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The geochemical characteristics of sediments are important for reconstructing
paleoclimatic and paleoenvironmental conditions in the Asian summer monsoon
marginal area. However, robust reconstructions require an understanding of the key
factors and mechanisms governing the spatial variations in the composition and ratio of
chemical elements in the modern sediments of the Asian summer monsoon marginal area.
In this study, 128 surface sediment samples were collected from the Bashang area, which
is situated in the Asian summer monsoon marginal area, and examined for their major and
trace element compositions and grain size. Principal component analysis (PCA) and
redundancy analysis (RDA) were used to analyse the relationship between
geochemical data and modern temperature and precipitation data. The results showed
that the CIA values of sediments in the Bashang area are mainly affected by temperature
rather than precipitation and the Rb/Sr value in the study area reflects the level of
precipitation in the corresponding period and the temperature controlling the leaching
and weathering. In addition, SiO2/Al2O3 and Zr/Ti ratios have good positive relationships
with the coarse-grained fraction of sediments and thus can be used as grain size proxies.
We propose that the exact environmental significance indicated by these proxies should
be stated explicitly before using them as proxies for paleoenvironmental reconstructions of
the Asian summer monsoon marginal area.
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1 INTRODUCTION

The geochemical characteristics of sediments can provide information on provenance and
weathering, transport, and sedimentation processes (Wittkop et al., 2020; Yang et al., 2021).
Thus, the geochemical characteristics of sediments can help determine the provenance of aeolian
deposits, elucidate weathering processes, and further serve as proxies for reconstructing
paleoclimatic and paleoenvironmental conditions (Zhao et al., 2019; Skurzyński et al., 2020). For
example, the chemical index of alteration (CIA) is often used to evaluate the intensity of chemical
weathering (Xiong et al., 2010; Buggle et al., 2011; Dinis et al., 2020), and the Rb/Sr ratios in loess-
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paleosol sequences can reveal the East Asian winter monsoon
intensity (Chen et al., 1999; Jin et al., 2006). In addition, the SiO2/
Al2O3 ratio can be used as a grain size proxy (Hatano et al., 2019).
Geochemical proxies are influenced by various factors, such as the
mineral composition of parent rocks, changes in material sources
and sedimentary processes (Borges et al., 2008; Garzanti et al.,
2011; Wang et al., 2012; Shang et al., 2013; Hu and Yang, 2016;
Peng et al., 2016; Chen et al., 2018; Guo et al., 2018; Li et al., 2019;
Chen C. et al., 2021). Borges et al. (2008) found that the
continuous cycle of sedimentation and the inheritance of the
material from the previous sedimentary cycle greatly influence
the application of chemical weathering indicators. Garzanti et al.
(2011) suggested that hydraulics, such as suspension screening
and selective entraining, greatly impact the elemental
composition of sediments, and the CIA and other chemical
weathering indicators lose their significance in indicating the
degree of chemical weathering during hydraulic processes.

The East Asian summer monsoon (EASM) margin
environment, defined as the semiarid zone in northern China,
with mean annual precipitation ranging from 400 to 200 mm, is
highly vulnerable to climate change (Jiang et al., 2020; Ming et al.,
2021). In this region, widespread aeolian deposits, paleosols and
lacustrine sediments have recorded a long history of changing
environmental conditions under the influence of Asian
monsoons (Yang and Ding, 2008; Zhen et al., 2021).
Therefore, this region is a focus for historical reconstructions
of monsoon changes (Xiao et al., 2006; Fan et al., 2017; Sun et al.,
2018; Ding et al., 2019). Elemental compositions and ratios are
commonly used reconstruction proxies (Liu B. et al., 2018; Liu
J. et al., 2018; Chen Q. et al., 2021; Liu M. et al., 2021). However,
robust reconstructions require an understanding of the key
factors governing the spatial variations in the compositions
and ratios of chemical elements in the modern sediments of
the marginal Asian summer monsoon area.

