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The identification of intraplate orogens seemingly poses challenges to the plate tectonic
theory. Delineating the formation processes of intraplate orogens can provide clues for the
better understandings of the above issue. Although still controversial, the Indosinian
(Permo-Triassic) orogeny in the South China Block (SCB) is potentially a good example
of intracontinental orogen. In this paper, we carry out studies on the Indosinian high-grade
rocks in the northeastern Cathaysia Block of the SCB, hoping to cast light on the features
and formation processes of intraplate orogenic belts. These rocks exhibit HP/HT granulite
facies mineral assemblages and reaction textures imply that they withessed eclogite-facies
metamorphism. Their clockwise P-T trajectories with isothermal decompression stages
suggest significant crustal thickening followed by quick orogenic collapse. Immobile
whole-rock trace elements indicate basaltic protoliths features, resembling E-MORB
and OIB, respectively. SIMS zircon U-Pb age dating confirms Indosinian metamorphic
ages of ~248 Ma and a protolith age of ~953 Ma. The mantle-like O isotopic compositions
of the Neoproterozoic magmatic zircon cores further attest that they were primarily mantle
derived rocks. The whole-rock Sm-Nd isotopic compositions show more enriched
features because of metamorphic alteration, while zircon Lu-Hf isotopic results show
primitive characteristics with Neoproterozoic model ages. These features suggest that the
high-grade mafic rocks, as well as the metamorphosed early Precambrian
metasedimentary rocks hosting them, are all continental crust components and
juvenile oceanic crust components featuring plate margins are absent during the SCB
Indosinian orogeny. Characteristics of these high-grade rocks and their spatial
occurrences are both consistent with the proposal of an intracontinental orogen. After
summarizations and comparisons of the Indosinian plate margin activities around the SCB,
we suggest that this northeast-southwest trending orogenic belt is geometrically
consistent with two mantle convection cells, with one conveying the SCB northward to
collide with the North China Craton, and the other conveying the Paleo-Pacific plate
northwestwards to form an active continental margin along the southeast SCB. The driving
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mechanism of the formation of the SCB Indosinian intracontinental orogenic belt could
have broad implications for other intraplate orogens around the world.

Keywords: retrograded eclogite, granulite, intraplate orogeny, far-field stress, south China block

INTRODUCTION

The identification of intraplate orogenic belts in different parts of
the world posed a challenge to the theory of plate tectonics
because according to the theory, compressive stresses
concentrate at plate margins where different plates interact
while the interior regions of plates are rigid and hard to
deform. The intraplate orogens refer to those formed at large
distances from active plate boundaries, with driving forces from
both plate-boundary and intraplate stress sources (Raimondo
et al., 2014). Several examples of intraplate orogens have been
proposed and studied in different parts of the world, like central
Asia and central Australia (Sandiford and Hand, 1998; Yin et al.,
1998; Hand and Sandiford, 1999; Sandiford et al., 2001).
Intraplate orogens might also occur in oceanic plates, but
examples are difficult to find due to their inaccessibility. Albeit
these good examples, the occurrences of large-scale
compressional intraplate orogens are relatively rare, especially
in the Phanerozoic during which modern plate tectonics
dominate  geological = processes. = The  Permo-Triassic
deformation in the South China Block has long been termed
as the Indosinian Movement in the Chinese literature (Cui and Li,
1983; Huang, 1984; Ren, 1984; Wang et al., 2013a; Zhang et al,,
2013), and is potentially another good example of intraplate
orogenic belt, although different opinions exist (Hsii et al,
1988; Gupta et al., 1989; Rowley et al., 1989; Hsii et al., 1990;
Faure et al., 2018; Lin et al., 2018; Shu et al., 2018).
Researchers who proposed the intracontinental setting for the
SCB Indosinian orogen believe that the SCB gained and retained
its integrity ever since Neoproterozoic, and besides, they found
that this orogeny caused mainly thin-skinned tectonics involving
reactivation of only ancient continental components (Chen et al.,
1991; Li, 1998; Li and Li, 2007; Shu et al., 2008b; Li S. et al., 2012;
Shu, 2012; Faure et al., 2016a; Faure et al, 2016b). On the
contrary, other researchers suggested a plate margin setting for
this orogenic belt (Guo et al., 1984; Hsii et al., 1988; Zhao et al,,
1996; Yin et al., 1999; Lin et al., 2018). Hsii et al. (1988) proposed
that the SCB Indosinian orogeny was the result of continental
collisions between the Yangtze and Cathaysia Blocks, based
mainly on the inference that the Banxi Group (mainly in the
Jiangnan belt) is a tectonic mélange that accommodated
significant crustal shortening through long-distance thrusting.
However, other tectonic observations, as well as isotopic ages
which show that the Banxi Group represents the Precambrian
basement of the SCB, contradict this continental collisional
model (Gupta et al., 1989; Rowley et al., 1989; Chen et al,
1991). Due to the lack of high-grade metamorphism, tectonic
models like multiple-terrane accretion and soft-collision have
also been proposed for the SCB Indosinian orogeny (Guo et al.,
1984; Yin et al., 1999). Lin et al. (2018) suggested an Appalachian-
style multi-terrane Wilson cycle model for the SCB, in which they

argued that the Indosinian orogen was the result of continental
collisions between the East and West Cathaysia Blocks. Even
though criticisms exist (Faure et al., 2018; Shu et al., 2018), the
Triassic high-grade metamorphic rocks, including retrograded
eclogites and granulites in the northern Wuyi terrane of the
Cathaysia Block, as well as their clockwise P-T trajectories, seem
reminiscent those of continental margin orogenic belts (Zhao L.
et al., 2017; Xia et al., 2021).

Continental crust, no matter intraplate or proximal to plate
margins, will experience crust shortening, thickening, uplifting
and exhumation of high-grade metamorphic rocks after
accommodating strain (Raimondo et al, 2014). High-grade
metamorphism, therefore, can be unhelpful in discriminating
intraplate and plate margin orogenic belts. The occurrences of
ophiolitic mélange, however, can directly demarcate plate
boundaries. Besides, protolith features of high-grade
metamorphic rocks and the spatial distributions of orogenic
high-grade metamorphic rocks can also provide clues for the
discriminating of an orogenic belt. In this paper, we present new
studies on the Indosinian high-grade rocks in the northern Wuyi
terrane of the Cathaysia Block which represent the uplifted
orogenic core components. Based on this new data and a
summarization of Indosinian orogenic events around the SCB,
we proposed a new interpretation of the SCB Indosinian orogeny
and the related deep geodynamic processes for its formation.

