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Landslides pose huge challenges to the economic activities in mountainous areas at
present, while large numbers of landslide disasters have developed in the Hengduan
Mountains area in the eastern part of the Tibetan Plateau. Accurate landslide susceptibility
mapping (LSM) serves as a critical measure to predict the serious risks that may be
encountered in engineering activities. However, previous landslide susceptibility
assessment can only play a limited role in the real-time analysis of current activities of
slopes. In this study, the deformation rates of the slopes along the Lancang River were
determined using the SBAS-InSAR technique. Meanwhile, the landslide susceptibility
along the north Lancang River was assessed using the frequency ratio (FR), random forest
and FR-RF models, and the precision of the assessment results was verified according to
receiver operating characteristic curves (ROCs). Finally, a refined landslide susceptibility
map was developed by integrating the deformation rates and landslide susceptibility
indexes (LSIs) using a contingencymatrix. As indicated by the deformation rates calculated
using the SBAS-InSAR technique according to ascending and descending data show that
the RADARSAT-2 descending data yielded more precise deformation results. The area-
under-the-curve (AUC) values of the three assessment models were 0.866, 0.897, and
0.916, respectively, indicating that the assessment results obtained with the FR-RF model
are the most precise. In the upgraded landslide susceptibility map, the areas with high and
very high landslide susceptibility increased by 2.97%. Meanwhile, a total of 563,430 grid
cells showed an increase in landslide susceptibility, accounting for 11.15% of all the grid
cells. Most especially, the Xueru and Ritong areas exhibited a significant increase in
landslide susceptibility, and it has been verified by remote sensing images and field surveys
that both areas are subject to landslide risks. Therefore, the upgraded landslide
susceptibility map has a better prediction performance and can provide valuable
support for the decision making in the construction of major engineering facilities and
the prevention and remediation of landslides.
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1 INTRODUCTION

Landslides are the major challenges of the economic activities in
mountainous areas at present. In many countries, landslides have
a greater influence on the society and economy than any other
natural disasters (Glade 1998; Wallemacq et al., 2018) and have
seriously affected the operation and management of engineering
facilities of humankind (Turner 2018; Wei et al., 2018; Celik et al.,
2021). In China, the most severe landslides occur in mountainous
areas and plateaus (Shi. 2016), which will become more notable
with the aggravation of climate change (Turner 2018; Pánek
2019). The Hengduan Mountains area in the eastern part of the
Tibetan Plateau (where Jinsha, Lancang, and Nujiang rivers flow
together) features high mountains and canyons, large numbers of
loose cuttings, and sudden heavy rainfall. As a result, a series of
serious and frequent geo-hazards have struck the area, such as
rock collapse, high-elevation landslides, glacier-related debris
flows, cutting creep, soil creep, and rate avalanches (Dai and
Deng 2020; Zhang et al., 2011; Chen et al., 2013;Wang et al., 2017;
Dai and Deng 2020; Lyu et al., 2021; Hu et al., 2021). In 2018, the
landslide occurring in Baige village even directly blocked the
Jinsha River and broke the ridge over the river, causing huge
economic losses for the lower reaches (Xiong et al., 2020; An et al.,
2021). All these geo-hazards have greatly damaged the
engineering facilities of humankind and the surrounding
environment. The Sichuan-Tibet Railway is a major railway
project under planning in China, along which the terrain,
landform, and geological tectonic conditions are extremely
complex and landslides and other geo-hazards are extremely
developed (Lu and Cai, 2019; Guo et al., 2021). Therefore, it is
highly important to assess the landslide susceptibility along the
major rivers around the Tibetan Plateau, especially the
susceptibility to geo-hazards at the upper and lower reaches of
the railway. LSM is used to describe the spatial distribution of the
occurrence probabilities of landslides in a certain area according
to the geographical environment and is considered a common
countermeasure against the effects of landslides (Huang and Zhao
2018; Merghadi et al., 2020). To obtain more accurate LSM, this
study employed the FR, RF, and FR-RF models to assess the
landslide susceptibility along the north Lancang River where the
Sichuan-Tibet railway passes. However, since traditional
assessment models take historical landslide data as input,
inaccurate historical landslide data tend to cause classification
errors in LSM. Therefore, a method is required to improve the
reliability of LSM.

The interferometric synthetic aperture radar (InSAR)
technique serves as a reliable way to improve the identification
and monitoring of landslides. Most especially, it can provide
valuable information on the current activity of regional landslides
(Dong et al., 2017; Introeri et al., 2017; Zhang et al., 2021). It has
attracted increasing attention and has been applied to landslide
identification (Bürgmann et al., 2000; Rott and Nagler,2006;
Altamira 2017; Yao et al., 2017; Ge et al., 2019; Xu et al.,
2019) and establish optimized landslide assessment models
(Ciampalini et al., 2016; Zhao et al., 2019; Dimitris and Skevi
Perdikou 2021) in the past 20 years. However, this method has
not been used in the big rivers along the Sichuan-Tibet Railway,

where the high-locality slope deformation information is very
important, for the reason that the steep terrain is more
prominent. In addition, the previous research always used one
InSAR data source along the north Lancang River (Yao et al.,
2020), but for the canyon area, multi-source data of ascending
and descending orbits are very necessary, which is the advantages
of this study compared with previous studies.