The Bashang area, which connects the southeastern margin of
the Inner Mongolia Plateau and the northern part of the Yan
Mountains, northern China, is situated in the northeast Asian
summer monsoon marginal area. The Asian monsoon margin is
the most sensitive region to changes in monsoons. Specifically,
environmental changes in northernmost margin of the EASM
reflect the advance and retreat of the summer monsoon system
and its interaction with the surrounding climate system (Gao
et al., 2020). Moreover, this region is a representative agro-
pastoral transitional zone and has a fragile ecological
environment (Liu X. et al., 2021). Therefore, this region is
ideal for studying the spatial variability of the composition
and ratio of chemical elements in modern sediments, as well
as its influential factors in the Asian summer monsoon marginal
area. However, the spatial variability of chemical elements in
modern sediments, as well as its influential factors in the Bashang
area, remain uncertain.

In this study, 128 surface sediment samples were collected
from the Bashang area and examined for their major and trace
element contents and grain size. The objectives of this study were
to investigate the mechanisms that control the spatial variability
of chemical proxies in the surface sediments of the Asian summer
monsoon marginal area, such as the CIA, Rb/Sr ratio, and SiO2/

Al2O3 ratio, which are commonly used indices for
paleoenvironmental reconstruction, and to assess the potential
for the use of those chemical proxies as indicators of
environmental conditions.

2 STUDY AREA

The Bashang area is situated in the transition zone from the Inner
Mongolia Plateau to the mountainous area in the northern
mountains of Hebei Province (Figure 1). The area is
surrounded by mountain ranges, such as the Yinshan
Mountains to the north, the Yanshan Mountains to the south,
and the Greater Khingan Range to the east (Figure 1). The
Bashang area ranges from 1,350 m to 1,600 m in elevation,
and the elevation decreases from south to north.

Climatologically, the Bashang area is located in the Asian
summer monsoon marginal area and is characterized by a
continental climate (Liu M. et al., 2021). The wind directions
are dominated by northwest winds, which are driven by winter
monsoonal winds from the Siberian high-pressure system. The
mean annual temperature (MAT) values in this region range
from 2 to 5°C, and they increase from east to west. Precipitation is
mainly concentrated from July to September. The windy days and
frost-free periods are 60–90 days and 80–100 days, respectively.
The mean annual precipitation (MAP) gradually increases from
260 in the northwest to 400 mm in the southeast. Moreover, the
mean annual potential evaporation values range from 1700 to
1800 mm, which are 4–5 times the MAP. The soil types are
mainly chestnut soil and sandy soil. The soil textures are mainly
sandy and clayey, and the soil layer is relatively thin (Wu and
Zhao, 2017).

3 MATERIALS AND METHODS

3.1 Sample Collection
In this study, 128 surface sediment samples were collected from
the Bashang area (Figure 1A). These samples were obtained
mainly from areas that are less affected by human activities. The
sediment types were mainly alluvial and lacustrine deposits. A
representative 10 m × 10 m quadrat was selected, and then surface
samples were collected from the top 1–2 cm at the four corners
and centre of the quadrat according to the plum blossom point
method. The lithology of the samples is mainly fine sand, with
small amounts of medium sand and silt.

3.2 Sample Analysis
Approximately 5 g dried samples were ground to less than 200
mesh with an agate mortar and then pressed into tablets using the
boric acid pressing method (Ji et al., 2003) at a high pressure of 30
tonnes. The concentrations of major elements and trace elements
in our samples were determined by X-ray fluorescence (XRF)
spectrometry (Panalytica) at Nanjing Normal University. The
instrument used Hongze Lake Sediment GSS-9 (GBW07423) as a
standard material for quality control. The analytical uncertainties
(relative standard deviations) were less than 10%.
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The grain size of the samples was determined using a
Malvern Mastersizer 2000 at the Key Laboratory of
Quaternary Chronology and Hydrological Environment
Evolution, China Geological Survey. This apparatus, with a
measurement range of 0.02–2000 μm, was produced by
Malvern Instruments Ltd., United Kingdom. Samples were
first pretreated with 10% H2O2 and 30% HCl to remove
organic matter and carbonates, respectively, and then

dispersed by ultrasonication with 10 ml 10% boric acid
solution. Then, the samples were analysed. Replicate
analyses indicate that the mean particle size measurement
error is <2%.