GEOLOGICAL BACKGROUND

The SCB situated in the southeastern Eurasia continent is now
demarcated by the Central China Orogenic belt in the north from
the North China Craton and facing the Tibetan Plateau in the
west, the Pacific plate in the east and south (Figure 1). Such a
triangular region is believed to receive stress from all directions
since at least Mesozoic (Li S. et al., 2012), generating the current
geometry of the SCB. This continental block is normally believed
to have gained its integrity since Neoproterozoic through the
amalgamation of the Yangtze and Cathaysia Blocks Li et al,
2009a; Wang X.-L. et al,, 2014; Wang Y. et al., 2014; (Li L. et al,,
2016; Zhao G. et al., 2018; Zhao J.-H. et al., 2018; Shu et al., 2019).
This continental collisional event resulted in the formation of the
Jiangnan belt hosting a great amount of the Neoproterozoic
sequences of the SCB (Li et al., 2009a; Wang X.-L. et al., 2014;
Wang Y. et al,, 2014; Li L. et al., 2016; Zhao J.-H. et al., 2018; Shu
etal., 2019). Two other episodes of tectonothermal events during
Phanerozoic besides the Indosinian orogeny occurred in the SCB,
termed as the South China Caledonian orogeny (Paleozoic) and
the Yanshanian (Jura-Cretaceous) orogeny in the Chinese
literature.

The SCB Caledonian orogeny affected many of the pre-
Devonian sequences of the SCB and caused the unconformity
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FIGURE 1 | Simplified geological map showing major parts of the east Eurasia continent, with emphasize of the SCB. NM- Nangrim Massif; IB- Imjingang Belt; GM-
Gyeonggi Massif; OB- Okcheon Belt; YM- Yeongnam Massif. The map is modified after Oh and Kim (2021), Zhai et al. (2016) and Zhao et al. (2019., 2020).

between the Devonian sequences and the pre-Devonian
metamorphic crystalline basement (Chen X. et al, 2012,
Chen et al,, 2014; Li J. et al., 2016; Wang Y. et al, 2012,
Wang et al., 2013a; Zhang et al., 2013; Shu, 2012). Lines of
evidence from lithofacies and biofacies suggested that the
Paleozoic orogeny was initiated in the southeastern SCB
and stepwisely developed toward the northwest direction
(Chen X. et al., 2012; Chen et al, 2014). Paleozoic high-
grade metamorphism and crustal anatexis widely occur in
regions along the Jiangshan-Shaoxing (Jiang-Shao) fault
(Figure 1, Yu et al.,, 2003, Yu et al,, 2005; Zeng et al., 2008;
Zhao et al., 2016, Zhao et al., 2019, Zhao et al., 2020), usually
interpreted to be the uplifted orogenic root sequences of the
South China Caledonian orogenic belt (Hsi, 1989).
Geochronological studies of the Paleozoic metamorphism
and anatexis constrain the duration of this event to be
between ~460 Ma and 410 Ma, with most metamorphic ages
from granulite-facies rocks peaking at ~450 Ma and ~430 Ma

(Yu et al., 2003, 2005; Zeng et al., 2008; Zhao et al., 2016; Zhao
et al.,, 2019; Zhao et al., 2020). The metamorphic signatures of
the SCB Yanshanian orogeny are mainly preserved along the
southeastern coastal regions, represented by extensive
migmatitic rocks (Figure 1, Liu Q. et al,, 2012; Xing et al,,
2010, Xing et al., 2014).

The Indosinian orogeny affected large areas of the SCB, but
the related high-grade metamorphic signatures occur mainly
in the Wuyi terrane of the northeastern Cathaysia Block and
are sandwiched by the Caledonian and Yanshanian high-grade
metamorphic regions (Figure 1). Earlier studies of the Wuyi
terrane emphasized mainly the antiquity of the Precambrian
sequences (Li, 1997; Yang and Jiang, 2019; Yu et al., 2007, Yu
etal., 2009, Yu et al., 2010; Zhao et al., 2014), because they are
the critical lithologies that can potentially solve the long-
lasting controversy about whether the Cathaysia Block
contains “Oldland” (ancient crystalline basement, Grabau,
1924; Hu and Ye, 2006; Lu, 2006; Yu et al., 2006). Besides
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FIGURE 2 | Detailed geological map of the study area showing relations with the Jiang-Shao fault. Right to the south of the fault, both Caledonian and Indosinian

the early Precambrian ages (mainly ~1900-1800 Ma), the
Indosinian metamorphic ages are widely identified from
these lithologies in these early studies, ranging from 260 Ma
to 230 Ma (Xiang et al., 2008; Yu et al., 2009, 2012; Zhao et al.,
2014, 2015; Chen et al., 1998). These early Precambrian
lithologies have been defined as the Badu and Mayuan
complexes and were not found in other parts of the
Cathaysia Block (Figure 1). Supracrustal sequences, as well
as Paleoproterozoic granitoids of these two lithological units,
also show Paleoproterozoic metamorphic alterations at
~1.85 Ga, interpreted to be related to the supercontinent
Columbia (Yu et al., 2009; Xia et al., 2012; Yu et al., 2012;
Zhao et al., 2014). Lin et al. (2018), as mentioned earlier,

suggested that the Indosinian metamorphic ages represent the
time of a continental collisional event between the East and
West Cathaysia.

The Indosinian retrograded eclogites and mafic granulites
of the SCB were found to occur mainly in the Wuyi terrane and
they are entrained lenticular blocks within the metamorphosed
supracrustal rocks of the Badu Complex, which occur to the
south of the Jiang-Shao fault (Figure 2, Zhao L. et al., 2017;
Zhao L. et al., 2018). Rocks of this lithological unit occurring
close to the fault exhibit both Paleozoic (~450 Ma) and
Indosinian metamorphism (Chen et al., 2015; Zhao et al,
2015; Wang JG. et al.,, 2014). Rocks occurring further south,
like those Paleoproterozoic supracrustal rocks and granitoids
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FIGURE 3 | Field photographs (A-D), photomicrographs (E-J) showing field occurrences, representative mineral assemblages and reaction textures, and P-T
trajectories of the Indosinian high-grade rocks in the Wuyi terrane of the Cathaysia Blocks. Field and micrographic photos are from Zhao L. et al. (2018) and Zhao L. et al.
(2017). Numbers in (K), 1 and 2 are P-T trajectories for retrograded eclogite and mafic granulite samples, respectively (from Zhao L. et al., 2017); 3 is P-T trajectory for
retrograded eclogite presented by Xia et al. (2021). Mineral abbreviates, Amp, amphibole; Cpx, clinopyroxene; Pl, plagioclase; llm, imenite; Qtz, quartz; Ab, albite;

| Pelitic granulite

= A

Retrograded eclogitef

Epidote
Amphibolite
facies g7

sl
R, es++* Granulit

..

in the Suichang-Shilian area, show Indosinian high-grade
metamorphism and the Caledonian overprinting is absent
(Yu et al,, 2012; Zhao et al., 2014). Permo-Triassic (254 Ma,
232-215Ma) syenites and A-type granites interpreted to
represent post-orogenic extensional setting have also been
reported from this area within the Indosinian metamorphic
belt defined in Figure 1 (Wang Q. et al., 2005; Sun et al., 2011;
Li W. et al,, 2012; Sun et al., 2017).

