).

The third pillar of HydroBench is interactive computation.

Although sharing codes, executables and data is critical in

reproducibility, codes are not always user-friendly, as their use

is impossible without baseline expertise. In contrast, widgets are

user-friendly tools that can be intuitively executed with clicks and

slider bars. As a result, they can support most users and

stakeholders across the spectrum of computing skills. In

addition, widgets clear up code blocks and can facilitate

interpretation through informative visualizations.

Model benchmarking and diagnostics

Statistical predictive metrics
Numerous model predictive performance metrics are used

in hydrological model evaluation to compare hydrological

responses such as observed and modeled streamflow (and/

or water table, or evapotranspiration) data. Each metric has a

different skill in its evaluation. For instance, the Pearson

correlation coefficient is effective in revealing the linear

relationship between observed and modeled output, while

the log-transformed Nash-Sutcliffe coefficient is more

sensitive to low flow regimes than high flows. A detailed

skills description of these metrics can be found in Krause

et al. (2005), Gupta et al. (2009), and Moriasi et al. (2015). Due

to their variation in skill, it is recommended to evaluate

models using multiple metrics (Bennett et al., 2013). As a

result, HydroBench includes multiple statistical metrics as

indicators of models’ predictive performances. Table 1

provides the list of HydroBench’s model predictive

performance metrics and their corresponding skills. These

metrics are selected according to their skill, widespread use in

hydrology, complementarity, and avoidance of redundancy.

In terms of skill, they cover high and low flows, volume, and

overall hydrograph characteristics (Table 1 and Figure 2).

Process-based hydrological signature metrics
Statistical predictive performance metrics lack

hydrological rigor and are not sufficient in diagnosing

model performances (Gupta et al., 2008; McMillan, 2021).

In contrast, the use of hydrological signature metrics can help

diagnose model performances by indicating the model’s

ability to reproduce specific hydrological processes such as

high/low flows or subsurface flows. Multiple process-based

signature metrics are implemented in HydroBench (Table 2).

Table 2 provides a description and relative skills of the

signature metrics, which are complementary to each other

in characterizing subsurface flow, different segments of a

hydrograph and water balance. In addition, we have also

created an interface between TOSSH and HydroBench to

support the full access of the TOSSH hydrological signature

metrics to HydroBench users. A detailed guide of the

interface is provided in the example notebook included in

HydroBench. For an extended list, skill, and computation of

hydrological signatures, we refer users to the TOSSH toolbox

and the references therein (Gnann et al., 2021).
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HydroBench includes Hydrograph and Flow Duration Curve

(FDC) as part of the signature metrics. However, a hydrograph

becomes cumbersome and difficult to interpret when the time-

series being evaluated is long (i.e., multiple years of fine

resolution data). Similarly, as FDC is purely probabilistic, it

delinks the temporal dimension of the streamflow magnitude.

That is, as long as the model preserves the exceedance probability

of the observed data, FDC suggests high model performance,

TABLE 1 List and description of predictive performance evaluation metrics in HydroBench. Here, Q represents streamflow, an example of the
dependent variable, P represents precipitation, as an example of an input flux variable, mod = model, and obs = observed.

Name Equation Description and skill

Nash-Sutcliffe
efficiency (NSE)

NSE � 1 − ∑n
i�1(Qobs,i − Qmod,i)2/∑n

i�1(Qobs,i − Q
obs
)2 NSE is relatively skilled in revealing model performance in

capturing high flows, while it has limited skill in capturing low
flows, as it is an L2 norm-derived metric

Log transformed
(logNSE)

Similar to NSE but with Qobs and Qmod in the logarithm space logNSE is similar to the Nash Sutcliffe efficiency but with the
inputs being transformed to the logarithm space. As it is
computed based on log-transformed inputs, it is skilled in
capturing model predictive performances of low flows

Percent Bias (PBIAS) PBIAS � ∑n
i�(Qobs,i − Qmod,i)/∑n

i�1Qobs,i Compared to the L2 norm-derived NSE, PBIAS is an L1-
derived metric that is less sensitive to peaks and suitable to
reveal predictive performances of total streamflow volume
Moriasi et al. (2015)