3.3 Meteorological Data
TheMAT andMAPwere calculated based onmeteorological data
between 1960 and 2018 from ten meteorological stations in the

FIGURE 1 | (A) and (B) Location of the study area (C) Monthly mean temperatures and monthly mean precipitation values in the Bashang area.

TABLE 1 | Climatic conditions of the Bashang area, including the MAT and MAP, calculated based on meteorological data between 1960 and 2018 from ten meteorological
stations in the Bashang area obtained from the China Meteorological Data Sharing Service System.

Meteorological Station Longitude Latitude Annual Average Temperature
(MAT; °C) (°C)

Annual Precipitation
(MAP; mm)

Xianghuang County 113.8333 42.2333 3.7 262.9
Zhengxiangbai County 115.0000 42.3000 2.5 351.3
Zhenglan County 116.0000 42.2333 2.3 364.1
Duolun County 116.4667 42.1833 2.5 376.0
Taipusi County 115.2667 41.8833 2.1 393.4
Huade County 114.0000 41.9000 2.9 320.2
Kangbao County 114.5833 41.8500 1.9 347.6
Guyuan County 115.6500 41.6667 2.1 398.2
Shangyi County 113.9833 41.1000 3.8 415.7
Zhangbei County 114.7000 41.1500 3.4 387.6
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Bashang area (Table 1). Then, the kriging model data
interpolation method was used to obtain the MAT and MAP
at each sampling point.

3.4 Data Analysis
Common element proxies, such as the CIA and Rb/Sr and SiO2/
Al2O3 ratios, were determined from the surface sediments of this
study. The CIA (Nesbitt and Young, 1982) was calculated as
follows:

CIA � Al2O3/(Al2O3 + K2O +Na2O + CaOp) × 100

where CaO* refers to the amount of CaO incorporated in the
silicate fraction of the samples, which was determined in our
study following the method of McLennan (1993).

Principal component analysis (PCA) and redundancy analysis
(RDA) were used for ordination of the geochemical data and the
temperature, precipitation and mean grain size of the sediment
samples. Log(x+1) transformations were applied before ordination
analysis. Ordination analysis was used to explore the spatial
distribution of element contents and the relation between the
element contents and environmental variables. Log(x+1)
transformations were applied before ordination analysis. Monte
Carlo permutation tests (499 unrestricted permutations) were
conducted to test the significance of variables, and forward
selection was used to determine the minimum subset of
significant variables. The ordinations were performed using the
CANOCO program, version 5.0 (Šmilauer and Lepš, 2014).

4 RESULTS

4.1 Major and Trace Element Compositions
SiO2 had the highest mean concentration of 56.28%, and the
concentrations ranged from 43.36 to 62.92%. The concentrations
of Al2O3 in the surface sediments ranged from 9.25 to 15.31%,
with a mean concentration of 12.49%. The concentrations of
Fe2O3 ranged from 3.07 to 11.99%, with a mean concentration of
4.89%. The K2O, Na2O, CaO, and MgO concentrations were
1.53% (0.94–2.56%), 2.63% (1.64–3.28%), 2.89% (1.23–12.36%),
and 2.21% (1.26–5.31%), respectively. Among the trace elements,
the mean concentrations of Rb, Sr, Ti and Zr in the surface
sediments were 96.96 ppm (50.50–128.20 ppm), 210.71 ppm
(137.00–400.90 ppm), 3892.90 ppm (2479.10–6506.80 ppm)
and 387.88 ppm (190–840 ppm), respectively. The
concentration of SiO2 showed relatively small spatial variations
within the Bashang area (Figure 2), while other major and trace
elements showed considerable spatial variations. Higher
concentrations of Al2O3 and Rb occurred in the western part
of the Bashang area, while higher concentrations of both Zr and
Ti were observed in the southern and western parts of the
Bashang area (Figure 2).

