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Least-squares reverse-time migration (LSRTM) can overcome the problems of

low resolution and unbalanced amplitude energy of deep formation imaging in

reverse-time migration (RTM); hence, it can obtain a more accurate imaging

profile. In the conventional conjugate gradient LSRTM, the gradient is obtained

based on cross correlation without a precondition operator, and the source has

a great influence on the gradient, causing the convergence rate to be slow. In

the framework of conventional conjugate gradient LSRTM, a normalized cross-

correlation of the source wavefield was used in this study to effectively weaken

the influence of the source effect and reduce the low-frequency noise. The idea

of normalized cross-correlation of the source wavefield was adopted to

improve the steepest descent gradient to further accelerate the iterative

convergence speed and complete the final migration imaging. Model and

field data examples verify the advantages of the proposed methods over

conventional methods in reducing source effects, improving convergence

speed, and enhancing underground deep illumination.
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Introduction

Reverse-time migration (RTM) is considered the most accurate imaging technology

used in complex structure imaging (Baysal et al., 1983). It employs the numerical solution of

the two-way wave equation to reverse continuation seismic records, and it can process

imaging of strong velocity variation and steep dip angles. Because of the conventional RTM,

cross-correlation imaging is the result of migration operator transposition rather than its

inverse and limited acquisition aperture, complex underground structure, and limited

seismic bandwidth. RTM can only provide fuzzy structural information, and therefore, it

cannot obtain accurate imaging results (Claerbout, 1992), which cannot carry out fine

imaging of complex oil and gas reservoirs. Least-squares reverse-timemigration (LSRTM) is

a true-amplitude imaging method based on linear inversion theory, which was first

introduced into seismic inversion by Bamberger et al. (1982). Later, Tarantola (1984)

proposed the theoretical framework of least-squares inversion. Furthermore, many experts
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and scholars have continuously improved the LSRTM and

applied it to the field data. Nemeth et al. (1999) proposed

the least-squares Kirchhoff migration method for irregular

seismic data (such as trace missing and sampling irregular

data) to eliminate the migration artifacts caused by irregular

data. Although it has the above-mentioned advantage, the

calculation accuracy of Kirchhoff wave field propagator is

low and cannot meet the requirements of actual production.

Kuehl and Sacchi (2001a, 2003) proposed the introduction of

the least-squares migration into the wave field propagator, and

subsequent studies mainly focused on the areas such as rapid

calculation of the Hessian matrix, the improvement of imaging

resolution, regularization constraints, and the improvement of

computing efficiency. Yang and Zhang (2008) adopted Fourier

finite-difference migration and forward operator to carry out

post-stack least-squares migration, to eliminate imaging

noise to a certain extent and improve resolution. Wang et al.

(2009) developed a new iterative regularization model of

migration inversion imaging and proposed a hybrid

conjugate gradient algorithm to solve the model. Huang

et al.(2013a, 2013b) achieved good inversion results by using

least-squares Kirchhoff migration algorithm for model and

field data testing. Furthermore, Guo et al. (2015) realized

iterative LSRTM imaging by employing the research of

error functional establishment, RTM data reconstruction

algorithm, Hessian reverse regularization gradient

calculation, and established the implementation process of

LSRTM for field data. Huang et al. (2015) studied the

theoretical method and the processing process of LSRTM

based on static plane wave coding. The test results showed

that this method could effectively suppress the low-frequency

imaging noise and crosstalk noise, and compensate deep

imaging energy, which was an effective amplitude-preserved

imaging strategy.

Although the LSRTM has obvious advantages, there are still

many problems encountered when it is applied to field data. On

the one hand, the LSRTM is computationally inefficient. On the

other hand, because the actual source wavelet is difficult to

estimate, the conventional conjugate gradient method has a

great influence on obtaining the source energy, and it is

difficult to obtain the Hessian inverse, resulting in the

imbalance of underground deep illumination (Zhang et al.,

2013). To solve these problems, geophysicists began to

construct preconditioned operators to approximate the Hessian

inverse and to preprocess the gradient, including damping

constraints (Tarantola, 1984), focusing or smoothness

constraints of common imaging point gathers (Kuehl and

Sacchi, 2001b; Prucha and Biondi, 2002), dip angle constraint

condition (Prucha and Biondi, 2002), prediction operator (Wang

et al., 2003), defuzzification operator (Aoki and Schuster, 2009),

and sparse transform constraints, using the sparse distribution

characteristics of imaging results in the wavelet or curvelet

domains to constrain (Herrmann et al., 2019).