SAMPLES

In order to get a better understanding of the protolith features as
well as the driving mechanism of the Indosinian orogenic
processes in the SCB, the retrograded eclogite and mafic
granulite samples occurring in the Wuyi terrane of the
Cathaysia Block were collected and studied in this paper,
including five retrograded eclogite samples, and five mafic
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granulite samples  (Supplementary Table S1). The
metamorphism of these rocks has been presented in a
previous paper (Zhao L. et al.,, 2017). The retrograded eclogite
occurs as entrained lenticular blocks within the pelitic granulites
of the Badu Complex, whose sizes ranging from tens of
centimeters to several meters (Figure 3). The long axes of the
retrograded eclogite blocks are always parallel with the foliations
of the hosting pelitic granulite gneiss. The mafic granulites occur
either as deformed dykes or lenticular bodies with varying
dimensions hosted by the pelitic granulite gneisses of the Badu
Complex (Figure 3D).

Mineral assemblages of the retrograded eclogite samples are
garnet + plagioclase * clinopyroxene + amphibole + biotite +
quartz and some accessary minerals like ilmenite, rutile, titanite
and zircon (Supplementary Table S1; Figures 3E-G). Two of the
retrograded eclogite samples (WY10-1, and -2) experienced
stronger metamorphic retrogression whose clinopyroxene
grains have been replaced by amphibole. Except for these two
samples, clinopyroxene grains are present in all other samples
and garnet grains in all the samples develop symplectites
composed of fine-grained minerals of clinopyroxene +
plagioclase, indicating isothermal decompressions during
metamorphism (Zhao L. et al.,, 2017). Diagnostic eclogite facies
mineral of omphacite is absent in all the retrograded eclogite
samples, but symplectites of omphacite grains can be seen. The
intergrowth of clinopyroxene and albite (Figure 3F) imply that
they were replacement products of omphacite grains formed
through retrograde decompressional metamorphism (Zhao L.
et al, 2017). Another petrographic sign implying eclogite
facies metamorphism is the absence of plagioclase grains in
the matrix. All the observed plagioclase grains occur within
the symplectites, either as intergrowths together with
clinopyroxene replacing omphacite, or around garnet grains
together with clinopyroxene or orthopyroxene or amphibole
replacing garnet (Figures 3E-G). High-pressure facies
minerals like rutile, intergrowth of clinopyroxene and ilmenite
can also be seen (Figures 3E,G).

The mineral assemblages of the mafic granulite samples are
garnet + plagioclase + orthopyroxene + amphibole + biotite +
quartz and some accessary minerals like rutile, ilmenite, titanite
and zircon (Supplementary Table S1). The mafic granulite
samples can be further divided into two groups according to
their consisting minerals. Compared with group A granulite
samples, the two granulite samples in group B contain very
few quartz grains and more garnet and amphibole grains. But
the mineral assemblages and typical reaction textures of them are
the same. The absence of plagioclase in the matrix implies that the
mafic granulites might have also experienced eclogite facies
metamorphism. Decompressional symplectitic textures can be
observed around most garnet grains and they are mainly
composed of fine-grained orthopyroxene + plagioclase, and
occasionally fine-grained amphibole + plagioclase intergrowths
(Figures 3H-J).

Previous metamorphic studies on these two kinds of rocks
revealed clockwise P-T trajectories and Indosinian metamorphic
ages of 251-245 Ma (Figure 3K, Zhao L. et al., 2017). Retrograded
eclogite samples record metamorphic pressure peak conditions of

Indosinian Intracontinental Orogeny of Cathaysia

500-560°C, 23-24 kbar and these for the granulite samples are
600-720°C, >13 kbar (Figure 3K, Zhao L. et al., 2017). High-
grade metamorphic rocks with similar metamorphic conditions
and P-T trajectories have also been reported from the
neighboring regions (Jiang et al.,, 2016; Xia et al., 2021). The
metamorphic conditions of these rocks imply significant crustal
thickening (doubled) based on a simple evaluation using
lithostatic stresses. Therefore, there might be an orogenic
plateau in this region during the Indosinian orogeny. In
combination, the spatial occurrences of these Indosinian high-
grade rocks define the northeast-southwest striking direction of
the Indosinian orogenic belt of the Cathaysia Block, likely
representing the uplifted orogenic core (Figure 1).

ANALYTICAL TECHNIQUES

Most of the experiments of this study were carried out at the State
Key Laboratory of Lithospheric Evolution of the Institute of
Geology and Geophysics, Chinese Academy of Sciences
(IGGCAS), except for the zircon CL images. The X-ray
fluorescence (Shimadzu XRF-1700/1500) was used for major
element analyses, after fusion of the samples with lithium
tetraborate. After baking the samples for 1h under a constant
temperature at 1000°C, the loss-on-ignition (LOI) was measured
as the weight loss of the samples. The Chinese national standard
sample GBW07101-07114 is used for corrections. The precision
of the results is better than 0.2 wt%. Trace element analyses were
performed using an ELEMENT ICP-MS after HNO; + HF
digestion of about 40 mg sample powder for each specimen in
a Teflon vessel. The Chinese national standard samples GSR1
(granite) and GSR3 (basalt) were used during analyses for
accuracy and reproducibility. The relative standard deviation
was better than 5% above the detection limits.

After crushing the samples, standard heavy-liquid and
magnetic techniques were used in zircon grain separation and
then the grains were handpicked under a binocular microscope.
The zircon grains, together with zircon standards (see detailed
descriptions below), were then cast in epoxy discs, and then were
ground and polished to expose mid-sections of the grains for CL
imaging, U-Pb dating, O (oxygen) and Lu-Hf isotope analyses.
The internal zoning of zircons was examined using a CL detector
(Garton Mono CL3+) equipped on a Quanta 200F ESEM with 2-
min scanning time at conditions of 15kV and 120 nA at the
Peking University.