The average CIA value was 61.59, and the values ranged from
51.17 to 69.34, while the average Rb/Sr value was 0.477, and the
values ranged from 0.16 to 0.75. Higher CIA values occurred in
the western part of the Bashang area, and Rb/Sr values were the
highest in the northwestern part of the Bashang area (Figure 2).

FIGURE 2 | Spatial distribution of elements in the surface sediments of the Bashang area.
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The PCA results showed two principal components that
accounted for 73.5% of the total variance (Figure 3). The first
principal component (PC1) was positively correlated with MgO,
CaO, and Sr and negatively correlated with SiO2, K2O, Al2O3 and
Rb in the sediments (Figure 3). The second principal component
(PC2) had high positive loadings of Zr and Ti and negative
correlations with Fe2O3 (Figure 3). The RDA results showed that
the first axis of the RDA captured 13% of the total variance, and
the second axis captured 8%. The results showed one strong
positive relationship between the CIA and Ti, temperature and
clay content (Figure 5), and the arrows of the first axis were
positioned in the negative direction. Zr and Si/Al and the fine and
coarse sand contents had a positive relationship, and the arrows
were positioned in the negative direction of the first axis. Rb/Sr
had a weak relationship with the environmental parameters.

4.2 Grain Size
The grain size analysis revealed that the samples were dominated
by fine sand (64–255 µm) and silt (4–63 µm). The mean contents
of the clay (<4 μm), silt (4–63 μm), and fine sand (64–255 μm)
fractions were 15.80, 44.36 and 28.30%, respectively. Moreover,
the mean contents of the medium sand (256–512 μm) and coarse
sand (512–2000 μm) fractions were relatively low.

Themean contents of the clay, silt and fine sand fractions showed
relatively small spatial variations within the Bashang area (Figure 4).
Themean contents of themedium and coarse sand fractions showed
considerable spatial variations, and higher medium and coarse sand
fractions were identified in the southwestern and northeastern parts
of the Bashang area (Figure 4).

5 DISCUSSION

5.1 Proxy Interpretation
5.1.1 CIA
The CIA was first proposed by Nesbitt and Young (1982) to
reconstruct the paleoclimate from the early Proterozoic
sediments of the Huronian Supergroup, north of Lake Huron.

The CIA has been widely used to quantitatively evaluate the
chemical weathering intensity (Guo et al., 2018; Wang et al., 2020)
and represents the ratio ofmobile soluble elements (i.e., CaO, Na2O,
and K2O) to immobile insoluble elements (i.e., Al2O3). Generally,
higher CIA values indicate stronger chemical weathering (Xie et al.,
2018; Chen C. et al., 2021). CIA values <50 indicate virtually no
weathering; CIA values of approximately 50–60 indicate weak
chemical weathering; and CIA values >80 indicate strong
chemical weathering (Zhao et al., 2018).

Previous studies have suggested that climate, especially
precipitation, exerts a dominant control on silicate weathering
(White and Blum, 1995; Dinis et al., 2020). However, in this
study, the RDA results show that the CIA exhibits better
correlations with the MAT values and clay fractions and poorer
correlations with the MAP values. The intensity of weathering at the
Earth’s surface largely depends on climate, and the weathering
intensity is higher in warmer and more humid settings. Based on
the Arrhenius equation, the mineral decomposition rate at the
watershed scale increases as temperature increases, and the
reaction rate can be doubled for each 10 °C increase (White and
Blum, 1995; Dessert et al., 2003). The influence of temperature on
the weathering rate is dependent on precipitation (White and Blum,
1995). In the study area, precipitation gradually decreased from east
to west due to the weakening of the Asian monsoon. However,
temperature increased from east to west. The increase in the CIA
values from east to west (Figure 2) and the RDA result (Figure 5)
indicate that the CIA values of sediments in the Bashang area are
mainly affected by temperature rather than precipitation.