When there is no suitable precondition operator in the

gradient computation of conventional conjugate gradient

LSRTM, the source effect will lead to serious interference with

the migration result, resulting in shallow energy concentration,

insufficient illumination in deep layers, and slow convergence

rate of the iterative process. Normalization can solve the source

effect problem in RTM well. In this study, the source

normalization was introduced into the gradient optimization

process to weaken the influence of the source effect, accelerate the

convergence speed of the algorithm, and obtain the final LSRTM

imaging.

Methods

Born approximation

The constant density acoustic wave equation is

(2 − 1
v2(X)

z2

z2t
)p � δ(X − Xs)δ(t) (1)

where p is the wave field function, v(X) is the velocity at the X
position, and the Xs and X are the position of the source and the

geophone, respectively.

The actual velocity field can be composed of normal field and

disturbance:

1
v2(X) �

1
v20(X)

(1 − α(X)) (2)

By expanding Taylor’s Eq. 2 at v0 and removing the higher

order term, we obtain the following result:

1
v20

− 2Δv
v30

� 1
v20

(1 − α) (3)

where α � 2Δv
v0
, α(X) is the disturbance. After applying Eq. 2 into

(1), and transforming the equation into Fourier frequency

domain, we have

[2 + ω2

v20
(1 − α(X))]P(X,XS,ω) � δ(X − XS) (4)

where P(X,XS,ω) � ∫∞
−∞p(X,XS, t)e−jωtdt.

By expanding Eq. 4,

(2 + ω2

v20
)P(X,XS,ω) � δ(X − XS) + ω2

v20
α(X)P(X,XS,ω) (5)

The total observed wavefield is the sum of the incident field

and the scattered field:

P(X,XS,ω) � P0(X,XS,ω) + PS(X,XS,ω) (6)

Applying Eq. 6 into (5) and decomposing it into two

formulas:
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(2 + ω2

v20
)P0(X,XS,ω) � δ(X − XS) (7)

(2 + ω2

v20
)PS(X,XS,ω) � ω2

v20
α(X)P(X,XS,ω) (8)

where P0 is the background field and Ps is the scattering

disturbance field. The total wavefield can be written as

P(X,XS,ω) � P0(X,XS,ω)
+ ∫∫∫

V
P0(X,X′,ω)ω2

v20
α(X)P(X,X′,ω)dX′

(9)
where V is the target region of velocity variation. Eq. 9 is the

Lippmann–Schwinger integral formula. Assuming α is small, the

scattering wave field under Born approximation (Liu, 2008) is

expressed by:

PS(X,XS,ω) � ∫∫∫
V
P0(X,X′,ω)ω2

v20
α(X)P(X, X′,ω)dX′ (10)

Defining m(X) � 2Δv
v30

to replace α(X) in Eq. 10, the wavefield

in Eq. 10 can be obtained from Eqs. 11 and 12 as

(2 + ω2

v20
)P0(X,XS,ω) � δ(X,XS) (11)

(2 + ω2

v20
)PS(X,XS,ω) � ω2m(X)P0(X,XS,ω) (12)

The Born forward operator is represented by vector matrix:

d � Lm (13)

where m is the matrix form of migration profile or reflection

coefficient model, d is the matrix form of simulation data, and L

is the Born approximate forward operator matrix. The

calculation of scattering wavefield can be obtained by forward

simulation of Eqs. 11 and 12.

Conjugate gradient least-squares reverse-
time migration

Conventional RTM can be expressed as

m0(x, z) � LTD (14)

where m0 is the RTM profile, and LT is the approximate

migration operator. There are some errors when replacing

the migration operator with the transpose of the forward

modeling operator. To minimize the difference between

the simulated data and the field data, the error function is

defined as

f (m) � 1
2
‖Lm − D‖2 (15)

After taking partial derivative with respect to m,

g � zf (m)
zm

� LT(Lm − D) (16)

When the gradient g is zero, the optimal solution of the least-

squares problem is obtained:

m � (LTL)−1LTD (17)

where LTL is the Hessian matrix. Because it is so large

and difficult to obtain, the gradient is gradually close to

zero by iteration to avoid getting the inverse of Hessian

matrix.

The cross-correlation conjugate gradient method for solving

Eq. 15 can be expressed as (Huang et al., 2016):

FIGURE 1
Velocity field of the simple model: (A) real velocity model; (B) Gaussian smooth velocity model.
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g(k+1) � LT[Lm(k) − D]
β � g(k+1)g(k+1)

g(k)g(k)

z(k+1) � g(k+1) + βz(k)

α � [z(k+1)]Tg(k+1)
[Lz(k+1)]TLz(k+1)

m(k+1) � m(k) − αz(k+1)

(18)

The gradient g expansion based on the steepest descent

method can be expressed as

g � ∑
t

zSs(t, x, z)
zt

Rres(t, x, z) (19)

where β is the correction factor of the conjugate gradient

method, α is the update step, z is the conjugate gradient, g

is the steepest descent gradient, D is the field data, Ss is the

source forward wave field, and Rres is the backward wavefield of

the residual error between Born approximate forward data and

field data.