Pearson correlation
coefficient (r)

r � ∑n
i�1(Qobs,i − Q

obs
)(Qmod,i − Q

mod
)/

����������������∑n
i�1(Qobs,i − Q

obs
)2

√ �����������������∑n
i�1(Qmod,i − Q

mod
)2

√
r is a linear measure of model performance. It quantifies the
linear relationship between observed and model prediction

Kling-Gupta
efficiency (KGE)

α � stdev(Qmod)/stdev(Qobs) KGE addresses NSE's biases and better evaluates model
performance in capturing both high and low flows (Gupta
et al., 2009)

β � mean(Qmod)/mean(Qobs)
KGE � 1 −

������������������������
(r − 1)2 + (α − 1)2 + (β − 1)2

√

FIGURE 2
(A) Example of a standard input table to HydroBench. The empty cells refer to user provided input data, and (B) Summary of the output metrics
of HydroBench and their sensitivities (color-coded). Color codes, described in the lower table (“Key: sensitivity of metrics”) indicate the hydrological
feature to which the metric is most sensitive.
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regardless of the time coincidence of the model simulation.

Complementing the hydrograph and FDC, we developed a

signature metric that is probabilistic like FDC but also

preserves the time correspondence of the simulation like a

hydrograph. The metric is called Time linked Flow Duration

Curve (T-FDC), and it inherits the characteristics of both FDC

and a hydrograph.

T-FDC is a heatmap-based model performance evaluation

hydrological signature metric. In constructing the heatmap,

T-FDC first lets users define a bin size for segmenting

streamflow. Second, it bins the observed streamflow to the

predefined bin size and sets it as the y-axis. Then, for its

x-axis, T-FDC tracks whether the time corresponding model-

simulated streamflow is binned in the same bin class as the

observed streamflow or other bin classes. Finally, it generates a

heatmap based on the time-tracked counts of the simulated

streamflow in each bin class. A perfect model with a high

number of data counts in the same bin as the observed values

will only populate the main diagonal of the heatmap. In contrast,

a high number of data counts below the diagonal indicate an

underestimating model, while an overestimating model will have

a high number of counts above the diagonal. This makes T-FDC's

visual interpretation intuitive. In addition to the visual

interpretation, we have included a numerical quantification of

model performance based on T-FDC using the percentage of data

counts in the diagonal. Higher percentages indicate higher

performance and vice versa.

Information-theoretic metrics
Beyond the predictive metrics and signature measures, recent

developments in hydrological model diagnostics involve the use

of information-theoretic metrics (Nearing et al., 2018, 2020).

Compared to the predictive and hydrological signature metrics,

the information-theoretic metrics require longer hydrological

records. However, the diagnostic information they provide about

why a model may be exhibiting poor performance, or whether it

exhibits good performance for the right reasons, can be more

powerful. Specifically, HydroBench provides a suite of

information theoretic-based metrics (Table 3) that reveal 1)

functional model performance, 2) predictive model

performance and 3) the tradeoff between functional and

predictive performances. Functional performance can be

quantified by comparing observed transfer entropy (TE) with

modeled TE and visualized using information flow process

network (PN) illustrating functional relationships within the

model (Ruddell et al., 2019). TE is a measure of time-lagged

information flow from a “source” to a “sink” variable that

accounts for autocorrelation in the “sink” time series. Unlike

the runoff coefficient, which quantifies the flow of mass from

precipitation (P) to streamflow (Q), PNs quantify information

flow (i.e., uncertainty reduction of Q by P) between these and

other variables. On the other hand, the predictive performance of

a model can be quantified as the mutual information (MI)

between the observed and modeled time series, which

functions similarly to a correlation coefficient but is robust to

nonlinearity (Ruddell et al., 2019). By providing visualizations of

these metrics and how they vary across alternative models,

HydroBench helps reveal the tradeoffs between predictive and

functional performances.

In HydroBench, predictive performance is quantified based

on the similarity between the observed and predicted streamflow

time series, computed through their mutual (i.e., shared)

TABLE 2 List and description of hydrological signature-based model diagnostic metrics in HydroBench. Here, Q denotes streamflow, an example of
the dependent variable, P denotes precipitation, an example of an input flux variable, and r denotes rank based on a decreasing sorting of a time
series.

