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Earth has sustained continental glaciation several times in its past. Because

continental glaciers ground to low elevations, sedimentary records of ice

contact can be preserved from regions that were below base level, or

subject to subsidence. In such regions, glaciated pavements, ice-contact

deposits such as glacial till with striated clasts, and glaciolacustrine or

glaciomarine strata with dropstones reveal clear signs of former glaciation.

But assessing upland (mountain) glaciation poses particular challenges because

elevated regions typically erode, and thus have extraordinarily poor

preservation potential. Here we propose approaches for detecting the

former presence of glaciation in the absence or near-absence of ice-

contact indicators; we apply this specifically to the problem of detecting

upland glaciation, and consider the implications for Earth’s climate system.

Where even piedmont regions are eroded, pro- and periglacial phenomena will

constitute the primary record of upland glaciation. Striations on large (pebble

and larger) clasts survive only a few km of fluvial transport, but microtextures

developed on quartz sand survive longer distances of transport, and record

high-stress fractures consistent with glaciation. Proglacial fluvial systems can be

difficult to distinguish from non-glacial systems, but a preponderance of facies

signaling abundant water and sediment, such as hyperconcentrated flood

flows, non-cohesive fine-grained debris flows, and/or large-scale and

coarse-grained cross-stratification are consistent with proglacial conditions,

especially in combination with evidence for cold temperatures, such as rip-up

clasts composed of noncohesive sediment, indicating frozen conditions, and/or

evidence for a predominance of physical over chemical weathering. Other

indicators of freezing (periglacial) conditions include frozen-ground

phenomena such as fossil ice wedges and ice crystals. Voluminous loess

deposits and eolian-marine silt/mudstone characterized by silt modes, a

significant proportion of primary silicate minerals, and a provenance from

non-silt precursors can indicate the operation of glacial grinding, even

though such deposits may be far removed from the site(s) of glaciation.

Ultimately, in the absence of unambiguous ice-contact indicators, inferences

of glaciationmust be grounded on an array of observations that together record

abundant meltwater, temperatures capable of sustaining glaciation, and glacial

weathering (e.g., glacial grinding). If such arguments are viable, they can bolster

the accuracy of past climate models, and guide climate modelers in assessing

the types of forcings that could enable glaciation at elevation, as well as the
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extent to which (extensive) upland glaciation might have influenced global

climate.
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mountain glaciation, alpine glaciation, proglacial, periglacial, ice-contact, loess, cold-
weathering, microtextures

1 Introduction

Detection of glaciation in Earth’s past relies on erosional

landforms and—especially for Earth’s deep-time record—the ice-

contact sediments left behind. Wegener (1929) asserted that

“Generally, it is usual to regard the rock as certainly glacial

only if one has been able still to detect the polished surface of the

outcrop under the boulder clay of the ground moraine.” This

approach works reasonably well for the near-time (Quaternary)

record, and—in the case of ice sheets that ground below base

level—the sedimentary record of ice contact can be preserved in

deep time. In this case, the attributes that meet Wegener’s (1929)

high standard, such as striated, polished, and/or grooved bedrock

surfaces, diamictites with striated clasts, glacio-tectonized strata,

and dropstones enable geoscientists to detect “icehouse” climates

characterized by continental glaciation dating from intervals

millions and even billions of years in Earth’s past (e.g.,

Crowell, 1978; Crowell, 1999; Benn and Evans, 2010).

But preservational bias pervades the deep-time record, wherein

most sedimentary strata record conditions in regions near or below

base-level within tectonically subsiding regions; in contrast to such

settings, upland or “mountain” glaciation in particular occurs in

regions characterized by erosion rather than deposition. Upland

glaciation should have been common during Earth’s icehouse states

and may have occurred even in presumed greenhouse intervals.

However, without the preservation of mountainous terrain—a tall

order for Earth’s deep-time record—the only sign of glaciation

might be ice-proximal strata from the proglacial region, or even

periglacial regions relatively far removed from the ice margin.