It can be seen from Eq. 18 that the difficulty of conjugate

gradient LSRTM method lies in gradient calculation and Born

approximate forward modeling.

dres � Lm(k) − D (20)

dres is the residual of Born approximate forward data and field

data. The calculation of the steepest descent gradient is similar to

the cross-correlation of conventional RTM, except that

conventional RTM is the cross-correlation of field data and

forward wavefield, while the steepest descent gradient is the

cross-correlation of the forward modeling wave field. In the

conventional cross-correlation RTM, because of the use of an

imprecise migration operator, the unbalanced wave field energy

affects the imaging results. When it is close to the source and

geophone with strong energy, the signal may become blurred

(Yang et al., 2018). To weaken the influence of energy imbalance,

the imaging conditions of source-normalized cross-correlation

RTM for compensating underground illumination were

proposed. Considering that the preconditioner in LSRTM of

conjugate gradient method is difficult to obtain and cannot

approximate the Hessian matrix well, the source effect has a

great impact on the gradient. Here, the normalization is used to

improve the calculation process of the steepest descent gradient

and weaken the influence of the source effect.

The source-normalized cross-correlation imaging condition

of the RTM source is

m0(x, z) � ∑tSs(t, x, z)Rs(t, x, z)
∑t(Ss(t, x, z))2

(21)

where RS is the reverse propagation field of seismic record.

FIGURE 2
RTM and LSRTM migration profiles of a simple model. (A) cross-correlation RTM migration result; (B) result of cross-correlation conjugate
gradient LSRTMwith 20 iterations; (C) result of conjugate gradient normalized LSRTMwith 20 iterations; (D) cross-correlation RTM following Laplace
filtering; (E) cross-correlation conjugate gradient LSRTM following Laplace filtering; (F) conjugate gradient normalized LSRTM following Laplace
filtering.
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Likewise, the source-normalized steepest descent gradient

formula of LSRTM is

~g(k+1) � ∑t
zSs(t,x,z)

zt Rres(t, x, z)
∑t(zSs(t,x,z)zt )2 (22)

zSs(t,x,z)
zt is the first-order partial derivative of source forward

propagation field, which is very important for obtaining the zero-

phase imaging profile (Yao and Wu, 2015). Eq. 18 can be

written as

~g(k+1) � LT[Lm(k) − D]����LT[Lm(k) − D]����s
~β � ~g(k+1)~g(k+1)

~g(k)~g(k)

~z(k+1) � ~g(k+1) + ~β~z(k)

~α � [~z(k+1)]T~g(k+1)
[L~z(k+1)]TL~z(k+1)

m(k+1) � m(k) − ~α~z(k+1)

(23)

FIGURE 3
Velocity field and single-shot record of the Marmousi model. (A) real velocity model; (B) Gaussian smooth velocity model; (C) single-shot
record.
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FIGURE 4
RTM and LSRTMof theMarmousi model. (A) RTMmigration results; (B) normalized cross-correlation RTMmigration results; (C) results of cross-
correlation conjugate gradient LSRTM with 15 iterations; (D) results of conjugate gradient normalized LSRTM with 15 iterations; (E) Laplace filtering
results of Figure 4 (A); (F) Laplace filtering results of Figure 4 (B); (G) Laplace filtering results of Figure 4 (C); (H) Laplace filtering results of Figure 4 (D);
(I,J) are partial enlarged views of the red rectangular boxes in Figure 4 (G,H), respectively.

Frontiers in Earth Science frontiersin.org06

Sun et al. 10.3389/feart.2022.893445

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.893445


where ~β is the normalized conjugate gradient correction factor, ~α

is the update step, ~z is the normalized conjugate gradient, and
~g � LT[Lm−D]

‖LT[Lm−D]‖s is the source-normalized steepest descent

gradient. The LSRTM imaging is realized through the iterative

calculation of the above equation.

Model trial

Simple model

The real velocity model and the Gaussian smoothed velocity

model are shown in Figures 1A,B, which is used for RTM and

LSRTM background velocity field. The lateral length of the model

is 1,250 m and the depth is 1,000 m. It consisted of 250 traces

with a trace interval of 5 m and 11 shots with a shot interval of

125 m. The receivers are fixed, and the shot point moves at equal

intervals.