Name Equation/
Function

Description and skill

Runoff coefficient (RC) RC � ΣQ/ΣP RC deals with the flow of mass from precipitation to streamflow and helps in diagnosing water balance
discrepancies between the observed and model time series at the annual scale. Namely, it measures to what
extent the model captures the observed annual water balance

Flow duration curve (FDC) Qr � f(Qrank) FDC provides visual diagnostics of model performance in capturing both high- and low-flow segments of a
hydrograph in a temporally delinked mannerQrank � r/n + 1

Recession curve dQ/dt � f(Q) Recession curves help evaluate model performance in the absence of precipitation. Their shape is most
sensitive to the rate at which water is released from catchment storage. Consequently, recession curves can
indicate a model’s performance in characterizing subsurface processes

Time Linked Flow Duration curve
(T-FDC)

f(Q, bin size) Because FDC does not have a time component in revealing under- and overestimation of flows, we
developed T-FDC, which complements FDC by incorporating a time component. For a given day observed
streamflow, T-FDC tracks whether a model estimate results in the same, higher or lower bin. This is
analogous to the confusion matrix and requires binning of the data according to the observed minimum
and maximum values. T-FDC is a (visual) metric between FDC and hydrograph. Thus T-FDC eases the
interpretation of a hydrograph by simplifying it to be within a specific bin count
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information (1-MI). Functional performance is evaluated as a

comparison of information flows from a forcing variable (e.g.,

temperature, precipitation) to a sink variable (e.g., streamflow) in

the model versus observations

(TEsource→sink: model − TEsource→sink: observed). Ideally, information

will flow similarly among modeled variables as in observations

leading to a zero score in functional performance. Negative

values of functional performance indicate that the model does

not extract enough information from the forcing variable, with

extreme negative values being indicative of an overly-random fit.

Positive values of functional performance indicate that the model

extracts too much information from the forcing variable of

interest, resulting in an overly-deterministic fit. Further details

of this interpretation can be found in Ruddell et al. (2019).

HydroBench additionally provides one, two and three-

dimensional entropy measures for the given random variables

X, Y, and Z as H(X), H(X, Y) and H(X, Y, Z), that quantify the

information content of a single variable or its simultaneous

interactions with multiple other variables. However, higher-

dimensional quantities require longer data record lengths than

the metrics discussed above. Along with their data length

requirements, information theoretic metrics have a few

shortcomings or caveats in comparison to the other metrics.

As information theoretic metrics are dependent on probability

distributions rather than on actual variable values, it is important

to use them along with hydrological signatures and statistical

performance measures that are a function of the actual values of

the variables. Moreover, the computation of these information-

theoretic metrics involves subjective parameters such as the

number of bins and the statistical significance threshold. The

Jupyter notebook accompanying HydroBench describes these

parameters and their computation, including the number of bins

and statistical significance.

HydroBench interface—Input and output
data structure

HydroBench is a model-agnostic platform that requires basic

Python programming skills. It can be downloaded/cloned from

the following GitHub link https://github.com/EMscience/

HydroBench with multiple application test cases and a

particular focus on the Cedar River, WA. HydroBench accepts

model and observed data in a predefined structure. The input

structure is a table of data that consists of at least two data

columns (e.g., observed streamflow, and model streamflow),

along with their start and end dates (Figure 2). The model

that generated the data can be lumped or distributed, as

HydroBench requires inputs of time series variables. With

these inputs, basic benchmarking results can be obtained. The

basic results are the predictive performance metrics, plus FDC

and T-FDC diagnostics. With an extended input table that

contains one or more additional columns of independent

variables (e.g., precipitation), HydroBench can provide all

three types of metrics - predictive, hydrological signature, and

functional (Figure 2). Since HydroBench has a modular design, it

can easily be called into any notebooks that host model results

and generate a table of inputs (e.g., Figure 2A). Additionally, any

single metric can be employed depending on users’ preferences.

Case study description

HydroBench was applied to a 103.5-km2, relatively low-

gradient watershed near Cedar River, WA (Figure 3), which

was extracted from the NHM infrastructure (Regan et al., 2018)

for this case study. The Cedar River watershed was selected for

the case study because it is considered undisturbed according to

the GAGES II classification (Falcone et al., 2010) and because

NHM-PRMS predictions of its streamflow strongly contrast

between the calibrated and uncalibrated version of the model

(Section 3). The catchment’s land cover is dominated by a

coniferous forest (Falcone et al., 2010). Comparing the long-

term (1980–2016) average monthly precipitation and catchment

area-normalized streamflow volume, streamflow is higher than

precipitation from April to July, indicating that most of the

streamflow is a function of storage during these months, while

the remaining months are dominated by precipitation, meaning

that water enters storage. The catchment resides in a humid

climate, where 53% of precipitation falls as snow (Figure 3 and

Falcone et al., 2010).