The zircon oxygen isotope was analyzed using the CAMECA
IMS 1280 SIMS. Detailed analytical procedures were described by
Li et al. (2010c). The Intensity of "°0 was typically no less than
1x10° counts per second (cps). The instrumental mass
fractionation factor (IMF) is corrected using zircon standard
Penglai with a 880 (VSMOW) value of 5.3 + 0.1%0 (20) (Li
et al, 2010c). The standard data were collected regularly
throughout the analytical session as the IMF drifted with time.
The Qinghu zircon standard was measured as an unknown and
yielded a standard deviation of 0.3 per mil (20), which is used for
least uncertainty for individual analysis. Uncertainty on
individual analysis is usually better than 0.2-0.3%o (20).
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SIMS zircon U-Pb dating was conducted using another
CAMECA IMS 1280 SIMS. Detailed analytical procedures can
be found in Li et al. (2010b) and Li et al. (2009b). During analysis,
the O,  primary ion beam was accelerated at 13 kv. The
ellipsoidal spot size is about 20 x 30um. Zircon standard
Plesovice, with the age of 337 Ma (Sldma et al, 2008), was
used to calibrate the measured Pb/U ratios. A long-term
uncertainty of 1.5% (1RSD) for 206ph/2381 measurements of
the Plesovice standard was propagated to the unknowns,
despite that the measured **°Pb/**®U error in a specific session
is generally around 1% (1RSD) or less (Li et al., 2010c). The Pb
isotopic compositions of each spot were corrected for common
Pb using non-radiogenic ***Pb. An average present-day crustal
Pb composition (Stacey and Kramers, 1975) was used for
common Pb assuming that the common Pb was largely due to
surface contamination introduced during sample preparation.
The data were processed using the ISOPLOT program (Ludwig,
2012). The analyzed standard Qinghu zircon as unknown gave a
weighted mean **°Pb/**®U age of 159.9 + 1.9 Ma (MSWD = 0.87),
consistent with the recommended *°°Pb/**®*U age of 159.9 +
0.2 Ma (2 SE) (Li et al., 2009b).

Zircon Hf isotope analyses were carried out using a Neptune
MC-ICPMS. The spot size of 40 or 60 um was applied during
ablation with a 193 nm laser, using a repetition rate of 10 Hz in
most cases. Detailed descriptions of the instrument and analytical
procedures are similar to those in Wu et al. (2006). Two zircon
standards, GJ and Mud Tank, whose Hf isotope compositions
have been proven to be quite uniform (Woodhead and Hergt,
2005; Zeh et al., 2007; Xie et al., 2008), were used to monitor the
stability of the instrument during analyses. In the analytical
sessions reported here, the weighted Y6HEA7HE (c) value of
GJ is 0.2820035 + 0.0000041, and the weighted '"°Hf/""Hf (c) of
the Mud tank is 0.282495 + 0.000005, which, after considering the
analytical errors, are consistent with the values recommended
previously (Woodhead and Hergt, 2005; Zeh et al., 2007; Xie et al.,
2008). Model ages (Tpp(Hf)) and egdt) of zircon grains were
calculated based on depleted mantle and chondrite sources. The
value of "7°Hf/"”Hf and 7°Lu/"””Hf of modeled depleted mantle
are 0.28325 and 0.0384 (Griffin et al., 2002) and for chondrite
0.282772 and 0.0332, respectively (Blichert Toft and Albarede,
1997). The decay constant of '°Lu adopted in this paper is 1.867
X 10’”per year (Soderlund et al., 2004).

Detailed descriptions of instruments involved and analytical
procedures for whole-rock Sm-Nd isotopic analyses are presented
in Li C-f. et al. (2011)), Li et al. (2011 C.-F.) and Yang et al.
(2010). Very fine-grained whole-rock powders for Nd isotopic
analyses were dissolved in Savillex Teflon screw-top capsules after
being spiked with mixed '"*°Sm-'""Nd tracers before HF +
HNO;+HCIO, dissolution. For Sm and Nd separation, we
used the classical two-step ion-exchange chromatographic
method. The samples were then measured using a Finnigan
MAT262 multi-collector thermal ionization mass spectrometer.
The blank during the whole procedure was lower than 100 pg.
The isotopic ratios were corrected for mass fractionation by
normalizing to '**Nd/'**Nd 0.7219. The international
standard, JNdi-1, was employed to evaluate instrument
stability during the period of data collection. The measured
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values for JNdi-1 were '*Nd/'**Nd = 0.512104 + 0.000007
(n = 3, MSWD = 0.38). USGS reference material BCR-2 was
measured to monitor the accuracy of the analytical procedure,
and yielded the following result: "**Nd/"**Nd = 0.512624 +
0.000012, which is consistent with the suggested value of
BCR-2 yielded by TIMS and MC-ICP-MS techniques (Yang
et al, 2010; Li C.-f. et al,, 2011; Li C.-F. et al., 2011).

ANALYTICAL RESULTS

All the ten samples in Supplementary Table S1 were analyzed for
whole-rock chemical compositions, while six of them were
analyzed for whole-rock Sm-Nd isotopic compositions, and
only two representative retrograded eclogite samples (WY1215
and WY1216) and one granulite sample (WY11) were chosen for
zircon U-Pb, O and Lu-Hf isotopic analyses.

Whole-Rock Geochemistry

Major and trace element concentrations of the analyzed samples
are presented in Supplementary Table S2 and Figure 4. The
retrograded eclogite samples have SiO,, AlLO; contents of
47.52-49.35 wt%, 12.25-15.13 wt%, respectively. They plot
within the basalt field and sub-alkaline basalt field in TAS and
Nb/Y vs. Zr/TiO,*0.0001 diagrams (Figures 4A,B). In other
diagrams, the retrograded eclogite samples show tholeiitic and
E-MORB compositions (Figures 4C,D), and they belong to ocean
floor basalts (Figure 4E). The spider diagram and chondrite
normalized REE distribution patterns of the retrograded
eclogite samples exhibit similarities ~with E-MORB
(Figures 4F,H).

The mafic granulite samples exhibit large variations in major
elements, and they plot in picro-basalt—basalt—andesite fields
(Figure 4A). Group A granulite samples have higher SiO,, AL,Os,
and lower MgO, Fe,O;T contents compared with samples of
Group B, consistent with the above observations that the
ferromagnesian mineral contents of Group A granulite
samples are lower than those of Group B. In the Nb/Y vs. Zr/
Ti0,%0.0001 diagram, these samples plot within the sub-
alkaline—andesite—dacite fields (Figure 4B). The mafic
granulite samples are also tholeiitic and belong to ocean floor
basalts as shown in discrimination diagrams (Figures 4C-E). The
spider diagram and chondrite normalized REE distribution
patterns of the mafic granulite samples exhibit similarities with
OIB (Figures 4F,H).