Although geoscientists can study sediments derived from

uplands to understand the tectonics of the uplands (e.g., Reiners

and Brandon, 2006), the climatic attributes are largely lost, since

sediments primarily record environmental conditions of their

sites of deposition—in subsiding basins. Yet, establishing the

former presence of glaciation in uplands is key for studies of past

climates given the extreme sensitivity of mountain glaciation to

climate change (e.g., Kaser, 2009; Russell et al., 2009), and the

importance of mountain glaciers as potential climate drivers. The

differentiation of upland (mountain) glaciation from continental

glaciation hinges to some degree on evidence for the (former)

presence of a discrete paleouplift (e.g., zero-isopach area). Where

erosion has completely removed the upland stratigraphic and

geomorphic record, however, we posit that upland glaciation can

be inferred on the basis of an association of evidence (facies and

attributes) that indicates pro- and/or periglacial conditions

proximal to the inferred paleoupland. In this contribution, we

outline attributes to potentially recognize these conditions. Such

inferences will remain interpretative and equivocal, but we argue

that a preponderance of observations consistent with a glacial

influence yet lacking ice-contact facies or surfaces should not

necessarily preclude an interpretation of upland glaciation. Of

course, where uplands remain, the ultimate test is discovery of

preserved glacial landforms (e.g., paleovalleys) and ice-contact

deposits on the upland itself.

2 Definition of upland (mountain)
glaciation

In the modern and recent record, “mountain” (also termed

“alpine”) glaciation refers to glaciation in or confined by

mountainous terrain, in contrast to ice sheets that are

unconstrained by topography (Benn and Evans, 2010). However,

this definition—like many features of glacial systems—relies heavily

on geomorphology, reflecting the bias of our modern life on an

icehouse Earth. In deep (pre-Cenozoic) time, we lose many of the

landform features, leaving primarily the sedimentary deposits.

Moreover, evidence for glaciation in Earth’s deep-time record is

biased towards evidence for continental glaciation since mountains

tend to erode. Despite these preservational challenges, mountain

glaciation has been asserted for some deep-time periods where

glaciation terminated into subsiding regions, notably from the

late Paleozoic of South America and Australia. For example,

Lopez-Gamundi et al. (1994) inferred mountain glaciation for the

Argentinian preCordillera on the basis of (glacial) paleocurrent

vectors that radiated from basement highs. Other interpretations

of mountain glaciation are similarly based on data indicating the

(inferred) locations of late Paleozoic highlands (e.g., Australia and

theArgentina proto-Precordillera; Crowell, 1999; Henry et al., 2010).

Jones and Fielding (2008) hypothesized mountain glaciation in the

late Paleozoic record of Australia on the basis of significant amounts

of debris and abrupt lateral changes in thickness and character of

stratal successions, although these criteria are somewhat vague.

Several authors (Lopez-Gamundi et al., 1994; Kneller et al., 2004;

Dykstra et al., 2006; Limarino et al., 2006; Aquino et al., 2014;

Moxness et al., 2018; Valdez-Buso et al., 2020; Lopez-Gamundi et al.,

2021) have identified glacial paleovalleys cut into the Argentinian

proto-Precordillera, although the existence of a paleovalley alone

does not confer evidence for mountain glaciation, since valley

glaciers today—e.g., Greenland—occur where outlet glaciers drain

ice sheets through regions with some topographic relief. Isbell et al.

(2003) and Isbell et al. (2012) suggested that the volume of glacial

Frontiers in Earth Science frontiersin.org02

Soreghan et al. 10.3389/feart.2022.904787

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.904787


deposits, the nature of the facies, and variable, or radial paleocurrent

vectors confer means to differentiate between ice sheets and

mountain glaciers, but the details remain murky. Despite the

challenge of deep-time preservation of upland systems, we

postulate that mountain glaciation can be interpreted using

multiple lines of evidence from sedimentary facies and attributes

that potentially record 1) proximity to glaciated paleohighlands, and

2) operation of processes either unique to, or common in glacial

systems.

3 Indicators of glaciation outside the
zone of ice contact

In the absence of ice-contact deposits, we must rely upon

secondary deposits and features (Table 1) in pro- and periglacial

regions that carry traces of glacial processes, and/or of cold-

climate conditions. Although definitions vary somewhat, we take

proglacial processes to be those that occur in proximity to the ice

margin, whereas periglacial processes imply cold, non-glacial

environments (Benn and Evans, 2010; French, 2013).