On-site mapping and monitoring of landslide susceptibility
are complex and time-consuming and involve the collection and
analysis of field data. Therefore, it is considered being impractical
to obtain the latest changes of landslides through regular and
repeated field surveys, especially on a large scale. Given this, the
small baseline subset interferometric synthetic aperture radar
(SBAS-InSAR) was used in this study to obtain the activity of
slopes along the Lancang River, which is an indicator for
susceptibility assessment. This technique can overcome the
limitation of temporal incoherence and avoid the decoherence
induced by too large intervals of SAR data, spatial incoherence,
and atmospheric effects of traditional interferometry, thus
producing more continuous spatial-temporal deformation
results of lands (Berardino et al., 2002; Lanari et al., 2004).
The SBAS-InSAR technique is applicable to the monitoring of
long-sequence slow linear and nonlinear deformation and has
been widely used in the identification and monitoring of land
subsidence, earthquakes, active faults, and slope instability such
as creep and landslides (Lanari et al., 2007; Qu et al., 2013; Chen
et al., 2018; Li et al., 2018; Zhang et al., 2018).

To sum up, this study assessed the application of LSM in the
north Lancang River using the FR, RF, and FR-RFmodels. Then it
verified the accuracy of assessment results according to the AUC
values of ROC curves and selected the most accurate assessment
results for LSI refining. Specifically, the LSI was refined according
to the deformation results of the study area from 2018 to 2020
obtained by the SBAS-InSAR method. As a result, the upgraded
LSM can provide more reliable bases for the construction of
major projects and the prevention and remediation of landslides.

2 STUDY AREA

The Sichuan-Tibet Railway and the Lancang River—one of the
main rivers in a north-south direction in the Hengduan
Mountains area—intersect in Changdu City, Tibet
Autonomous Region. The study area spans 160 km in the
north-south direction between the upper and lower reaches
of the Lancang River section of the Sichuan-Tibet Railway and
10 km in the east-west direction around the two banks of the
main stream of the Lancang River, which is the most intensive
area of human activity (Figure 1). It is located in the middle-
upper reach of the Lancang River and lies in the Changdu City
overall. In terms of tectonic position, it is a part of the Hengduan
Mountains in the eastern part of the Tibetan Plateau and
belongs to the Jinsha River-Lancang River-Nujiang River
tectonic belt. The outcrops in the study area primarily
include Triassic and Jurassic sandstones and mudstones, as
well as a small number of magmatic rocks and limestones.
The hugely thick Triassic and Jurassic sandstone and
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mudstone strata constitute multiple NW-SE-trending folds, and
the faults in the study area are also mainly in the NW-SE
trending. The study area is at an elevation of 2500–4500 m
and is a typical area with high mountains and canyons due to the

development of medium-high mountains, widely distributed
gullies, and deep valleys. These provide favorable terrain
conditions for the occurrence of slope-related geo-hazards
such as landslides and collapse. Owing to the high elevation,

FIGURE 1 | Geographical location and landslide distribution of the study area.

FIGURE 2 | Research method.
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the study area has a relatively dry climate, with annual
precipitation of less than 500 mm (70% occurring from July
to September). Meanwhile, it has a low vegetation coverage,
which is predominated by bushes.

3 DATA AND METHOD

As shown in Figure 2, the research method mainly consists of six
steps: 1) preparation of data including historical landslide
inventory, landslide conditioning factors, and the InSAR
interpretation of current landslide deformation; 2) correlation
analysis, mainly involving the correlation among landslide
conditioning factors; 3) landslide susceptibility assessment
using the FR, RF, and FR-RF models; 4) verification of
landslide susceptibility assessment results according to ROCs;
5) correction of slope deformation information, processing of
multi-source data, and conversion to the deformation rates in the
slope direction; 6) optimization of landslide susceptibility
assessment results, including refining the susceptibility
assessment results according to slope deformation rates and
the verification using typical points.

3.1 Data and Variables
3.1.1 Landslide Inventory
In this study, a total of 82 landslides were confirmed in the study
area based on field survey data as well as remote sensing images
and historical data and are present in the form of polygons in GIS.
They are dominated by small-medium-scale shallow landslides
but also include huge-scale deep rock landslides. Their minimum
and maximum volume are 5 × 102 m3 and 1.8 × 108 m3,
respectively. The 82 landslide polygons were divided into
46,458 grid cells (valued as 1) under the resolution of 30 m.
Meanwhile, the same number of non-landslide grid cells (valued
as 0) were randomly selected (i.e., a total of 92,916 grid cells were
used for model training). These grid cells were randomly divided
into a training and test data set at a ratio of 7:3 (Tien et al., 2016).
That is, the training and the test data sets include 65,042 and
27,874 grid cells, respectively.