It can be seen that conventional cross-correlation RTM

results contain low-frequency noise (Figure 2A), coupled with

strong near-surface energy caused by the source effect, resulting

in unbalanced wave field energy, weak deep illumination, and

unclear imaging. The LSRTM can solve the problems in RTM

imaging. With an increase in the number of iterations, the data of

Born forward simulation are gradually approaching the field

data, and the migration profile is also gradually close to the

reflection coefficient profile. As can be seen from the red arrows

in Figures 2B,C, after 20 iterations, the noise in the shallow part of

the migration profile gradually disappears, and the energy of the

profile becomes more balanced, yielding clearer deep structure

imaging. Under the same iteration times, the results of LSRTM

processing by conjugate gradient normalization method are

better than that by the conventional conjugate gradient method.

To eliminate low-frequency noise, Laplace filtering is

performed on the profiles processed by RTM, cross-

correlation conjugate gradient LSRTM, and conjugate

gradient normalized LSRTM. From the comparison of red

arrows in Figures 2D–F, it can also be seen that the

amplitude of migration profile obtained by conjugate

gradient LSRTM is more balanced than that obtained by

RTM, and the imaging results of deep structure are better

than that processed by RTM, while the migration profile

obtained by conjugate gradient normalized LSRTM is better

than that processed by the cross-correlation conjugate gradient

LSRTM and RTM in both amplitude equalization and deep

illumination (yellow arrow).

Complex model

To verify the applicability of the conjugate gradient

normalized LSRTM for complex model, imaging experiments

were carried out on the Marmousi model (Figure 3). The velocity

model and the Gaussian smoothed velocity model are shown in

Figures 3A,B. The lateral length of the model is 4,000 m and the

depth is 2,495 m. It consisted of 650 traces with a trace interval of

5 m and 14 shots with a shot interval of 250 m. The receivers were

fixed, and the shot point moved at equal intervals. The seismic

records were obtained using finite-difference forward modeling

(Figure 3C shows the single-shot record).

The experimental work of the complex model was carried out

on a workstation using the Intel(R) Xeon(R) Silver 4210R CPU@

2.40 ghz, 128 GB memory, 64-bit operating system, and an X64-

based processor. The graphics card was NVIDIA GeForce

RTX3090 with 24 GB of video memory. In this computing

environment, both the conventional LSRTM and conjugate

FIGURE 5
Spectrum of LSRTM. (A) spectrum of Figure 4 (g). (B) spectrum of Figure 4 (h).
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gradient normalized LSRTM take approximately 3 min per

iteration.

The real and Gaussian smoothed velocity field of Marmousi

are shown in Figures 4A,B, which is used for the background

velocity field of the RTM and LSRTM migration. From the

migration results shown in Figures 4A,B, both cross-

correlation RTM and normalized cross-correlation RTM will

be contaminated by low-frequency noise (indicated by the yellow

arrow). The low-frequency noise in the shallow part of the cross-

correlation RTM is more serious. Normalized cross-correlation

RTM is better in suppressing the noise in the shallow part, but

there will be a small amount of low-frequency noise in the deep

part. The main reason for this is that although the source-

normalized imaging conditions suppress the shallow strong

energy and enhance the deep illumination, they also enhance

the wave field energy in the continuation process. The LSRTM

can eliminate the low-frequency noise very well. It can be seen

from Figures 4C,D (yellow arrow) that the low-frequency noise

in the shallow part is obviously eliminated by least-squares

processing, and as the number of iterations increases, the

noise will continue to weaken. By comparing the low-

frequency noise suppression results of the two imaging

conditions, under the same number of iterations, the

conjugate gradient normalized LSRTM is more significant for

low-frequency suppression. In contrast, strong shallow low-

frequency noise affects the imaging of underground structures

by RTM. Figures 4E,F (red arrow) clearly show that reverse-time

migration under different imaging conditions does not achieve

accurate imaging of underground structures, some events cannot

reflect accurate structure information well, and there are residual

low-frequency noises in shallow parts. After the LSRTM

processing, it can be seen from Figures 4G,H (red arrows)

that the LSRTM can well eliminate low-frequency noise and

realize accurate imaging of underground structures, and the

overall amplitude of the profile is more balanced. Compare

the underground illumination of the LSRTM under two

FIGURE 6
Seismic record and error curve of simple model. (A) the 6th observation seismic record; (B) the 6th simulation record of Born approximate
forward modeling after 20 iterations by the conventional conjugate gradient cross-correlation LSRTM; (C) the difference between (A,B); (D) the 6th
simulation record of Born approximate forward modeling after 20 iterations by conjugate gradient normalized LSRTM; (E) the difference between
(A,D); (F) the normalized error reduction curve of the observation record and the simulation record.
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different imaging conditions, it can be seen from the two enlarged

images Figures 4I,J (corresponding to the two red dashed

rectangular boxes in Figures 4G,H), the conjugate gradient

normalized LSRTM is significantly stronger for the deep

illumination than the result of the cross-correlation LSRTM.