3.1 Quartz-grain microtextures

Glaciers abrade rock surfaces by striating and polishing them,

and striae on bedrock or clasts have long been the gold standard

for recognition of glaciation, provided they can be distinguished

confidently from other striae-producing processes e.g., mass

movements and tectonics (Hambrey, 1994; Atkins, 2003). But

striae are both lithology dependent and readily erased: they

develop preferentially on fine-grained and soft lithologies

(rarely on granite or gneiss; Anderson, 1955; Boulton, 1979;

Kuhn et al., 1993; Benn and Evans, 2010), and typically survive

only 1–2 km of fluvial transport (Atkins, 2003). Furthermore,

they are relatively rare: in systematic grid analyses of glacial

systems, <10%–20% of clasts exhibited striae (Anderson, 1955;

Atkins, 2004). Facets on clasts can survive transport of up to

5–6 km (Atkins, 2003)—still a relatively short distance.

In contrast, microtextures on individual grains of minerals,

most commonly quartz, have been posited as a means to infer

glacial processes (e.g., Krinsley and Doornkamp, 1973; Mahaney,

2002), and they preserve far longer in fluvial transport (e.g., Sweet

and Brannan, 2016). Assessment of specific conditions that

resulted in the microtextures preserved on quartz grains can

be challenging since many individual microtextures can be

produced under different transport conditions and

environments (Brown, 1973). More recent work has argued

that only large-scale fractures that cover at least one-quarter

of the grain surface can be considered glaciogenic, as smaller-

scale fractures can be produced in a wide variety of environments

(Molen, 2014). Despite these limitations, a growing body of work

suggests that suites of microtextures, rather than a single

diagnostic feature, can be used to differentiate among

transport media. For example, grains that have undergone

saltation or bed load transport in modern systems and

experiments commonly exhibit v-shaped cracks as well as

edge rounding (Sweet and Brannan, 2016; Costa et al., 2017;

TABLE 1 Attributes of pro- and periglacial settings illustrated in this paper.

Quartz grain microtextures • Deep troughs (>10 µm-deep) Figure 1A

• Straight/linear grooves (<10 µm-deep) Figures 1B,D

• Conchoidal fractures Figure 1C

Fluvial facies • Scour-and-fill deposits (10–50 cm) Figure 3A

• Mega crossbeds (up to 2.5 m) Figures 3D,E

• Floating clasts, HFF deposits (~10–30 cm diam.) Figures 3B,C,L

• Pebbly mud flows and rip up clasts Figures 3J,K,H–I

• Sandstone dykes (mm-cm-scale) Figure 3K

Frozen ground phenomena • Polygonal cracking (20–75 cm) Figures 5A,B

• Frost wedging (up to meter-scale) Figure 5C

• Ice crystal pseudomorphs (2–3 cm diameter) Figures 5D–F

Loess and eolian-transported dust • Massive (structureless) bedding (up to 20 m) Figures 6A,B

• Blocky-to-angular fracturing Figures 6C,D

• Slickensides, pedogenic (5–10 cm) Figure 6E

• Root traces (0.5–1 m) Figure 6F

• Predominance of siliciclastic silt Figure 7
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Smith et al., 2018). Glacial till from upland glaciers may harbor a

suite of microstriae on grains (Hart, 2006; Sweet and Brannan,

2016; Kalinska et al., 2021). Ice sheets can produce microtextures

that differ from those imparted by upland glaciation owing to the

different thicknesses of ice in these systems (Mahaney et al., 1988;

Mahaney and Kalm, 1995), although we focus here specifically on

upland glacial systems.

Sweet and Soreghan (2010a) proposed a tripatite nomenclature

to differentiate microtextures imparted by different types of stresses:

percussion fractures, high-stress fractures, and polygenetic fractures.

Percussion microtextures consist of v-shaped cracks and edge

rounding, and are common to eolian, coastal, and fluvial

systems. High-stress microtextures consist of grooves, troughs,

and gouges (Figure 1) resulting from grain-to-grain contact

under sustained shear stress and are common in grains

recovered from till and proglacial deposits (Mahaney and Kalm,

1996; Hart, 2006; Sweet and Brannan, 2016; Smith et al., 2018;

Kalinska et al., 2021; Reahl et al., 2021), but also are reported from

structural shear zones and debris flows (Mahaney, 2002).