3.1.2 Landslide Conditioning Factors
There are no available general criteria for the selection of
independent variables of landslide susceptibility, while the
variables should be selected on the principle that they must be
operable, inconsistent, measurable, and non-redundant (Lulseged
and Yamagishi, 2005). According to the geological environment
characteristics of the study area, the landslide susceptibility
variables selected in this study include elevation, slope, aspect,
profile curvature, terrain humidity index (TWI), normalized
difference vegetation index (NDVI), lithology, and distance
from a fault. The data sources of this study mainly include: 1)
SRTM digital elevation model (DEM) with a resolution of 30 m,
used to extract geomorphic parameters and hydrological
environmental factors such as terrain humidity; 2) 1:250,000
geologic maps, used to extract the data on lithology and faults;
3) remote sensing images with a resolution of 30 m (images from
paths/rows of 134/38 and 134/39 of Landsat 8 OLI_TIRS on

August 13, 2013), based on which NDVI values were extracted
using software ENVI. All conditioning factors were mapped as
the grid cells with a resolution of 30 m.

The multicollinearity among landslide conditioning factors
can be determined according to the variance inflation factor (VIF)
and tolerance (TOL; Bai et al., 2010; Tien et al., 2011; Colkesen
et al., 2016). VIF values of greater than 10 or TOL values of less
than 0.1 indicate potential significant multicollinearity (O’brien
2007; Tien et al., 2011). The multicollinearity diagnosis was
performed using the software SPSS, and the VIF and TOL
values obtained are shown in Table 1. According to data
analysis, the maximum VIF and the minimum TOL were
2.842 and 0.956, respectively, indicating no multicollinearity
among the eight landslide conditioning factors. The eight
variables were classified using the method of Jenks natural
breaks. They were present in layers and assigned to the
training data set to facilitate the operation of the susceptibility
model (Figure 3).

3.2 Landslide Susceptibility Assessment
Models
3.2.1 Frequency Ratio Model
The FR model is used to analyze the spatial relationships between
landslide distribution and various environmental factors. It can
be summarized as the ratio of two percentages, namely the
percentage of the landslide grid cells corresponding to a
classification interval of a certain factor accounting for all
landslide grid cells and the percentage of all the grid cells
corresponding to a classification interval of a certain factor
accounting for all grid cells in the study area (Li et al., 2017;
Aditian et al., 2018; Guo et al., 2019), as shown in Formula (1):

FR � NLSpix/∑n
i�1NLSpix

NCpix/∑n
i�1NCpix

(1)

Where, n is the number of all classification intervals of a certain
factor; NLSpix is the number of the landslide grid cells
corresponding to a classification interval of a certain factor;
NCpix is the number of the grid cells corresponding to a
classification interval of a certain factor. Ratios greater than 1
indicate that the classification interval of a certain factor is
favorable for the occurrence of landslides. Otherwise, the
classification interval of a certain factor is unfavorable of the
occurrence of landslides.

3.2.2 Random Forest Model
RF is an integrated learning method for prediction, in which the
bagging method is employed to generate multiple independent
sample sets and multiple classification and regression trees
(CARTs), and the results are determined by the highest or
average votes (Breiman 2001). The main idea behind the RF
model is that multiple weak classifiers are combined according to
a certain strategy to form an integrated model that has a better
prediction performance than a single classifier. This model has
well been applied in landslide susceptibility assessment (Youssef
et al., 2015). In this study, the RF model in the R language and
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environment was adopted to assess the landslide susceptibility,
flowchart was shown as Figure 4. Dependent variables were
present in the form of landslide probability pixels on the
landslide susceptibility map and the bagging technique was
employed to conduct RF feature selection. At each node of the
CARTs, samples of variables and observation were randomly
incorporated into the training data set for model calibration.
Since the random selection of the training data set may affect the
results of the model, multiple trees were adopted to balance the
model. Meanwhile, unselected cases (outside the bags) were
used to calculate the error of the model (OOB Error), which is
equal to the standard deviation between predicted and observed
values.

3.2.3 Frequency Ratio-Random Forest Model
The FR and RF models were superimposed by replacing the
values of the influencing factors with the FRs calculated using
Formula (1). Specifically, the FRs of each independent variable
factor obtained using the FR model were input into the RF model
under the R language and environment for learning. Then the FR-
RF model was adoped to predict the landslide susceptibility of the
whole study area to obtain the landslide susceptibility index (LSI)
values.