The model under consideration is NHM-PRMS. NHM-

PRMS provides two hydrological model products based on

two model parameter sets: a nationally calibrated set and the

uncalibrated set (Driscoll et al., 2018; Hay, 2019). In the NHM-

PRMS uncalibrated model (Driscoll et al., 2018), parameters are

estimated from both catchment and climatic characteristics

(Markstrom et al., 2015; Regan et al., 2018; Regan et al.,

2018). In cases where estimation is impossible, the

uncalibrated product is based on model default parameter

values from Markstrom et al. (2015). This approach has its

advantages and limitations. Primarily, it is fast compared to

automatic calibration schemes and can be used to initialize

the PRMS model for a further automatic calibration.

Additionally, the approach might also be beneficial for

parameter estimation in ungauged watersheds and

nonstationary systems, as it does not rely on historical

climatic/meteorological data. However, the approach becomes

poor in cases where local data is sparse and in regions where the

model is not tested before, as the default values may not be

relevant. An extended description of the uncalibrated NHM-

PRMS model parameter estimation and its product can be found

at Regan et al. (2018) and Driscoll et al. (2018).

The calibrated version of NHM-PRMS employed a

multivariable stepwise parameter estimation using the Shuffle

Complex Evolution algorithm (Hay and Umemoto, 2007; Hay
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et al., 2006 & 2019). In starting the calibration, the parameters

were initialized at their uncalibrated NHM-PRMS value. The

calibration uses multiple variables, including daily streamflow

from 1980 to 2010 and for the same period, monthly snow cover

area (SCA, from SNODAS; National Operational Hydrologic

Remote Sensing Center, 2004), potential evapotranspiration and

solar radiation (PET and SR, from Farnsworth and Thompson,

1982, the DAYMET climate data and Regan et al., 2018), actual

evapotranspiration (AET, from Cao et al., 2006; Rietjes et al.,

2013) and soil moisture estimates (SM, from Campo et al., 2006;

Thorstensen et al., 2016). These data are derived from national

scale remotely sensed datasets and other model products. The

sensitivity of the different model parameters to these variables is

assessed, and parameters are then sequentially calibrated with an

objective function defined as the normalized root mean square

error between the observed and simulated values of the output

variables in decreasing order of sensitivity (Markstrom et al.,

2016). That is, in calibrating PRMS to these variables, sensitivity

analysis guides the identification of which parameters are

calibrated by which variable in a stepwise manner. Stepwise

calibration starts with 1) PET and SR, followed by 2) SM and

AET, and finally, 3) streamflow. For a detailed description of the

model calibration and the optimization employed, please refer to

Hay et al. (2006), Hay and Umemoto (2007) and LaFontaine et al.

(2019).

In demonstrating the application of HydroBench at the

Cedar River, we evaluated model performance with respect to

the input, state, and output variables of the calibrated and

uncalibrated NHM-PRMS model. Namely, as NHM-PRMS

computes hydrologic fluxes using inputs of daily precipitation

and maximum and minimum air temperature, these variables

were included in our analysis. Similarly, we extracted the

predicted variables of streamflow, snowmelt, basin soil

moisture, and actual evapotranspiration from 1980 to 2016 at

a daily time step for our model benchmarking and diagnostics at

the Cedar River, WA.

Results

Facilitating reproducibility, all inputs and the results

presented in this section are available on GitHub (https://

github.com/EMscience/HydroBench). As a Binder link is also

included, the analysis can be fully reproduced, and the different

widgets can also be used for further interactive computation on

the cloud. Thus, users of HydroBench can emulate and adapt the

workflow easily.