Polygenetic microtextures are the remainder of the mechanically

induced microtextures observable on grain surfaces and originate

through various processes. Since the development of this tripartite

suite ofmicrotextures, numerous studies from ancient environments

have employed this approach to differentiate between glacial and

sub-aqueous or sub-aerial percussion transport (Kirshner and

Anderson, 2011; Witus et al., 2014; Keiser et al., 2015; Kalinska-

Nartisa et al., 2017; Nartiss and Kalinska-Nartisa, 2017; Kalinska-

Nartisa et al., 2018; Kalinska-Nartisa and Galka, 2018). Statistical

tests of the tripartite system from modern settings demonstrate that

percussion textures prevail in fluvial environments (Smith et al.,

2018; Reahl et al., 2021), but Reahl et al. (2021) suggested that high-

stress microtextures carry more ambiguity, as some eolian systems

exhibit a higher incidence of high-stress features than glacial

systems; for example, upturned plates are a microtexture

FIGURE 1
SEM micrographs demonstrating the character and preservation of glacial influence on grain transport. (A,B) grains collected in modern fluvial
system, 65 km down the Chitina River from the terminal moraine of the Chitina Glacier (AK, United States; see Sweet and Brannan, 2016). (A)
Undulose surface on quartz grain with grooves >10 µm deep, termed deep troughs (dt). Grain has experienced percussion overprinting due to
saltation during fluvial transport as indicated by edge rounding (er) and v-shaped cracks (vc). (B) Linear groove <10 µm deep on the fracture
surface, termed straight grooves (sg). Percussion influence on grain is demonstrated by abundant chipping at grain edges that manifest as arcuate
steps and conchoidal fractures as well as numerous v-shaped cracks (vc). Note only one v-shaped crack is identified in the micrograph, but
numerous occurrences are present. (C,D) grains collected in Permo-Pennsylvanian Cutler Formation (interpreted proglacial fluvial system; see
Keiser et al., 2015) showing microtextures including conchoidal fractures (C) and linear grooves (<10 µm deep). See Sweet and Soreghan (2010b) for
classifications of transport-induced microtextures on quartz grain surfaces.
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common to both eolian and glacial deposits (c.f.Mahaney andKalm,

1995; Li et al., 2020a). However, all of those high-stress microtexture

occurrences are from eolian systems located in proximity to a glacial

influence, obfuscating whether the features were created during

glacial or eolian transport. The probability of high-stress

microtextures occurring that reflect microstriae, such as grooves

and troughs, is extremely low in eolian systems far removed from

modern or Pleistocene glaciation (Reahl et al., 2021). Moreover,

samples collected in fluvial systems far removed from a glacial

influence yielded very low probabilities of retaining a high-stress

signal (Reahl et al., 2021). Thus, while high-stressmicrotextures have

been reported from deposits other than those of glacial origin, most

of the reported occurrences are associated with glaciation. Multiple

studies show that high-stress microtextures are progressively

overprinted downstream from a glacial terminus (Pippin, 2016;

Sweet and Brannan, 2016; Krizek et al., 2017; Smith et al., 2018;

Kalinska et al., 2021). In a glaciofluvial system, the ratio between

percussion and high-stress microtextures observed on quartz grains

decreases downstream from the glacier with ~10% of the grains still

exhibiting high-stress microtextures within ~200 km of the glacial

terminus (Sweet and Brannan, 2016) and the preservation of

microstriae indicates a period of glacial influence during the

transport history of these grains.

While we posit that high-stress microtextures can indicate a

past glacial influence, the total number of quartz grains that

exhibit high-stress microtextures varies by study. Near the glacial

terminus, fractions of grains exhibiting high-stress values range

from ~10% to 30%, whereas polygenetic microtextures are

reported on 60%–80% of the grains examined (Sweet and

Brannan, 2016; Kalinska et al., 2021). Moreover, Reahl et al.

(2021) reported that the largest individual source of variance in

the data is operator bias. This variance might be resolvable given

more studies of modern systems using a double-blind approach

and quantitative data analyses, such as used in Smith et al. (2018).

Alternatively, variations in ice volume and thus total energy

imparted onto grains might also cause such variation. For

example, the area, width, and length of the glaciers and slopes

of the proglacial systems used in the Sweet and Brannan (2016)

and Kalinska et al. (2021) studies vary significantly (Table 2).

While ice thickness has been cited as a control on the type and

abundance of microtextures observed in ice-sheet versus upland

glacial deposits (Mahaney et al., 1988; Mahaney, 1995; Mahaney

et al., 1996), no systematic study exists to assess quartz-grain

microtextural variation due to thickness of ice in alpine settings.