3.2.4 Verification of Model Accuracy
ROCs were adopted to verify and compare the performance of the
three models. In a ROC, the y-axis represents the true positive

TABLE 1 | Diagnosis results of Multicollinearity among landslide conditioning factors.

Conditioning
factor

TWI Elevation Distance
from
faults

Lithology NDVI Profile
curvature

Slope Aspect

TOL 0.352 0.710 0.956 0.829 0.928 0.423 0.705 1.015
VIF 2.842 1.409 1.046 1.207 1.073 2.364 1.419 0.985

FIGURE 3 | Landslide conditioning factors: (A) elevation, (B) slope, (C) aspect, (D) profile curvature, (E) TWI, (F)NDVI, (G) distance from a fault, (H) lithology. Note:
for the legends in (H), “1” represents the conglomerate, sandstone, and mudstone with bedding developing; “2” represents limestone, slate, dolomite, and marble; “3”
represents gneiss, granulite, and quartz schist; “4” represents blocky granite, diorite, and magmatic dike, and “5” represents loose gravel, sand, and detritus soil.
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rate (sensitivity), which is used to characterize the percentage of
correctly predicted landslide grid units, and the x-axis denotes the
false positive rate (1-Specificity), which is utilized to characterize
the percentage of wrongly predicted landslide grid cells (Van
et al., 2006). Therefore, the closer the ROC to the upper left corner
of the graph, the more accurate the test results. The area under the
ROC is the AUC value, which varies in the range of 0.5–1. The
higher the AUC value, the more accurate the model.

3.3 SBAS-InSAR
Given the average development degree of the vegetation in the
study area, interpretation was individually conducted using 10
phases of RADARSAT-2 (descending) data and 45 phases of
Sentinel-1 (ascending) data of C-band from August 2018 to
February 2020. The basic parameters of the two types of data
are shown in Table 2. The interpretation results of the two types
of data were compared and those with higher precision were
taken as the final deformation results. The data of SRTM1 DEM

with a resolution of 30 m were used as external data to eliminate
the terrain-contributed interference phases.

Data processing was conducted using the open-source
software StamPS (Hooper et al., 2012), SBAS-InSAR
processing flow was consistent with Yang et al., 2022. For
RADARSAT-2 data, the spatial and temporal baselines were
set at 300 m and 96 days, respectively, obtaining 14
interferometric pairs in total (Figure 5A). For Sentinel-1 data,
the spatial and temporal baselines were set at 150 m and 24 days,
respectively, obtaining 80 interferometric pairs in total
(Figure 5B). Afterward, the interferometric pairs obtained
through filtering using a Goldstein filter were filtered again to
improve the signal-to-noise ratio and to further improve the
precision of phase unwrapping and prediction results. Phase
unwrapping was conducted using the minimum cost flow
(MCF) algorithm. To avoid the effects of the unwrapping
errors of low-coherence areas on the final results, the
coherence value threshold was set at 0.35 (i.e., phase

FIGURE 4 | Flowchart of the random forest method.

TABLE 2 | Basic parameters of the satellite-based SAR images.

Parameter Orbital
direction

Waveband Radar
wavelength/

cm

Spatial
resolution/

m

Revisit
cycle

Angle
of incidence/°

Image time Image
number/
phase

SAR sensor
RADARSAT-2 Descending C 5.6 5 24 35.6 201808–202002 10
Sentinel-1 Ascending C 5.6 5*20 12 33.9 201808–202002 45
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unwrapping was only performed for the areas with coherence
values higher than 0.35). After that, ground control points
(GCPs) were adopted to refine the interferometric pairs to
remove orbit-induced residual errors. The GCPs were selected
from the stable areas that are far away from deformation and have
coherence values higher than 0.7 (Zhu et al., 2011; Gaber et al.,
2017). Furthermore, a three-order inversion model was adopted
to remove terrain-induced residual phases. In this way, the initial
deformation information was obtained. To eliminate
atmosphere-induced residual errors, the thresholds of the low-
and high-pass filters of the atmosphere were set at 1000 m and
365 days, respectively. Finally, the time-series nonlinear line-of-
sight (LOS) deformation was estimated using the least square
solution determined by the method of singular-value
decomposition (Lanari et al., 2007).

The deformation rates in the LOS direction (Vlos) were
converted into those in the slope direction (Vslope) using
Formula (2). To prevent extremely high absolute values from
occurring during the conversion ofVlos into Vslope, Herrera et al.
took the empirical value index = ± 0.3 as fixed thresholds (Zhang
et al., 2018). In detail, Index was set at −0.3 in the case of −0.3 <
index < 0 and at 0.3 in the case of 0 < index < 0.3. Then
deformation points with non-negative deformation rates in the
slope direction were removed from the results obtained. In this
way, the deformation rates in the slope direction were
determined.