Zircon U-Pb Age Dating

The three high-grade rocks have all been dated in a previous
study, using the LA-ICPMS zircon U-Pb method, which gave
metamorphic ages of 245-251 Ma, and also a protolith age of
997 + 27 Ma for the mafic granulite sample (Zhao L. et al., 2017).
In this study, zircons of the two retrograded eclogite samples
exhibit similar appearance and internal structures (Figure 5). The
zircon grains are rounded, small ellipsoidal and are multi-faceted.
They are unzoned or show fir-tree zoning patterns, implying
metamorphic origins (Vavra, 1990). These two retrograded
eclogite samples give uniform apparent **°Pb/***U ages with
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low Th/U ratios and they constrain metamorphic ages of
248-249 Ma (Figure 5; Supplementary Table S3). Some of
the zircon grains of the mafic granulite sample show core-rim
structures with cores exhibiting oscillatory zoning while rims

without zoning or showing fir-tree zoning (Figure 5). The zircon
cores that do not show core-rim structures are mostly unzoned or
show fir-tree zoning or sector zoning. The analytical results define
a Discordia with an upper intercept age at 953 + 17 Ma and a
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FIGURE 5 | SIMS zircon U-Pb dating results, Th/U ratio vs. U-Pb ages plots and zircon O isotopic results of the studies samples.

lower intercept age of 246 + 6 Ma. The zircon grains with ages of  the sample WY1216-3. The distinct O isotopic compositions of these
~246 Ma show uniformly low Th/U ratios while those with older =~ metamorphic zircons suggest zircon precipitation from different
ages have high Th/U ratios (Figure 5 and Supplementary Table ~ metamorphic fluids. The §'*0 (V-SMOW) values of zircon cores
§3), which imply their metamorphic and magmatic origins. These ~ and rims from the mafic granulite sample show large variations, with
results are consistent with previous studies that the high-grade  cores having low §'®0 values of ~5.5 while rims having high §'°0
metamorphism occurred during the Early Triassic (Zhao L. etal.,  values around ~8 (Supplementary Table S4 and Figure 5).

2017; Xia et al., 2021). The zircon Hf isotopic compositions of the two retrograded
. . . eclogite samples are relatively homogenous, with '"°Hf/'””Hf ratios
Zircon O-Hf Isotopic Compositions of 0.282646-0.282521 for WY1215-1 and of 0.281223-0.282806 for

The zircon grains of the two retrograded eclogite samples show ~ WY1216-2 (mostly within the range of 0.282605-0.282798,
significant differences in O isotopic compositions (Supplementary ~ Supplementary Table S5). €yft) values are all negative for
Table $4 and Figure 5). The §'°0 (V-SMOW) values are 3.85-6.08  zircons from the sample WY1215-1 (ranging from —5.9 to —3.4)
for zircons from the sample WY1215-2, and 8.46-11.34 for those of ~ and mostly positive for zircons from the sample WY1216-2 (ranging
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from —16.1 to +6.6, mostly ranging from 0.9 to 6.6). The single-stage
depleted mantle model ages of the sample WYI1215-1 are
1011-1088 Ma and 619-2787 Ma (mostly within the range of
619-892 Ma). For the reason that the zircons from the granulite
sample exhibit complex internal structures, their Hf isotopic
compositions also show large variations, with '7°Hf/"””Hf ratios
ranging from 0.281980 to 0.282654 and related Ey(t) values ranging
from -22 to +5.6 (Supplementary Table S5). The single-stage
depleted mantle model ages are 829-1772Ma. In the zircon
U-Pb age vs. Eydt) value diagram, the analyzed results plot
above and below the CHUR evolutionary line, based on
calculations using apparent zircon U-Pb ages (Figure 6).
However, if using the protolith age of the mafic granulite
(~960 Ma) as the starting age, Eyt) values of most analyses plot
above the CHUR evolutionary line (Figure 6).

Whole-Rock Sm-Nd Isotopic Compositions
The six analyzed samples show quite different whole-rock Sm-
Nd isotopic compositions (Supplementary Table S6). The
retrograded eclogite have higher '**Nd/'**Nd ratios

(0.512487-0.512694)  than  the  granulite  samples
(0.511343-0.512144). The single-stage depleted mantle
model ages are mostly Mesoproterozoic for the retrograded
eclogite samples (1360-1790 Ma), except one sample with an
Archean model age of ~2620 Ma, while those of the mafic
granulite samples are older, at 1860-3020 Ma. The Eyq(t)
values (assuming that the protolith ages are Neoproterozoic
based on the protolith age of the mafic granulite, Zhao L. et al.,
2017) of the retrograded eclogite samples are positive, ranging
from 1.94 to 5.46 while those of the two mafic granulite
samples are negative, one at —1.35 and the other at -7.74.

DISCUSSIONS

Indosinian Metamorphism in and Around
the SCB

As mentioned earlier, the Indosinian orogeny affected large areas
of the SCB. Although previous studies claimed that many of the
Neoproterozoic sequences belonging to the Banxi Group
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represent the Precambrian basement of the SCB, Indosinian
reworking of these sequences are significant, represented by
folding, shearing and long-distance thrusting within the
Jiangnan belt (Chu et al.,, 2012a; Chu et al., 2012b; Chu et al,,
2012¢; Liu L. et al., 2012; Wang Y. et al., 2005). These deformation
features are typical of thin-skinned tectonics, involving only
upper crustal components. The occurrences of the high-grade
rocks in the northern Wuyi terrane suggest that the orogeny of
this region affected deep lower crustal components. The peak
pressure conditions of the retrograded eclogite samples indicate
the crustal thickness of the northern Wuyi terrane was almost
doubled during the orogeny. The decompressional reaction
textures and the isothermal (or slow heating) decompressional
P-T stage in the P-T trajectories imply that the orogenic belt
experienced quick collapse and the high-grade rocks experienced
fast uplifting during the late thermal relaxation stage (Figure 3,
Zhao L. et al,, 2017). The metamorphic features of these high-
grade rocks are strongly reminiscent of those found in plate
margin contractional settings (Brown, 2009; O’Brien, 1993). New
SIMS zircon U-Pb dating results confirm the time of
metamorphism at 246-249 Ma (Figure 5). Indosinian
metamorphism has also been reported from the Yunkai

terrane in the southwestern Cathaysia Block (Figures 1, 7,
Chen C.-H. et al, 2012; Lin et al, 2008; Wan et al., 2010).
However, the occurrences of Indosinian metamorphism are
not continuous from the Wuyi terrane to the Yunkai terrane,
implying that they might not belong to the same Indosinian
orogenic belt. Tectonic geometry as well as metamorphic features
of the Yunkai terrane exhibit close affinities to the Indosinian
tectonothermal events in southwestern SCB and Indochina,
which are inconsistent with those of the Wuyi terrane (Lin
et al., 2008; Faure et al., 2014; Faure et al., 2016a; Faure et al,,
2016b).