Statistical predictive performance metrics

At the Cedar River watershed, the uncalibrated model shows

better statistical predictive performance than the calibrated

model, according to the HydroBench-provided statistics,

except for the KGE metric under the log-transformed flow

condition (Table 4 and Figure 4). Regardless of the skills of

the metrics in representing the different hydrograph segments

(low or high flows), most of the predictive performance metrics

suggest that the uncalibrated model is a preferred choice (Tables

1–3). However, the predictive performance metrics do not

explain why and how the uncalibrated model exhibits better

predictive performance than the calibrated model. In addition, it

is important to note that the calibration of NHM-PRMS does not

only focus on the prediction of streamflow but also on capturing

remotely sensed ET and other variables with a stepwise

calibration method.

FIGURE 3
Case study watershed near Cedar River, WA: (A) location and elevation, and (B) annual hydrometeorological characteristics. The WA basemap
source data is from https://geo.wa.gov/.
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FIGURE 4
Screenshot of HydroBench interactive window showing predictive performance metrics and the corresponding hydrograph for NHM-PRMS
simulations of the Cedar River watershed daily streamflow, 1980–2016, compared to observations (USGS stream gage, 12115000).

TABLE 3 List and description of information-theoretic model diagnostic metrics. Here, Q denotes streamflow, an example of the dependent variable
of interest, and P denotes precipitation, an example of an input flux variable.

Name Equation Description and skill

Entropy (H(x)) H(Q) � −1p∑i�1
i�1 p(Qi)plog(p(Qi)) Provides a measure of the uncertainty of the indicated flux or store variable(s)

Shannon (1948)

Mutual Information (MI) MI(P, Q) � ∑n
P,Qp(P, Q)log(–––––p(P,Q)

p(P)p(Q)) MI quantifies the predictive performance of a model. It measures the shared
information content of the observed and modeled dependent variable

Transfer Entropy (TE) TE(P → Q) � MI(Qt, Pt|Qt−1) TE quantifies the shared information between two variables (typically thought of as an
independent and dependent variable) conditioned on the history of the dependent
variable Schreiber (2000). In HydroBench, the variables can be any flux or store
variables as chosen by expert's (user's) choice

The trade-off between functional and
predictive performances

f(MI, TE) The tradeoffs between functional and predictive performance metrics across models
are visualized through a bivariate plot showing MI and TE Ruddell et al. (2019); see
also Figure 7C here for an example)

Process networks (PN) PN � f(TE) PNs provide a visual web of the model internal information flow between different
flux and store variables as computed by TE

Frontiers in Earth Science frontiersin.org09

Moges et al. 10.3389/feart.2022.884766

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.884766


Hydrological process consistency using
hydrological signature metrics

Both the FDC and T-FDC indicate that high flows are better

represented by the uncalibrated model (Figures 5A, 6; Table 5).

In contrast, the recession curves indicate that the subsurface

release of water from storage over extended periods is better

represented by the calibrated model (Figures 5C,D; Table 5), as it

has a scatter (slope and intercept) more similar to the

observations than does the partly near-linear (in a semi-log

space) uncalibrated model. Figure 6 along with Table 5 shows

that the calibrated model is closely related to the observed data

(35% than 33%). On the other hand, the runoff coefficient (RC)

comparison between both model versions indicates strong

similarity between the models, with an RC model to RC

observed ratio of 0.969 for the calibrated and 1.003 for the

uncalibrated model (Figure 5B). The similarity in RC may

suggest that the annual mass flow (precipitation to

streamflow) of the two models is similar, with slightly more

precipitation converted into streamflow in the uncalibrated

model.

Despite the high statistical predictive performance reports of

the uncalibrated model (Table 4), the hydrological signature

metrics revealed that the calibrated model better represents

the low-flow segments of the Cedar River hydrograph. This

comparison of predictive and hydrological signature metrics

underscores the need for both types of performance

evaluations. Although hydrological process signature metrics

illuminate the failure or success of each model in representing

different processes, neither they nor the statistical predictive

metrics can reveal what type of model input and output

interactions lead to the model results, underscoring the need

for functional performance evaluations.

Model functional performances using
information-theoretic metrics

The calibrated and uncalibrated models have a similar

pattern of information flows, depicted in their process

networks (PN), with a few exceptions (Figures 7A,B; Table 6).