Vslop � Vlos
Index

(2)

Index = nlos·nslope
nlos � (sin θ sin αs,−sin θ cos α,−cos θ)
nlos � (sin α cosφ,−cos α cosφ,−sinφ)

Where:

Vslop—deformation rate in slope direction;
Vlos—deformation rate in LOS direction;
α—direction of slop (°);
φ—slope (°);
θ—incident angle of radar beam (°);
αS—the angle between the direction of satellite orbit and the
true north.

3.4 Refining
The deformation results were integrated and refined by
establishing a contingency matrix between the LSI values and
the deformation rates obtained by the SBAS-InSAR method
(Table 3). The computation of the contingency matrix was
carried out in GIS. In detail, the deformation rates were
spatially connected with the LSM obtained using the FR-RF
model and then the contingency matrix was calculated using a
field calculator. As a result, the refined landslide susceptibility
map was exported. In the contingency matrix, the deformation
rate intervals were determined according to the standard
deviation of the deformation rates (δ = −13 mm/a; Zhao et al.,
2019), and the susceptibility grades of LSI from 1 to 5 represent
very low, low, moderate, high, and very high susceptibility,
respectively. Based on this, the deformation obtained by the
SBAS-InSAR method was classified into different zones
according to susceptibility grades. Meanwhile, the
susceptibility grades corresponding to the original LSI values
were increased by 1–4 according to the deformation rates. The
higher the deformation rates, the higher the landslide
susceptibility and the susceptibility grades shall not be greater
than 5. Slopes are highly active when their deformation rates
exceed a certain value according to field survey results. In this
case, the landslide susceptibility grades should be high and very

FIGURE 5 | Temporal and spatial baseline of interferometric radar images pairs.

TABLE 3 | Integration of landslide susceptibility and deformation rates.

Vslop (mm/a)

0–13 13–26 26–39 39–80 >80

Susceptibility grade

1 0 +1 +2 +3 +4
2 0 0 +1 +2 +3
3 0 0 0 +1 +2
4 0 0 0 0 +1
5 0 0 0 0 0
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high. The above integration helps to reduce misclassification
probability. Meanwhile, for areas that have low susceptibility
but are subject to landslides soon, their susceptibility
can be corrected to a high grade after the integration
(Table 2).

4 RESULTS

4.1 Results of the Frequency Ratio Model
The FRs of all groups of the landslide conditioning factors of the
study area were calculated using Formula (1), as shown in
Supplementary Table S1. Based on this, the weight of each
landslide conditioning factor was determined. Then LSI of the
study area was calculated using the Raster Calculator tool in the
ArcGIS, which fell within the range of 1.43–17.02. The higher the
LSI, the higher the occurrence probability of landslides, and vice
versa. The LSI range was divided into five intervals by the method
of Jenks natural breaks, namely [1.43, 3.82), [3.82, 4.98), [4.98,
6.10), [6.10, 7.68), and [7.68, 17.02], corresponding to the very
low, low, moderate, high, and very high susceptibility grades,
respectively. Based on this, the landslide susceptibility map was
formed, as shown in Figure 6A. According to this figure, the areas
with very low and low susceptibility are the largest, with area
percentages of 30.46 and 26.21%, respectively. In contrast, the
areas with moderate, high, and very high susceptibility are
smaller, with area percentages of 18.15, 17.23, and 7.95%,
respectively. The accuracy of the model was verified using
14,416 landslide grid cells in the test data set. Among them,
11,465 grid cells (79.53%) fell in the scope of high and very high
susceptibility.

4.2 Results of the Random Forest Model
The LSI of the study area obtained using the RF model varied in
the range of 0–0.98. Similarly, the LSI range was divided into five

intervals by the method of Jenks natural breaks, namely [0, 0.14),
[0.14, 0.28), [0.28, 0.45), [0.45, 0.63), and [0.63, 0.98], which
correspond to the very low, low, moderate, high, and very high
susceptibility, respectively. The landslide susceptibility map
formed is shown in Figure 6B. According to this figure, the
areas with very low, low, moderate, high, and very high
susceptibility have area percentages of 40.25, 21.76, 18.82,
12.13, and 7.04%, respectively. The accuracy of the model was
verified using the remaining 14,416 landslide grid cells in the test

FIGURE 6 | Landslide susceptibility maps obtained using the three models. (A) FR model; (B) RF model; (C) FR-RF model.

FIGURE 7 | ROCs of the FR, RF, and FR-RF models.
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data set. Among them, 12,484 grid cells (86.60%) fell in the scope
of high and very high susceptibility.