The Indosinian high-grade metamorphism in east Eurasia that
attracted the most international interests occurs along the Central
China Orogenic belt, which is further divided into small segments
of the Qinling, Tongbai, Hong’an, Dabie and Sulu (Figure 1).
This composite orogenic belt records the complete amalgamation
history of the two major continental parts of east Eurasia, namely
the SCB and the North China Craton, and besides, the
identification of ultrahigh-pressure metamorphic minerals like
coesite and diamond from eclogites with continental crustal
chemical compositions imply deep subduction of the SCB
continental crust (Dong et al, 2016; Okay and Celal $engor,
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1992; Wang et al., 1989; Wu and Zheng, 2013; Xu et al., 1992; Zhai
et al., 1995; Zhao Z.-F. et al., 2017). Multiple geochronological
studies constrain the time of eclogite facies metamorphism of the
Sulu and Dabie segments to be at 255-200 Ma, mostly Triassic
(Figure 7, An et al., 2018; Cheng et al., 2011; Li S. et al., 2017; Liu
et al,, 2004, Liu et al., 2006; Wu and Zheng, 2013), synchronous
with these of the Wuyi terrane. As to the Qinling segment of the
Central China Orogenic belt, its high-grade metamorphism
occurred mainly during Paleozoic and Triassic overprintings
are not very strong (Figure 7, Dong et al, 2011). The
influence of such an extreme contractional orogen is
significant and many of the Indosinian metamorphic events in
East Asia have been correlated with this orogenic belt, like those
in the Korean Peninsula and Japan (Kwon et al., 2009; Liu, 1993;
Oh and Kim, 2021; Ree et al., 1996; Tsujimori, 2002; Ernst et al.,
2007). As shown in Figure 1, the striking direction of the Sulu
segment of the Central China Orogenic belt is parallel with the
Indosinian orogenic belt in the Wuyi terrane of the Cathaysia
Block, both following northeast-southwest direction. Almost
synchronously, the collision between the SCB and the
Indochina Peninsula resulted in high-grade metamorphism in
southwest SCB and also Indochina (Faure et al., 2014, 20164, b),
whose major tectonic geometry is, however, mainly northwest-
southeast (Faure et al., 2016b).

Another important plate that greatly affected the Phanerozoic
SCB and which has been overlooked in many previous studies is
the one facing its southeastern continental margin, the Paleo-
Pacific plate (Figure 1). Although still controversial, many
geologists suggested the onset of the SCB active continental
margin facing the Pacific plate during Mesozoic (Zhou and Li,
2000; Zhou et al., 2006), or during Paleozoic (Li et al., 2006; Li and

Li, 2007; Sun et al, 2011). However, pre-Triassic geological
records of interactions with the Pacific oceanic plate are now
absent in the southeastern SCB continental margin, which is
mainly composed of late Mesozoic magmatic rocks (volcanics
and intrusive rocks, Shu, 2012; Xu et al., 2007). The Japanese
islands, which preserve various geological records of oceanic
subduction, accretion, subduction erosion and the formation
of the continental crust due to interactions with the Pacific
plate, ranging from Paleozoic to Cenozoic, have been
suggested to show consanguineous with the SCB (Figure 8,
Taira, 2001; Wakita, 2013; Pastor-Galdn et al., 2021; Isozaki
et al, 2010; Wallis et al., 2020). Indeed some of the early
Precambrian lithologies in the Hida belt of Southwest Japan
show consanguineous with those of the North China Craton
as previously suggested (Figure 8, Horie et al., 2010; Kawabata
et al.,, 2021; Harada et al., 2021a, 2021b; Kimura et al., 2019), but
these sporadically occurred Paleoproterozoic intrusive rocks
(~1.85Ga) as well as the Archean-Paleoproterozoic detrital
and/or inherited zircon grains are also comparable to those of
the Badu Complex in the Wuyi terrane of the Cathaysia Block (Li
et al., 2014; Yu et al., 2009, 2012; Zhao et al., 2015; Isozaki, 2019).
Besides, the Paleozoic (~450-410 Ma) and/or Indosinian
metamorphic overprintings, as well as the Neoproterozoic
lithologies of the Wuyi terrane in northeast Cathaysia Block
also provide arguments for a close consanguinity of Japan
with the SCB (Zhao et al., 2016, Zhao et al,, 2020; Xu et al,,
2007; Shu et al., 2008a, Shu et al., 2008b; Horie et al., 2010;
Kimura et al., 2019; Harada et al., 2021b). These correlations
support the inference that the ancient continental fragments
preserved in Japan probably originated from the SCB (Aoki
et al., 2015; Isozaki et al,, 2010, Isozaki et al.,, 2014; Tsutsumi
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et al., 2017; Isozaki, 2019; Pastor-Galan et al., 2021). Besides, the
Paleozoic and Mesozoic geological components, like the
Paleozoic accretionary complexes, the Mesozoic accretionary
complexes, as well as the arc batholiths and ophiolitic mélange
in Japan, are quite likely to be the missing continental marginal
components of the SCB during the Indosinian orogeny(Isozaki
et al., 2010, Isozaki et al., 2014; Isozaki, 2019; Pastor-Galan et al.,
2021). Metamorphism of the Japanese islands are mainly low-
temperature, high-pressure subduction type and continuous from
Paleozoic onwards (Figure 7, Ishiwatari and Tsujimori, 2003; Erst
et al, 2007; Matsunaga et al., 2021; Takahashi et al, 2018;
Tsujimori, 2002; Tsujimori et al., 2006; Tsujimori and Liou,
2004). Alongside with these subduction zone metamorphism,
the low (and medium) dP/dT metamorphism can also often be
seen (Takahashi et al., 2018), which collectively termed as the
‘paired metamorphic belts’ (Miyashiro, 1961, 1973). One thing
worthy of noticing is the preservation of geological records for an
accreted oceanic plateau in Southwest Japan (Tatsumi et al,
2000). These geological records are critical for a better
understanding the geological history of the Phanerozoic SCB.