From the comparison of the whole section, we can also see that

the conjugate gradient normalized LSRTM is better than the

conventional LSRTM for noise suppression in the shallow

part, illumination of the deep part, and imaging of the whole

structure.

The spectrum of Figure 4G is shown in Figure 5A, and the

spectrum of Figure 4H is shown in Figure 5B. Comparing Figures

5A,B, it can be seen that the conjugate gradient normalized

LSRTM has a wider frequency band and more information. This

also shows the superiority of conjugate gradient normalized

LSRTM in the spectrum.

Imaging efficiency comparison

To compare the convergence speed of conjugate gradient

normalized LSRTM and conventional conjugate gradient cross-

correlation LSRTM, Figure 6 shows the comparison between the

seismic records of Born approximate simulation and the

observation records under the same number of iterations for

the same shot in the simple model.

Figure 6A shows the sixth observation seismic record. The

sixth shot simulation records of Born approximate forward

modeling after 20 iterations of conventional conjugate

gradient cross-correlation LSRTM, and conjugate gradient

normalized LSRTM are shown in Figures 6B,D. We calculated

the difference between the simulation record and observation

record of the two LSRTM methods (Figures 6C,E). From the

comparison of Figures 6C,E, it can be seen that under the same

FIGURE 7
Velocity field of field seismic data and single-shot record.
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number of iterations, the Born approximate forward modeling

record using the conjugate gradient normalized LSRTM is closer

to the observation.

The normalized error reduction curve of the observation

record and the simulation is shown in Figure 6F. The abscissa is

the number of iterations of the two LSRTM methods, and the

ordinate is the relative error. The error formula can be

expressed as

Er � |Ro − Rs|
Ro

, (24)

where Er is the relative error, Ro denotes the observation record,

and Rs denotes the simulation record. Figure 6F shows that

compared to the conventional LSRTM, the conjugate gradient

normalized LSRTM converges faster, and the residual error will

eventually converge to a lower level. Therefore, it can be seen

from the above results that the conjugate gradient normalized

LSRTM converges faster than the conventional LSRTM, and its

residual error is smaller after 20 iterations.

Trial processing of field data

To test the adaptability of the method to the field data, two-

dimensional land-based real data were imaged using the conjugate

gradient normalized LSRTM. The velocitymodel of the field data and

FIGURE 8
Comparison of imaging results by different methods. (A) results of conventional normalized cross-correlation RTM filtering; (B) results of
20 iterations of conjugate gradient normalized LSRTM filtering.
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single-shot record are presented in Figures 7A,B. The velocity field of

these data has a horizontal length of 32,050 m and a depth of 7,560 m.

The data consisted of 328 shots with the shot interval of 100m. The

time sampling was 6 s with the sampling rate at 4 ms. Figure 8A

shows the result of conventional normalized cross-correlation RTM

filtering of field data, and Figure 8B shows the result of 20 iterations of

conjugate gradient normalized LSRTM filtering. The conjugate

gradient normalized LSRTM is superior to the conventional

normalized cross-correlation RTM method, in both the

suppression of shallow low-frequency noise and the illumination

of deep structures. The energy of the shallow and deep layers of the

method in this study is more balanced, and the profile imaging is

better, especially for themiddle and shallow imaging (as shown in the

red box). Thus, it is better than the conventional normalized cross-

correlation RTM method.

Conclusion and discussion

This study proposed an effective LSRTM method using the

source-normalized steepest descent gradient. Examples of the

model and field data were carried out, and the main conclusions

are as follows:

1) Compared with the conventional conjugate gradient LSRTM,

the normalized LSRTM can help to reduce shallow low-

frequency noise, enhance underground deep illumination,

and weaken the source effect, which thus improves the

imaging quality of underground structures.

2) Under the same number of iterations, the Born

approximation forward record of the gradient normalized

LSRTM method is closer to the observation record than the

conventional LSRTM method. The convergence speed of the

gradient normalized LSRTM is faster, and its residual error

eventually converges to a lower level.

3) In the present work, only P-waves were considered. The

application of converted waves will be studied in the future

(Nemeth et al., 1999; Kuehl and Scachi, 2001b; Huang et al.,

2013b; Yang et al., 2018).
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