5.1.2 Rb/Sr Ratio
Rb and Sr usually exhibit different geochemical behaviours in
sediments during the processes of weathering, denudation, and
transport (Amorosi et al., 2021). In comparison to Sr, Rb is
relatively insoluble and can be immobilized by adsorption onto
clay minerals (Chen et al., 1999; Liu et al., 2014; An et al., 2018).
Thus, the Rb/Sr ratio is often considered a good proxy for the
chemical weathering intensity in lacustrine sediments (Jin et al.,
2001), loess-paleosol sediments (Liang et al., 2013), and aeolian
sediments (Liu et al., 2014). Previous studies of weathering crusts
and loess-paleosol sediments have suggested that higher Rb/Sr
values in the residual component indicate stronger chemical
weathering. The higher chemical weathering intensity of lake
sediments in catchments corresponds to the low Rb/Sr ratios of
lake sediments resulting from more dissolved Sr in the basin (Jin
and Zhang, 2002; Jin et al., 2006).

In this study, the RDA results show that the Rb/Sr ratio has a
negative correlation with the MAT and MAP values. The studies
of loess-paleosol sequences show that the Rb/Sr value of the
residual component gradually increases with the strengthening of
chemical weathering (Chen et al., 1999; Chen et al., 2001).
Accordingly, the Rb/Sr value in lacustrine sediments decreases
with increasing chemical weathering rate in the basin (Jin et al.,
2001). Therefore, generally, in dry and cold climate
environments, chemical weathering is weak and the Rb/Sr
value of lacustrine sediments is high. Under warm and humid
conditions, chemical weathering is strong and the Rb/Sr value of
lacustrine sediments is low. On the other hand, the variation

FIGURE 3 | PCA biplot of different elements in the surface sediments of
the Bashang area.
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range of Rb content in lacustrine sediments is very small, and the
variation of Rb/Sr value mainly depends on the activity of Sr
(Chen, et al., 1997). This is because the element Rb and Sr are easy
to separate during rainwater leaching, Rb has a strong affinity
with clay, and Sr easily enters the solution (Chen et al., 1997).
Therefore, the Rb/Sr value in well preserved lacustrine sediments
essentially indicates the degree of material leaching in the source
area, and further reflects the level of precipitation in the
corresponding period in the basin and the temperature
controlling the leaching and weathering behavior.

5.1.3 SiO2/Al2O3 Ratio
In general, coarse-grained sediments are enriched in quartz that
has a high SiO2 content. In contrast, fine-grained sediments
usually tend to be enriched in micaceous and/or clay minerals
that have high Al2O3 contents (Liang et al., 2013). Consequently,
SiO2/Al2O3 ratios are used as a grain size index (Hatano et al.,
2019). In this study, the RDA results show that the mean and
median grain sizes have significant positive correlations with the
SiO2/Al2O3 ratio. Figure 6 also indicates that grain size exerts a
strong influence on the SiO2/Al2O3 ratio.

5.1.4 Ti and Zr Contents and Zr/Ti Ratio
Ti and Zr are presumably the least mobile elements during
weathering and are mainly found in weathering-resistant
silicate minerals, such as zircon and rutile, respectively
(Dypvik and Harris, 2001; Kylander et al., 2013). Changes in
the Ti and Zr contents can thus be used to qualitatively or
semiquantitatively estimate detrital matter abundances

(Francke et al., 2020). When the regional precipitation
increases, large Ti and Zr abundances are brought into the
lake during heavy runoff and heavy precipitation, and vice

FIGURE 4 | Spatial distribution of grain size parameters.