Characteristics of the Protoliths of the
High-Grade Rocks

The eclogite and granulite facies mineral assemblages indicate
that the studied mafic rocks experienced high-grade
metamorphism which might render their whole-rock chemical
compositions unreliable, especially the major elements and the
fluid-mobile elements like Th, K, etc. The large spread of these
samples in Figure 4A partly attests to this inference. However,
some overall variation trends can still be extracted from the
relatively immobile element plots (Figure 4), like their sub-
alkaline basaltic and tholeiitic compositions. They show close
affinities to oceanic crust, with the retrograded eclogite samples
resembling E-MORB while the mafic granulite samples
resembling OIB. The protoliths of these rocks, therefore, are
interpreted to represent the remnants of a disappeared ocean.
Zircon O-Hf isotopic compositions of these metamorphosed
mafic rocks exhibit large variations as well, but the magmatic
zircon cores preserved in the mafic granulite sample have mantle-
like O isotopic signatures (Figure 5, Valley et al., 1994). The
Neoproterozoic age of 946 Ma constrained by these magmatic
zircon cores is interpreted to represent the protolith age of the
mafic granulite. Both the zircon Lu-Hf and whole-rock Sm-Nd
isotopic compositions of these mafic rocks show large variations.
Considering that the hosting rocks of these mafic rocks are the
Paleoproterozoic sedimentary rocks of the Badu Complex, any
influence from which during high-grade metamorphism will
elevate model ages while lowering E(t) values for both Lu-Hf
and Sm-Nd isotopic systems, the high-grade samples of this study
with the youngest single-stage model ages and the highest € (t)
values should be regarded to give the best constraints on the
features of these meta-mafic rocks. As described above, the
youngest single-stage Hf model ages for both the retrograded
eclogite and mafic granulite samples are Neoproterozoic,
619-892 Ma for the retrograded eclogite, and 829—~1000 Ma
for the mafic granulite. Whole-rock Sm-Nd isotopic

Indosinian Intracontinental Orogeny of Cathaysia

compositions for these high-grade rocks seem to have been
disturbed during metamorphism because they exhibit large
variations on one hand and on the other hand, the single-
stage model ages are Mesoproterozoic to Archean, significantly
older than the Hf model ages. The Neoproterozoic protolith ages
(990-950 Ma) for these metamorphosed mafic blocks are,
therefore, supported by both the magmatic zircon core U-Pb
age of the mafic granulite, and the Hf - Nd isotopic compositions.

Previous studies have revealed the occurrences of two episodes
of Neoproterozoic magmatism in the Cathaysia Block, one at
~970 Ma and the other at 860-800 Ma (Shu et al., 2008a; Shu
etal, 2011; Wang Y. et al., 2014). They have been interpreted to
occur in the active continental margin and within plate rifting
environments, respectively (Shu et al., 2008a; Shu et al., 2011). If
taking the zircon core age of ~950 Ma as the protolith age, the
metamorphosed blocks of this study can correlate well with the
~970 Ma magmatism in the Cathaysia Block, representing
continental margin components. The protoliths of these
metamorphosed mafic blocks, generated during
Neoproterozoic, can also be compared with the widespread
Neoproterozoic lithologies in the Jiangnan belt (Wang et al,
2013b; Wang Y. et al, 2014; Yao et al, 2014). All these
Neoproterozoic magmatic rocks are related to the
tectonothermal events that amalgamated the Yangtze and
Cathaysia Blocks, and the subsequent rifting (Nanhua Rift) (Li
et al,, 2009a; Li W. X. et al, 2010; Wang X.-L. et al,, 2012).
Anyway, the Neoproterozoic magmatic rocks are important
components of the continental crust of the SCB during the
Indosinian orogeny, rather than newly generated oceanic
crustal component (Yu et al., 2008; Shu, 2006, 2012).

Formation of the Indosinian SCB Intraplate
Orogenic Belt and Broad International

Implications

If based solely on the Indosinian high-grade metamorphism of
the Wuyi terrane in northeastern Cathaysia Block, the conclusion
of a continental margin orogenic belt can be assigned to the SCB
Indosinian orogen, because these metamorphic rocks show
identical features with those developed in continental margin
orogenic belts (Brown, 2009; O’Brien, 1993). But the geological
implications of high-grade metamorphism are not always
exclusive and as pointed out by Raimondo et al. (2014), the
crustal shortening and thickening, and exhumation high-grade
metamorphic rocks from deep crustal levels of intraplate orogens
are comparable with their plate-margin counterparts. Therefore,
the eclogite and the granulite facies metamorphism such as these
of the Wuyi terrane could suggest both intraplate and plate
marginal settings.

The spatial occurrence of orogenic metamorphism has been
suggested to be a powerful tool in discriminating styles of orogens
(Raimondo et al.,, 2014; Zhai, 2009; Li et al., 2016¢, Li et al,,
2016d). As summarized by Zhao et al. (2015) and shown in
Figure 1, the occurrences of the Indosinian high-grade
metamorphism are found to occur only in the northeastern
Cathaysia Block (Wuyi terrane) and are absent in the Nanling
area. In other words, their distribution is not continuous and does
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FIGURE 9 | Proposed tectonic evolutionary model for the formation of the Indosinian intraplate orogen in the SCB.

not form a complete belt that can demarcate the continental
boundaries. Such a distribution pattern of high-grade
metamorphism is inconsistent with those developed in
continental marginal settings, but rather indicates an
intracontinental setting. Besides the mafic blocks studied in
this paper which show continental crust characteristics, other
lithologies in the Cathaysia Block exhibiting Indosinian high-
grade metamorphic alterations mainly belong to the
Paleoproterozoic Badu and Mayuan Complexes of the Wuyi
terrane (Yu et al, 2012; Zhao et al, 2015; Zhao L. et al,
2018). The occurrences of all these rocks indicate that the
Indosinian orogeny affected only the ancient continental crust
components, without the addition of any juvenile components
newly generated from mantle which is, however, usually normal
for continental marginal orogenic belts due to the consumption of
oceanic crust before the final collision (e.g. Jamieson and
Beaumont, 2013; Li et al, 2016e; Hou et al, 2021). In
summary, although the high-grade rocks in the Wuyi terrane
record metamorphism similar to those seen in continental
margin settings, they are more likely to have occurred in the
intracontinental environment.