3.1.1 Case study: Quartz grain microtextures in
the Pennsylvanian-lower Permian Cutler
Formation (Colorado, United States)

The Cutler Formation that crops out near Gateway, Colorado

(United States; Figure 2) has been hypothesized to record proglacial

deposition based on the presence of an inferred late Paleozoic

glacially carved valley within the uplands (Soreghan et al., 2007;

Soreghan et al., 2008a; Patterson et al., 2021), inferred ice-contact

facies in the most proximal deposits onlapping the paleo-upland

(Soreghan et al., 2008b; Soreghan et al., 2009), microstriae on quartz

grains (Keiser et al., 2015), and inferred proglacial fluvial deposition

(see discussion in 3.2.5. Case study below; Soreghan et al., 2009;

Sweet, 2017). Note that the Cutler Formation extends from the

ancient Uncompahgre highland to the distal Paradox basin that

bordered the highland, but we focus here on the proximal-most

Cutler system, exposed within <1–10 km of the paleohighland. In

this system, quartz grain microtextures demonstrate a facies-

dependent variability in the percentage of grains exhibiting

percussion features, but a sustained 10%–15% of the grains

exhibit high-stress microtextures (e.g., Figures 1C,D; Keiser et al.,

2015). This indicates that: 1) the type of deposit sampled for

microtextural analysis is less important in this system when the

goal is identifying a glacial influence on grain transport, and 2)

grains likely acquired the high-stress microtextures prior to entering

the fluvial system of the Cutler Formation. Regionally, within coeval

strata of central Colorado, Sweet and Soreghan (2010a) reported

high-stressmicrotextures in the uplift-proximal alluvial setting of the

Fountain Formation exposed within <50 km of the Ute Pass

paleohighland, which they called upon to posit upland glaciation

in this paleohighland as well.

3.2 Facies common to proglacial fluvial
systems

Proglacial systems are characterized by an abundance of both

water and sediment (Maizels, 1997). Similar to other fluvial and

TABLE 2 Dimensions of glaciers and slopes of proglacial systems studied in Sweet and Brannan (2016), Pippin (2016), and Kalinska et al. (2021).

Glacier Length (km) Avg. width
(km)

Icefield area
(km2)

Avg. slope Avg. proglacial
slope

Virkisjökull 4.8 0.8 10 0.175 0.034

Salmon 15.7 1.5 82 0.064 0.017

Chitina tongue 1 54 2.3 0.03

Chitina tongue 2 82.5 3 4,856 0.025 0.006

Chitina tongue 3 82.7 4.4 0.022
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alluvial systems, proglacial systems also demonstrate a down-

system progression of facies (e.g., Zielenski and Van Loon, 1998;

Zielenski and Van Loon, 1999). In the proximal part of the

system (within 5 km of glacial terminus), gravel predominates

with horizontal, low-angle, and planar stratification as the most

common sedimentary structures (Boothroyd and Ashley, 1975;

Boothroyd and Nummendal, 1978; Maizels, 1993; Maizels, 1997;

Zielinski and Van Loon, 1998). With increasing distance

downstream, sand predominates and trough cross-

stratification and ripple cross-lamination become more

important (Boothroyd and Ashley, 1975; Maizels, 1993;

Maizels, 1997; Zielenski and Van Loon, 1998). Beyond the

proximal part of the system, the depositional record more

closely reflects a braid plain dominated by sand with only

gravel in primary channels (Zielenski and Van Loon, 2003).

This transition from gravel to sand (within a few tens or hundred

meters of the mountain front; e.g., Dingle et al., 2021) is less

obvious in proglacial systems, which tend to be deficient in the

1–10 mm grain size range (e.g., Maizels, 1989; Zielenski and Van

Loon, 1998). Given these characteristics and the ambiguous

character of proglacial facies, the best reflection of a proglacial

influence on sediment transport is expected in the most proximal

deposits. Accordingly, we focus here on facies from the proximal

system.

As streams gain power during, e.g., flood conditions,

transport capacity increases, enabling incorporation of more

sediment into the flow. Flows then transition from a state

wherein grains are entrained by turbulence to a state wherein

a mix of sediment-suspension mechanisms prevails, such as fluid

buoyancy, intergranular collision, and matrix strength (Smith,

1986; Smith and Lowe, 1991; Baas et al., 2011; Baas et al., 2016).