FIGURE 5 | RDA plot of environmental indices and factors.
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versa. Therefore, the Ti contents indicate the amounts of detrital
sediments brought into the lake by regional precipitation or
surface runoff to a certain extent (Shen et al., 2010; Biskaborn
et al., 2012). In this study, the RDA results show that Zr exhibits a
good correlation with the sand fraction, while Ti is associated
with the clay and silt fractions. Thus, increases in the Zr/Ti ratio
may be indicative of less clay and silt or more sand and can be
used as a proxy for alterations in silicate sources.

5.2 Implications for Paleoenvironmental
Reconstruction
As common geochemical proxies, the CIA, Rb/Sr ratio, SiO2/
Al2O3 ratio, and Zr/Ti ratio are widely used to assess various
sediments (Roy et al., 2013; Francke et al., 2020). The CIA and
Rb/Sr ratio are often used to evaluate the chemical weathering
intensity (Garzanti et al., 2018). In this study, the CIA values
have a good correlation with the clay components of sediments
and temperature. The study area is located at the margin of the
Asian monsoon, and the precipitation in this area is affected by
the advance and retreat of the monsoon. The RDA results
indicate that the CIA values of sediments in the Bashang area
are mainly affected by temperature rather than precipitation.
In the study area, the mean annual precipitation (MAP)
gradually increases from 260 in the northwest to 400 mm in
the southeast. It is possible that the changes in precipitation
have a limited effect on the regional CIA. The Rb/Sr ratio has a
negative correlation with the MAT and MAP values. The Rb/Sr
ratio is affected by complex factors. Especially for the
lacustrine sediments, the source of sediments has a great
influence on Rb/Sr ratio (An et al., 2018). These negative
correlations suggested that the Rb/Sr value in well preserved
lacustrine sediments in the study area reflects the level of
precipitation in the corresponding period in the basin and the
temperature controlling the leaching and weathering behavior.
The negative correlation between Rb/Sr ration and CIA value
also indicates this point. The PCA results show that PC1 is
positively correlated with MgO, CaO and Sr, which are easily
transported elements, and is negatively correlated with SiO2,
K2O, Al2O3 and Rb in the sediments, which are not easily
transported (Figure 3). PC1 accounts for 48.5% of the total

variance. Therefore, the changes in PC1 can be used as a
comprehensive proxy of paleoclimate change.

Many studies have suggested that SiO2/Al2O3 and Zr/Ti
ratios can be used as grain size indices for aeolian sands (Chen
Q. et al., 2021) and lake sediments (Kylander et al., 2013) in
semiarid and arid regions. Our findings are consistent with
these conclusions. The SiO2/Al2O3 and Zr/Ti ratios in this
study have a good positive relationship with the coarse-grained
fraction of sediments and thus can be used as proxies for
grain size.

6 CONCLUSION

The CIA values of sediments in the Bashang area are mainly
affected by temperature. The Rb/Sr value in well preserved
lacustrine sediments in the study area reflects the level of
precipitation in the corresponding period in the source area
and the temperature controlling the leaching and weathering
behavior. Therefore, different geochemical proxies in the same
sediments have different interpretation. The exact
environmental significance indicated by these proxies
should be stated explicitly before using them as proxies for
paleoenvironmental reconstructions of the Asian summer
monsoon marginal area. Statistical analyses of chemical
changes may be able to identify more appropriate climate
change proxies.

The mean and median grain sizes have significant positive
correlations with the SiO2/Al2O3 ratio. The SiO2/Al2O3 ratio
can therefore be used as a grain size index. Zr exhibits a good
correlation with the sand fraction, while Ti is associated with
the clay and silt fractions. Thus, the Zr/Ti ratio can be used as a
proxy for alterations in silicate sources.
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