For example, the PNs depict high transfer entropy (TE) from

precipitation to snowmelt in the uncalibrated model. In

contrast, the calibrated model has high TE from

precipitation directly to streamflow. Although observations

of daily snowmelt are not available for this watershed for

FIGURE 5
Hydrological signature-based evaluation of NHM-PRMS predictions of daily streamflow at Cedar River, WA over 1980–2016: (A) flow duration
curve, (B) annual (i.e., October to September water year) runoff coefficient, (C)winter/cold season (months October to March) recession curves and,
(D) summer/warm season (months April to September) recession curves. The seasons and the corresponding months can be adaptively defined in
HydroBench.
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comparison to an observed PN, the PN difference noted by the

models suggests that snowmelt contributions in the

uncalibrated model could be the cause of low flow

overestimation in the FDC. Following these insights from the

PN plots, we explored the day of the year (DoY) averages,

minimums and maximums of snowmelt, actual

evapotranspiration and soil moisture of the two models

(Figure 8). The figure showed that the uncalibrated model

leads to snowmelt processes even in the late summer

months, which is not likely.

The visualization of tradeoffs between predictive and

functional performance metrics (Figure 7C) shows that

FIGURE 6
Time-linked flow duration curve for (A) the uncalibratedmodel and (B) the calibratedmodel (C) the sumof the number of simulated flows in the
same flow range bin as the observed for the uncalibrated model and (D) the same as C but for the calibrated model. Figures (A,B) show how the
observed flows in each bin are distributed across the bins of the model estimated flows. The number of bins, a user-defined value, is 25 here. Ideally,
hot colors would populate the diagonal, implying minimum over/underestimations.

TABLE 4 Summary of statistical predictive performance metrics for the uncalibrated and calibrated NHM-PRMS model of a watershed near Cedar
River, WA, based on daily streamflow, 1980–2016.

NSE KGE PBIAS r

Model
Versions

Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated

Untransformed flow 0.50 0.76 0.66 0.85 2.6% −0.35% 0.84 0.88

Log transformed flow 0.69 0.78 0.85 0.79 N/A N/A 0.85 0.90
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FIGURE 7
Functional performance metrics based on evaluation of NHM-PRMS at the Cedar River watershed. (A) uncalibrated model and (B) calibrated
model, and (C) tradeoff between functional and predictive performance metrics. In interpreting PN plots, the outer colored circle indicates the
interacting variables. The width of the chords linking the interacting variables corresponds to the TE magnitudes. In (C), the change in predictive
performance and functional performance from the uncalibrated model (origin of the arrow, blue) to the calibrated model (point of the arrow,
red) is plotted. Thus, the arrows show the effect of calibration. The difference between the two figures is presented in Table 6.

TABLE 5 Numerical scores of hydrological signature metrics. For this test case, we chose the mid slope of the FDC (25–45% exceedance probability).
Similarly, we chose the main diagonal in T-FDC as a strict measure and ‘Dry’months (April—September) for recession score as a representative of
subsurface flow dominant season. HydroBench allows users to choose the exceedance probabilities, the number of diagonals in T-FDC and seasons
for recession curve scores.

FDC slope at
exceedance probability of
0.25–0.45

T-FDC main diagonal Recession
coefficients

Annual runoff coefficient
ratio (model/observed)

Slope Intercept

Observed 14.27 N/A 1.384 −5.087 N/A

Calibrated 14.86 35% 1.396 −5.561 0.969

Uncalibrated 7.63 33% 1.179 −4.816 1.003
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calibration decreased the predictive performance of the

model, primarily by over-extracting information from

precipitation to inform streamflow (as seen in the higher

transfer entropy from precipitation to model streamflow,

i.e., TEP→Qmodel compared to observed streamflow

TEP→Qobserved). However, both the uncalibrated and calibrated

TABLE 6 TE difference between Calibrated and Uncalibrated model (%) ((TEcal − TEuncal)p100