The resultant deposits range from scour-and-fill successions to

low- and high-density hyperconcentrated flood flow (HFF)

deposits (Figure 3; Smith, 1986; Todd, 1989; Scott et al., 1995;

Sohn, 1997). Flows with more sediment than water possess a

yield strength that must be overcome before flow can begin (e.g.,

FIGURE 2
Location map and depositional architecture of the proximal Cutler Formation. (A) Upland areas during the late Paleozoic (brown polygons).
Proximal Cutler and Fountain formations discussed in text are located near the towns of Gateway and Manitou Springs, Colorado, respectively. (B)
Digital elevation model (DEM) of the Gateway, Colorado region. Unaweep Canyon is interpreted as a glacially carved valley dating from the late
Paleozoic and partially reburied; the Cutler Formation, exposed near Gateway, Colorado, is interpreted to have accumulated when Unaweep
Canyon was occupied by ice. Inset: Geologic map of the dashed rectangle depicted on the DEM. (C) Cross-section (A-A′) depicting the variation in
facies from (inferred) most proximal glaciolacustrine to distal proglacial fluvial. The latter is the focus in the text. Line A-A′ is shown on (B).
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Pierson and Costa, 1987). These subaerial sediment gravity flows

rely on fluid buoyancy, grain-to-grain collisions and/or matrix

cohesion as sediment-support mechanisms. Thus, during flow

evolution the grain size and sediment concentration evolve

spatially and temporally and resultant deposits span the

spectrum of flows with varying water saturations (cf. Pierson

and Costa, 1987; Smith and Lowe, 1991). Here, we focus on

deposits resulting from flows of either sediment-laden water or

water-rich sediment that are most similar to the proximal

proglacial systems described elsewhere (e.g., Maizels, 1997;

FIGURE 3
Photographs depicting awide variety of facies observed in the Cutler system common to proglacial fluvial systems. (A) Scour-and-fill deposition
of coarse-to granule-sized sandstone. Red component of Jacob Staff is 50 cm. (B) Low-concentration HFF deposit demonstrating horizontal and
low-angle stratified sand and floating clasts. Floating clast indicated by white arrow is approximately 10-cm diameter. (C) High-concentration HFF
demonstrating pulses of grading and outsized floating clasts (overlain by silt layer). (D,E) Large-scale cross bedding with foreset heights up to
2.5 m. This bed is traceable for at least 750 m along strike of the foreset dip. (F)Meter-scale boulders in a debris flow of the fluvial system. (G)Deposit
demonstrating a hydrograph pulse where low-angle planar cross-stratification composes the base of the deposit, but transitions upward into high-
concentration HFF deposit denoted by reverse grading and outsized clasts. Top of the bed exhibits normal grading and is capped by siltstone that
drapes the unit. White arrow points to a ~15-cm diameter clast. (H,I) Deposits containing rip-up clasts of noncohesive fine sandstone and siltstone
(white arrows). Inverse to normal grading apparent in (I). (J,K) Pebbly mudstone deposits interpreted as cohesive fine-grained debris flows that
underwent inflation during flow to reduce competency. See text for details. White arrow denotes a sandstone dike within the pebbly mudstone bed.
(L) HFF with floating cobble in silt-sand matrix (snake for scale).
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Zielinski and Van Loon, 1998; Zielinski and Van Loon, 1999;

Breien et al., 2008; Cui et al., 2010; De Blasio et al., 2011) and

reflect terrestrial flow conditions between normal dilute stream

flow and cohesive debris flow. Although not unique to proglacial

fluvial systems, such mechanisms and resultant deposits are very

common to proglacial systems, and thus can augment other

observations indicating possible upland glaciation.