4.3 Results of the Frequency Ratio-Random
Forest Model
The FRs obtained using the FR model were taken as input data of
the RF model. Then the landslide susceptibility assessment of the
whole study area was also conducted using the R language,
obtaining the LSI of the study area. The results show that the
LSI fell within the range of 0–1. Similarly, the LSI range was
divided into five intervals by the method of Jenks natural breaks,
namely [0, 0.15), [0.15, 0.31), [0.31, 0.53), [0.53, 0.77), and [0.77,
1], corresponding to the very low, low, moderate, high, and very
high susceptibility grades, respectively. The landslide
susceptibility map formed is shown in Figure 6C. According
to this figure, the areas with very low, low, moderate, high, and
very high susceptibility have area percentages of 35.90, 25.06,
18.74, 13.73, and 6.57%, respectively. Similarly, the accuracy of
the model was verified using the remaining 14,416 landslide grid
cells in the test data. Among them, 13,875 grid cells (96.25%) fell
in the scope of high and very high susceptibility.

With the landslide probability predicted using the FR, RF, and
FR-RF models as the LSI and based on the verification of these
models using the remaining 30% landslide test data, the ROCs of
the prediction results of all the models were plotted (Figure 7)
and their AUC values were calculated. Based on this, the
prediction precision of all the models was compared.
According to Figure 7, the final AUC values of the prediction
results of the FR, RF, and FR-RF models were 0.866, 0.897, and
0.916, respectively. Therefore, the FR-RF model possesses the
highest prediction precision. Meanwhile, it was verified by
existing landslides that the FR-RF model had the highest
accuracy. Therefore, the assessment results of the FR-RF

model were taken as the final susceptibility results and were
further optimized.

4.4 SBAS-InSAR Results
For the slopes in the study area, the deformation rates in the LOS
direction obtained using the Sentinel-1 ascending data varied in
the range of −58–21 mm/a (Figure 8A). Then they were
converted into the deformation rates in the slope direction,
obtaining 2,392,676 coherent points in total. In contrast, the
deformation rates in the LOS direction obtained using the
RADARSAT-2 descending data varied in the range of
−42–16 mm/a and a total of 5,787,774 coherent points were
obtained after conversion (Figure 8B). The descending data
obviously yielded a higher density of interference points and
can present more details of hidden hazards. Therefore, the
descending data were utilized to identify the slope deformation
and identification results as follows. The average density of
deformed points was 3687.19/km2, which was higher than
other studies previously considered high density (Meisina
et al., 2008; Zhao et al., 2019), shows the density is acceptable.
The maximum deformation rate in the slope direction was up to
−128 mm/a (the critical stable interval: −13–0 mm/a; Figure 8C).
The deformation results obtained by the SBAS method failed to
cover the whole study area since ice, snow, and water are locally
distributed in the study area.

With the standard deviation (−13mm/a) of RADARSAT-2 data
as the threshold of stable points, the areas with statistically reliable
deformation obtained by the SBAS method accounted for 54.22% of
the entire study area. Through remote sensing interpretation and
field verification of the deformation results, a total of 113 points with
hidden landslide hazards were delineated and after excluding land
subsidence points in flat areas and a few points denoting snow and
ice movements, field verification confirms the reliability of InSAR
interpretation results (Zhang et al., 2021). According to the map of

FIGURE 8 | (A) Deformation results in LOS direction obtained using Sentinel-1 data; (B) Deformation results in LOS direction obtained using RADARSAT-2 data;
(C) Deformation results in slope direction after conversion.
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slope deformation rates, there exist multiple deformation centers in
the study area. In detail, continuous high deformation values are
visible on the left bank of the Lancang River in Kagong area in the
southern section of the study area, multiple abnormal deformation
areas exist on the left bank of the Lancang River in the Chaiwei-
Ritong areas in the northern section of the study area, and there are
abnormal deformation areas on the right bank of the Lancang River
near the Shagong area. As shown by the statistical results, only
39.24% of landslides newly identified by the SBAS method and the
FR-RF model feature high or very high landslide susceptibility.
Therefore, the results are reliable and can be used to optimize the
landslide susceptibility assessment results.

4.5 Refining of Assessment Results
The refined landslide susceptibility map is shown in
Figure 9A. Compared with the susceptibility results before
refining, the landslide susceptibility of multiple areas was
notably increased, especially in the Ritong and Xueru areas

(Figure 9B). Table 4 shows the changes in the number
percentages of the grid cells of all grades before and after
the optimization. According to this table, the grid cells with
susceptibility grades of 1, 2, 3, 4, and 5 after refining accounted
for 31.01, 26.55, 19.17, 15.64, and 7.63%, respectively. By
comparison with unrefined assessment results, the areas
with high and very high susceptibility increased by 2.97% in
the refined assessment results. Meanwhile, 563,430 grid cells
showed changes in landslide susceptibility, accounting for
11.15% of the total grid cells. Among them, the landslide
susceptibility of 412,563, 113,775, 36,985, and 106 grid cells
increased by one, two, three, and four grades, respectively.