Sink

Source Streamflow Soil moisture Snowmelt Actual ET Potential ET

Precipitation 3.216 0.306 −3.310 — —

Min Air Temperature −0.011 0.121 0.518 0.112 −0.053

Max Air Temperature 0.132 −0.046 0.537 −0.139 0.155

Soil Moisture −0.352 — — 0.185 −0.316

Snow melt −0.061 −2.400 — — —

Actual ET — −0.482 — — —

Potential ET — −0.213 — −0.124 —

FIGURE 8
Day of the year averages of (A) snowmelt, (B) actual evapotranspiration and (C) soil moisture for both the calibrated and uncalibrated model.
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models have TEP→Qmodel greater than TEP→Qobserved for

precipitation (i.e., overly-deterministic fitting), suggesting that

other processes involved in water balance partitioning (e.g.,

evapotranspiration) or through which precipitation is routed to

streams (via subsurface or snow storage) may be imperfectly

represented in the model structure and/or parameter values. In

contrast to the information flows originating from precipitation,

information flows from both maximum and minimum air

temperatures to streamflow are close to the observed

information flows and near the ‘ideal fit’ point. Given the

dominant role of temperature as a driver of evapotranspiration,

this similarity of temperature-to-streamflow information flows

between models may suggest, by elimination, that the overly-

deterministic information flow from precipitation to streamflow

observed in the calibrated model is likely attributable to its

representation (or lack thereof) of storage processes. Namely, a

more direct translation of precipitation to streamflow in the

calibrated model may neglect some of the contributions of

snow storage to peak flow that are better reflected in the

uncalibrated model. However, larger flows of information from

snowmelt and soil moisture to streamflow in the uncalibrated

model may underlie its poorer performance (relative to the

calibrated model) during periods of baseflow and suggest that

too much water is extracted from storage over longer time periods.

Discussion

Case-study reflections: Example of how a
hydrologist may use HydroBench results

Overall, HydroBench showed that the calibrated and

uncalibrated NHM-PRMS model products at the Cedar

River watershed have different skills. Although long-term

snow and moisture observational data were not available to

support the diagnosis of performance discrepancies,

HydroBench produced a set of insights into the mechanisms

underlying performance differences. In summary, the

uncalibrated model exhibited better statistical predictive

performance than the calibrated model, particularly during

high flows. However, the uncalibrated model was less skilled at

capturing low flows and streamflow recession processes, based

on the hydrological signature metrics. Functional metrics

suggested that routing of precipitation through snow storage

and melt differs between the two models, with the calibrated

model abstracting too much information directly from

precipitation. Thus, it is likely that the uncalibrated model

does a better job of capturing peak flows than the calibrated

model because it better represents the initial release of water

from the snowpack. However, the tradeoff is that the release of

water from storage from the uncalibrated simulation is too

high during baseflow-dominated periods, in comparison to the

calibrated model.

In general, information about whether the relationship

between variables is overly random or overly deterministic, as

in the Cedar River, can provide useful insight into the next steps.

In an overly-random system, although the process information is

contained in the observations, it is under-utilized, meaning the

model might not have extracted it effectively. Structural changes

to the model to represent hydrologic processes more realistically,

a better calibration strategy, and/or better objective function may

help extract the process information contained in the

observations. In contrast, in an overly-deterministic system

where there is ‘over extraction’, it might be better to reduce

the dependency of the model on the observed input data. The

reduction in dependency might be achieved through diversifying

the input data by, for example, incorporating new data (e.g.,

adding snow and soil moisture data into a model that was forced

by precipitation and temperature inputs). Additionally, the user

may consider changing the model optimization strategy.

Alternative strategies may include calibrating and validating

the model in contrasting seasons and hydrograph regimes,

using transformed data, and/or changing calibration and

validation objective functions in a way that penalizes models

in which training data have substantially higher performance

than test data. These approaches may lead to less reliance of the

model on specific variables or aspects of a variable that have

resulted in the overly-deterministic fit.

For the Cedar River case study, the insight provided by

HydroBench suggests that further calibration would be a

logical next step. Though the calibrated model exhibited

poorer predictive performance, its improved ability to capture

low flow dynamics may indicate that performance gains can be

obtained without changing the model structure. The parameters

of focus may be those relevant to snow and soil storage, and the

objective function of the calibration may need to be adjusted

further to upweight peak flows. Alternatively, the tradeoff in

better low-flow performance at the expense of high-flow

performance seen in the calibrated model may suggest that

rather than an ‘absolute best model’ parameter set, there exists

a Pareto front (i.e., an unavoidable tradeoff). However, this

possibility would need to be tested using a multi-objective

optimization scheme for calibration that provides the Pareto

front. Finally, if further parameter calibration attempts failed

to improve the predictive performance of the model while

maintaining acceptable functional performance, the modeler

may wish to revisit the fundamental structure (i.e., equations)

of the model. In this case, the representation of snow storage

and melt processes in PRMS might need to be revised to better

reflect the Cedar River catchment response.