3.2.1 Scour-and-fill deposits
Streams with low sediment concentrations behave as

Newtonian fluids, with turbulence providing the main

sediment-transport mechanism (Smith, 1986; Pierson and

Costa, 1987; Smith and Lowe, 1991). Under very low

suspended sediment concentrations, a spectrum of lower flow-

regime structures form, such as lower plane bedding and dune

cross-stratification. With fine-to medium sand and moderate

values of suspended clay (<~10%), current ripples and bed waves

can occur; however, increased concentrations of suspended mud

dampen turbulence (Baas et al., 2011). Initially, sand and gravel

grains in suspension can enhance turbulence via grain-to-grain

collisions, and turbulent wakes produced by flow separation

around grains. With increasing sediment concentration,

however, flow viscosity increases and grain-to-grain contact

inhibits shear in the flow, which mutes turbulence (e.g.,

Bridge and Demicco, 2008). In this case, gravel deposits

become more poorly sorted and prone to recording scour-

and-fill structures rather than cross-stratification (Smith and

Lowe, 1991). Proglacial systems transport large volumes of

FIGURE 3
Continued.
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suspended and bed-load sediment in braided-stream type

systems (or “sandar” e.g., Marren, 2005), hence gravel and

sand exhibiting scour-and-fill structures are common products

of fully turbulent flows in proglacial systems (e.g., Maizels, 1993;

Krzyszkowski, 2002).

Scour-and-fill structures also occur in other modern and

ancient high-discharge systems such as ephemeral streams with

seasonal or strongly intermittent discharge (e.g., Tooth et al.,

2013; Priddy and Clarke, 2020). These deposits reflect abundant

entrainable sediment during high-discharge events; however, in

contrast to those from proglacial systems, ephemeral stream

systems commonly have intercalated mud, intercalated

calcretes on abandoned channels and floodplain deposits and/

or the influence of eolian sand (Tooth et al., 2013; Priddy and

Clarke, 2020). In some fluvial successions, scour-and-fill

structures are commonly interpreted to record upper flow

regime conditions (e.g., fast and shallow flows; Alexander

et al., 2001; Fielding, 2006). In these cases, a sand-rich deposit

exhibits cross-bedding that dips upstream, and laminae onlap a

relatively deep (up to 0.75 m) scour surface. Moreover, in the case

of chute and pool structures regularly spaced intervening highs

are present (Fielding, et al., 2000; Alexander et al., 2001; Fielding,

2006). Scour-and-fill structures from proglacial and ephemeral

streams may locally record these upper flow regime

characteristics, but commonly do not (Smith and Lowe, 1991;

Maizels, 1993; Priddy and Clarke, 2020), presumably because the

discharge conditions during flooding events produce average

flow depths that limit upper flow regime conditions.

3.2.2 Hyperconcentrated flood flow deposits
Hyperconcentrated flood flow (HFF) deposits were initially

defined to record non-Newtonian flows with little-to-no strength

where at least two sediment-support mechanisms prevail; these

are intermediate between dilute stream flow and debris flow

processes (Beverage and Culbertson, 1964; Pierson and Scott,

1985; Smith, 1986; Scott, 1988; Smith and Lowe, 1991; Zielenski

and Van Loon, 1998; Sohn et al., 1999; Pierson, 2005). Somewhat

later, the term hyperconcentrated flow was used to define flow

with abundant suspended sediment concentration, such as

within the Yellow River of China (Wan and Wang, 1994).

Similar use of terms is confusing, but both terms largely

describe a continuum of sediment transport processes with

the term “hyperconcentrated flow” typically referring to flows

with abundant suspended mud (up to ~25%) that reduces

turbulence with increased sediment concentration (Wan and

Wang, 1994; Baas et al., 2011; Baas et al., 2016). In contrast, HFFs

indicate a higher sediment concentration (~25%–50% suspended

material) where the role of turbulence as a sediment support

mechanism subsides as fluid buoyancy and intergranular

collisions begin to prevail (Beverage and Culbertson, 1964;

Smith, 1986; Pierson and Costa, 1987; Smith and Lowe, 1991;

Wan and Wang, 1994; Sohn et al., 1999). Moreover, suspended

sediment in HFFs is recorded by the deposit itself and can range

up to granule-sized, whereas deposits from hyperconcentrated

flows are commonly the coarser substrate that interacts with the

overlying mud-rich flow (Baas et al., 2011; Baas et al., 2016).