The development of intracontinental orogens normally
requires the existence of weak lithospheric zones within the

continental block (Collins et al., 2011; Raimondo et al., 2014;
Sokoutis and Willingshofer, 2011). As mentioned earlier, a
Neoproterozoic rifted system termed the Nanhua rift
developed in the SCB, as indicated by the wide occurrences of
Neoproterozoic magmatism (860-800 Ma) (Shu et al., 2008a, Shu
etal,, 2011; Li et al,, 2005; Wang and Li, 2003; Wang et al., 2007).
This rift system is also known to be a failed rift because it aborted
soon afterwards and no new ocean was developed. The South
China Caledonian orogeny should have solidified most of the
failed rift and formed another basin (foreland?) in the Wuyi
terrane which behaved as a branch of the Paleo-Tethys Ocean and
provided the weak lithospheric zone in the Cathaysia Block
(Figure 9A). Another critical cause of the intraplate orogen is
the driving force. Stress source of orogenic belts, either occurring
in the intraplate or plate margin settings, are originally derived
from the viscous mantle convections, which operate as conveyors
and transport the lithosphere to different places of the Earth,
resulting in the formation of convergent and divergent plate
margins (Collins, 2003; Collins et al., 2011). The driving forces of
intraplate orogens have been more specifically suggested to
include far-field stress from plate margins, and intraplate
stress largely related to vertical tectonic processes (Raimondo
et al, 2014). The geometry of the Indosinian orogen is
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inconsistent with intraplate stress and implies stress sources from
continental margins. The mantle convection cell in the Paleo-
Tethys tectonic realm transported the SCB northward (today’s
orientation), closing the Paleo-Tethys Ocean and forming the
Central China Orogenic belt during Permo-Triassic (Collins
et al., 2011; Ratschbacher et al., 2003; Wu and Zheng, 2013).
The subduction of the paleo-Pacific plate underneath the SCB
(including Japan) during the Paleozoic represents another mantle
convection cell with a northwestward (today’s orientation)
conveying direction (Figure 9A, Li et al., 2006; Li and Li,
2007). Previous studies on the Indosinian deformation and
magmatic activities of the SCB revealed that during
~260-250 Ma, an oceanic plateau arrived at the subduction
zone which choked the magmatic arc and besides, the stress,
that used to localize on the southeastern continental margin of
the SCB, propagated from the continental margin northwestward
to inland regions (Figure 9B, Li and Li, 2007; Tatsumi et al., 2000).
Based on these discussions, we suggest that the far-field stress from
the southeast margin of the SCB due to interactions with the paleo-
Pacific plate must have facilitated the formation of the SCB
Indosinian intraplate orogen. The spatial distribution of the
Indosinian high-grade metamorphism in the Cathaysia Block is
parallel with the Sulu orogenic belt (Figure 1) and the
metamorphic ages of the high-grade rocks within these two

Indosinian Intracontinental Orogeny of Cathaysia

accommodated the strain and witnessed strong deformation
and significant crustal thickening, termed as the Indosinian
Wuyi orogenic belt (Figure 9B). After the collision of the SCB
with the North China Craton, the major driving force for the
convergence of these two continental blocks is believed to be the
dragging of the eclogitized mafic crust of northern South China
(Dong et al., 2013), providing an extensional environment in the
Cathaysia Block which resulted in orogenic collapse and the
formation of post-orogenic magmatism (Figure 9C, Li W.
et al., 2012; Sun et al., 2011, Sun et al., 2017). This new model
is not only consistent with the geological records in and around
the SCB but also has geological implications for interpreting
intraplate orogens worldwide.

CONCLUSION

Based on the above descriptions and discussions, the following
conclusions can be reached.

1) The occurrences of the Indosinian high-grade metamorphism
define the northeast-southwest trending orogenic belt in the
Cathaysia Block, southeast SCB, representing the uplifted
Indosinian orogenic core components.

orogenic belts greatly overlap (Figure 7), implying that this  2) Whole-rock major and trace element compositions of the
segment of the Central China Orogenic belt along the northern high-grade rocks vary significantly, due to metamorphic
margin of the SCB is another stress source for the Indosinian alterations. The overall trend of their variations constrains
intraplate orogeny of the SCB (Figure 9B). This inference is the protoliths to be emplaced in plate margin settings,
consistent with previous studies which have already proposed showing E-MORB and OIB compositions by relatively
that the Indosinian orogeny of the SCB is closely related to the immobile elements.
far-field stress from the Central China Orogenic belt (Zhang etal.,  3) SIMS zircon U-Pb age dating confirm the metamorphic age of
2013; Li J. et al,, 2017; Wang et al., 2021). 246-249 Ma and an early Neoproterozoic protolith age of
A complete model for the formation of the Indosinian 946 Ma. The magmatic zircon cores still preserve mantle-like
intraplate orogen in the SCB is, therefore, proposed based on O isotopic compositions of ~55 (80 (V-SMOW)).
the above discussions (Figure 9). After the amalgamation of the Metamorphic zircons exhibit large variations in O isotopic
Yangtze and Cathaysia Blocks during Neoproterozoic, the SCB compositions. Compared with whole-rock Sm-Nd isotopic
soon witnessed rifting and formed the Nanhua Rift (Li W. X. compositions, zircon Lu-Hf isotopic compositions can better
et al,, 2010; Li et al., 2005; Wang X.-C. et al., 2012, Wang X.-L. trace the features of the protoliths, confirming their
et al., 2012). This rift system aborted soon afterwards without the generation during the early Neoproterozoic.
formation of open oceans. During Paleozoic, the South China  4) The protoliths of these metamorphic rocks were generated
Caledonian orogeny closed solidified this rift system and likely during the early Neoproterozoic and were continental crustal
formed a foreland basin in the Cathaysia Block which remained components during the Indosinian orogeny. Combined with
there until Permo-Triassic (Figure 9A, Shu et al., 2008a; Shu the spatial distributions of the Indosinian metamorphism in
et al, 2011), providing the lithospheric weak zone for the the Cathaysia Block, we suggest that this orogen formed in the
intraplate orogenic events. The onset of the active continental intraplate environment.
margin of the SCB facing the paleo-Pacific (Panthalassa) plate ~ 5) A summarization of Indosinian plate margin activities of the
dates back to the Paleozoic and during Permo-Triassic, the arrival SCB led us to conclude that the driving stress for the
of an oceanic plateau at the subduction zone choked the formation of the SCB Indosinian orogen in the Wuyi
magmatic arc and the stress propagated to the inland regions terrane is from both the interactions with the paleo-Pacific
of the SCB. Almost simultaneously, the collisional events between plate in the southeast and the North China Craton in the
the SCB and the North China Craton slowed the northward north. In other words, the mantle convection cell that closed
moving of the SCB, providing another retroactive stress source to the Paleo-Tethys, and the one conveying the paleo-Pacific
the SCB (Figure 9B). Therefore, stress from both the northwest plate to the SCB continental margin both facilitated the
(Sulu orogenic belt) and southwest (paleo-Pacific) margins formation of the Indosinian orogen in the Wuyi terrane of
during Permo-Triassic acted within the SCB, forming a super- the Cathaysia Block. This Indosinian intraplate orogenic belt
contraction zone in the Wuyi terrane of the northeast Cathaysia was primarily a lithospheric weak zone formed during the
Block. The weak lithospheric zone of the Cathaysia Block South China Caledonian orogeny.
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