4.6 Research Results of Typical Areas
A detailed analysis was carried out on two areas with the greatest
changes in landslide susceptibility (marked with 1 and 2 in
Figure 9B). Area No. 1 lies in the Ritong area in the northern
part of the study area. In addition to Jurassic sandstones and

FIGURE 9 | (A) landslide susceptibility assessment results after processing using a correction matrix; (B) differences between the unrefined and refined landslide
susceptibility grades of each grid cell. Notes: the rectangular areas marked with 1 and 2 denote the Ritong and Xueru areas, respectively.

TABLE 4 | Comparison of landslide susceptibility grades obtained from the FR-RF model and RLSM.

Susceptibility grade LSM RLSM Increment

/ Cell number % Cell number % Susceptibility grade Cell number

1 1,814,040 35.90 1,566,700 31.01 0 4,488,810
2 1,265,862 25.06 1,341,370 26.55 +1 412,563
3 946,683 18.74 968,514 19.17 +2 113,775
4 693,815 13.73 790,170 15.64 +3 36,986
5 331,840 6.57 385,486 7.63 +4 106
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mudstones, magmatic rocks such as island-shaped Paleogene
granite porphyries and ordinary porphyries have developed in
the area. Owing to differential weathering, the magmatic rock
masses formed convex and isolated peaks with a slope greater
than 50°. Furthermore, their strength decreased as a result of
long-term weathering and denudation, posing the risks of
instability and collapse. Field surveys show that clastic
materials accumulated due to the weathering of high-elevation
rock masses may cause landslides or other instability events, thus
endangering the roads and villages at the slope foot. This
possibility was revealed by the deformation information
obtained by the SBAS-InSAR method. Meanwhile, the RLSM
also shows a significant increase in the landslide susceptibility of
this area compared to the LSM (Figure 10).

Area No. 2 is located in the Xueru area on the eastern side of the
Lancang River in the southern part of the study area. In terms of
lithology, the strata in this area consist of schists and slates of the
Carboniferous Kagong Formation in the tectonic melanges of the
Lancang River. Meanwhile, the Lancang River fault zone runs

through this area. Therefore, the rock masses in area No. 2 are
relatively broken and show high susceptibility to high-elevation
collapse and landslides. However, since this area lies in a high and
steep slope on the eastern side of the Lancang River, its adverse
high-elevation geological phenomena tend to be ignored.
According to the latest SBAS-InSAR interpretation results,
multiple areas with high deformation rates exist in the middle-
upper part of the slope and they are prone to landslides. The RLSM
shows the differences of area No. 2 before and after optimization
and meanwhile, some areas with low susceptibility were corrected
into areas with high susceptibility (Figure 11).

5 DISCUSSION

In this study, the FR, RF, and FR-RF models were adopted to
evaluate the application of LSM along the north Lancang River.
The purpose is to compare the accuracy of mathematical models
andmachine learningmodels and to further obtainmore accurate

FIGURE 10 | Landslide assessment results of area No. 1 (Ritong area). (A) landslide susceptibility assessment results obtained using the FR-RF model. (B)
deformation rates in the slope direction obtained by the SBAS-InSAR method. (C) optimized landslide susceptibility assessment results. (D) changes in landslide
susceptibility grades before and after refining.

FIGURE 11 | Landslide assessment results for area No. 2 (Xueru area). (A) landslide susceptibility assessment results obtained using the FR-RF model. (B)
Deformation rates in the slope direction obtained by the SBAS-InSAR method. (C) optimized landslide susceptibility assessment results. (D) changes in landslide
susceptibility grades before and after refining.
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landslide susceptibility assessment results. Therefore, it is highly
necessary to verify the accuracy of the results. To this end, a test
data set is required to verify the ability of the models to identify
new samples, and then the test errors are taken as the
approximation of generalization error. It is generally assumed
that the collection of samples for verification is independent of
the true distribution of samples. In addition, the test and training
data sets should be mutually exclusive as much as possible.
However, they should be determined in such a way that their
data distribution should be kept consistent as far as possible to
avoid the effects of data segmentation on the final results. In this
study, 70% of the samples were used for training, while the rest
were used for testing.

In this study, both the Sentinel-1 data and the RADARSAT-2
data were utilized for deformation monitoring by the InSAR
method. They are ascending and descending data, respectively
and have the same monitoring duration. Their advantages and
disadvantages were assessed according to the deformation point
density that was finally calculated using analytical data. The
purpose was to avoid errors that may be caused by a single
data source. Finally, the RADARSAT-2 data were selected. Since
RADARSAT-2 has a revisit cycle of 14 days, the InSAR method is
only applicable to slow and very slow ground surface movements
but can only yield average effects in monitoring quick ground
surface movements such as collapse and rockfalls. There is no
perennial cover of snow and ice and the vegetation coverage is low
in the study area. Therefore, the C-band data of RADARSAT-2
are fit for the InSAR interpretation of the study area.