Alternatively, given the two tested models, a user may decide

to opt for the uncalibrated model if most interested in outcomes

related to high flows, or the calibrated model if most interested in

low flows. Additionally, users or developers may decide to adopt

model averaging techniques such as Bayesian Model Averaging

-or Hierarchical Mixture of Experts to derive a consensus
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prediction (Marshall et al., 2006; Duan et al., 2007; Moges et al.,

2016). Importantly, the application of HydroBench to the test

case proves that relying only on high performance statistical

predictive measures can be misleading as shown by the high

predictive performance but the poor functional performance of

the uncalibrated model. Thus, a holistic performance evaluation

is critical.

The value of a systematic framework for
model benchmarking

Model benchmarking and diagnostics are not only at the core

of model trust and reliability but also serve as guides for future

model development and improvements. HydroBench was

designed as a model diagnostic and benchmarking tool in a

practice of open, reproducible science. The tool relies on the

Jupyter ecosystem for reproducible, collaborative, and interactive

computation. HydroBench enables model performance

evaluation and diagnosis of performance discrepancies by

providing three sets of complementary metrics, including

statistical performance metrics, process-based hydrological

signatures, and information theoretic-based tools. As

demonstrated in the test case, this tool produces insight into

many different aspects of a model’s performance and helps

diagnose performance shortfalls.

The metrics in HydroBench support the different aspects of

model evaluation outlined in Gleeson et al. (2021), including a

comparison of model results against 1) observations, 2) other

models, and/or 3) expert-based expectations. All of the metric

categories in HydroBench (predictive, process diagnostics, and

functional performances) facilitate comparison against

observations in watersheds that have observed data. The

information theoretic-based model functional performance

metric using PN supports model comparisons even in the

absence of observed data, though availability of observed

data strengthens such comparisons (e.g., Figures 7A,B).

Similarly, PNs and the hydrological signatures can facilitate

expert-based model evaluation as they highlight the key

hydrological processes and model hypotheses. The graphical

representation of a PN can be interpreted as an imprint of the

models’ process conceptualization. HydroBench can be used to

formalize and standardize the ad-hoc expert-based model

evaluation approaches commonly applied by the hydrologic

science community.

Although all the three categories of metrics in HydroBench

are designed to be used in concert, HydroBench is modular and

supports the use of any of the metrics individually. For instance,

in watersheds with abundant data, all capabilities of HydroBench

can be utilized. However, in cases of limited record length or data

diversity, a user may decline to use information-theoretic metrics

because they are not reliable in limited record lengths.

Choice of calibration objective functions dictates model

performance and sensitivity analysis results (Diskin and

Simon, 1977; Jie et al., 2016; Markstrom et al., 2016;

Garcia et al., 2017). For instance, a model calibrated using

root mean square error may not result in better performance

in logNSE. Thus, in using HydroBench, we suggest a careful

choice of performance metrics that reflect the modeling

objective. For instance, for pure predictive purposes, such

as short term flow forecasts, relying on predictive

performance metrics is beneficial. On the other hand,

water balance projections and quantifications can better be

served by signature based diagnostics and functional

performance evaluation metrics as they seek to get the

right answer for the right reasons. Furthermore, in

modeling works that start with a sensitivity analysis, the

sensitivity analysis result can also be used to align sensitive

parameters, modeling objectives and evaluation metrics. That is,

evaluating models based on a metric that reflects the objective

function set for the sensitivity analysis. Although this approach is

consistent with the user’s modeling objective, the approach is

susceptible to getting the right answer for the wrong reasons. For

instance, in a non-stationary system, an insensitive parameter or

process can be activated and the prediction and evaluations can be

misplaced. In this regard, multi-objective calibration and

comprehensive model evaluation across the three categories of

HydroBench can be beneficial in diagnosing whether the model is

right for the right reasons.

In addition to its utility in hydrologic research and applications,

HydroBench can be used to support hydrological teaching that focuses

on modeling and model evaluations (Wagener and Mcintyre, 2007;

Wagener et al., 2012). Last, HydroBench is an open source project and

can be extended by the community and also integrated with other

benchmarking tools, as TOSSH is interfaced with HydroBench.
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