In this study, the LSM was performed using the FR, RF, and
FR-RF models. However, the results obtained were limited by the
data quality related to each landslide conditioning factor and the
quality of landslide samples, which may lead to classification
errors. For the data quality related to each landslide conditioning
factor, regional susceptibility assessment tends to be carried out
using the terrain and landform data with a resolution of 90 m or
even higher and the lithologic fault data mostly sourced from 1:
500,000 regional geologic maps (Li et al., 2017; Zhao et al., 2019).
Owing to the limited area of the study area, the terrain and
landform data used in this study have a resolution of 30 m and the
lithologic fault data are on a scale of 1:250,000, thus ensuring the
data quality of landslide conditioning factors to the highest
extent. For the quality of landslide samples, it is a common
practice to use historical landslide data in landslide susceptibility
assessment (Alkhasawneh et al., 2014; Wang et al., 2015;
Tsangaratos and Ilia 2016; Chen et al., 2017). However, the
evidence of landslide activities may be lost due to landslide
evolution, erosion process, vegetation growth, and the effects
of human activities. Historical landslides can be effectively
supplemented through the timely identification of active
landslides. In this way, the accuracy of LSM can be improved.
Furthermore, the landslides in this study area mostly occur in
low-elevation areas due to the landform consisting of high
mountains and canyons of the Lancang River. This causes the
lack of samples of high-elevation landslides, which tend to be
inaccessible in traditional surveys, thus leading to serious
classification errors in the LSM. The comparison of results
before and after InSAR refining also reveals that the slopes

with great changes in landslide susceptibility grades are mostly
located in high-altitude areas. This indicates the advantages of
InSAR refining in this study and the necessity of optimizing the
LSM by the InSAR method.

It should be noted that, for the deformation results determined
by LSM along with InSAR, there are fewer errors that the areas
subject to slope deformation are wrongly classified as the areas
with very low and low sensitivity. In contrast, the LSM based on
traditional models only presents the regional distribution of the
landslides predicted and cannot provide the dynamic
deformation process of slopes. However, the evolution of
landslides with time is the greatest concern for decision
makers (Xie et al., 2017). RLSM allows the current state of
landslides to be revealed and can be applied to the preliminary
landslide surveying and mapping and quantitative risk
management on a regional scale (Chalkias et al., 2014).

To sum up, landslide susceptibility assessment and its
mapping serve as a major step in the research of landslide
risks and can be used to assess the risks in areas prone to
landslides and areas with infrastructures. It has been proposed
that the Sichuan-Tibet Railway under planning run through the
study area in the form of a bridge. Therefore, it is obvious that
more accurate LSM can better serve the planning and risk control
of the Sichuan-Tibet Railway. The deformation results obtained
using LSM and InSAR individually can both achieve required
goals, while the combination of them can further optimize and
refine LSM. Compared with the landslide susceptibility maps
obtained using traditional models, the landslide susceptibility
map refined using the InSAR results yielded more accurate
sorting of landslide susceptibility along Lancang River.
Therefore, it is believed that the refined landslide susceptibility
map will be valuable for effective land use management and
project planning in the Lancang River region.

6 CONCLUSION

In this study, the FR, RF, and FR-RF models were adopted to
evaluate the application of the LSM along the north Lancang River.
The ascending and descending data of satellites were individually
adopted to calculate the deformation rates of slopes using the SBAS-
InSAR method. As a result, more accurate deformation results
obtained with RADARSAT-2 data were selected to optimize the
LSM through a contingency matrix, thus improving the precision of
the LSM. The above technologies were combined to further improve
the accuracy of the susceptibility assessment results by considering
the current deformation state of slopes and accordingly to reduce
potential landslide risks.

The LSI values were obtained using the FR, RF, and FR-RF
models. They were divided into five grades, namely very low, low,
moderate, high, and very high. The AUC values of the assessment
results obtained with FR, RF, and FR-RF models were 0.866,
0.897, and 0.916, respectively. Meanwhile, it was verified by
existing landslides that the FR-RF model had the highest
accuracy. Therefore, the FR-RF model was selected for LSM
optimization. Afterward, a contingency matrix was established
according to LSI values and the deformation rates in the slope
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direction were converted. Based on this, the susceptibility results
obtained using the traditional model were updated. As a result,
the areas with high and very high susceptibility increased by
2.97% and 563,430 grid cells showed changes in landslide
susceptibility, accounting for 11.15% of all grid cells. Most
especially, the Xueru and Ritong areas showed more notable
increases in landslide susceptibility than other areas, and it has
been verified by remote sensing images and field surveys that
landslide risks exist in both areas.

This study is greatly significant for the refining of LSM,
especially for areas where the SBAS-InSAR method is
applicable. The refined landslide susceptibility map can provide
valuable support for the decision making in the disaster prevention
andmitigation and the management of major engineering facilities
in the upper reaches of the Lancang River.
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