HFFs capture a spectrum of sediment-water mixtures wherein

fluid buoyancy and grain-to-grain collision work in the presence

of turbulence at relatively low sediment concentrations (Smith,

1986; Smith and Lowe, 1991; Sohn et al., 1999) but yield to fluid

buoyancy and grain-to-grain collisions as exclusive support

mechanisms at higher sediment concentrations (Pierson and

Scott, 1985; Scott, 1988; Sohn et al., 1999). Low-concentration

HFFs result in sand- and granule-dominated deposits

characterized by crude horizontal stratification and rare

scours. Additionally, outsized clasts of cobbles and boulders

are common in sand- and granule-rich HFF deposits,

indicating sufficient buoyancy to support large clasts. Low-

concentration, gravel-dominated HFF deposits are commonly

graded and conspicuously lack lenses of stratified sand

characteristic of normal stream-flow conglomerate deposits

(Smith, 1986; Sohn et al., 1999). In contrast, high-

concentration HFF deposits are predominantly sand-to

pebble-sized and lack internal stratification except for graded

(inverse to normal) sub-units within the deposit (Smith, 1986;

Sohn et al., 1999). Elongate clasts can be oriented with long axes

parallel to flow direction (Benvenutti and Martini, 2002). Similar

deposits have also been inferred to reflect traction carpets, which

result in graded beds or sub-units within a bed attributable to

grain dispersion during the flow (e.g., Sohn, 1997; Sohn et al.,

1999). Both low- and high-concentration HFF deposits are

common in proglacial settings that emanate from mountain

glaciers (e.g., Scott, 1988; Scott et al., 1995; Davies et al.,

2003), valley glaciers descending from ice-fields (e.g., Lawson,

1982; Maizels, 1993), continental ice sheets (e.g., Shulmeister,

1989), and subaqueous glaciogenic fans (Brennand and Shaw,

1996). HFF flows have also been reported from temperate to arid

alluvial fans, ephemeral fluvial systems, volcanic terranes,

liquified landslides, and floods in mountainous regions (e.g.,

Bull, 1963; Beverage and Culbertson, 1964; Harrison and

Fritz, 1982; Waitt et al., 1983; Ballance, 1984; Nemec and

Steel, 1984; Pierson and Scott, 1985; Smith, 1986; Scott, 1988;

Todd, 1989; Smith and Lowe, 1991; Best, 1992; Wan and Wang,

1994; Batalla et al., 1999; Sohn et al., 1999; Lirer et al., 2001;

Benvenutti and Martini, 2002; Svendsen et al., 2003; Pierson,

2005; Kataoka et al., 2008; Calhoun and Clague, 2018). Thus,

presence of HFF deposits should be used in combination with

other features in assessing a glaciogenic origin.

3.2.3 Debris flows
Debris flows are non-Newtonian flows with yield (matrix)

strength and high sediment concentrations. Owing to their

common occurrence across a wide variety of depositional settings

(both subaerial and subaqueous), stratigraphic, paleogeographic,

and sedimentologic context is critical for interpreting their setting

and significance. This discussion focuses on subaerial debris flows
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that experience rheologic transformation, as such flows are common

in systems with either abundant entrainable sediment as well as

abundant water in the system (e.g., Scott et al., 1995; de Haas et al.,

2022)— conditions common to upland proglacial systems. On the

other hand, rheologically stable flows produce common deposits in

many systems, including alluvial and (nonglacial) fluvial systems,

and mass flows in mountainous terrains.

Many upland glaciers exhibit debris flows with a wide variety

of rheologic properties that vary spatially away from the glacier

front. For example, Lawson (1982) observed active debris flows

emanating from the Matanuska Glacier, AK (United States) that

ranged from an internal plug with only basal shear, indicating

high matrix strength (i.e., cohesive debris flows) to flows with the

ability to raft clasts but also demonstrating significant vertical

movement of sediment consistent with lower matrix strength

(i.e., non-cohesive debris flows). Moreover, these flows

commonly transformed from high-to low-strength matrix with

the addition of water. Debris flows have also been observed to

transform to HFFs with progressive incorporation of water

(Pierson and Scott, 1985). In the Cascade Mountains of the

Pacific Northwest (United States), Scott et al. (1995) inferred the

opposite trend of flow transformation where the deposits

emanating from glaciers show evidence of “bulking up” from

normal stream flow to HFFs to non-cohesive debris flows.

Through observational, experimental, and modelling studies,

other workers have also demonstrated bulking of debris flows

by addition of sediment from bank erosion after flow initiation

from a glacial outburst flood (Breien et al., 2008; Cui et al., 2010;

De Blasio et al., 2011). Downstream variation of flow events can

also exhibit a spectrum of flow types from debris flow fronts to

HFF tails (Scott et al., 1995; de Haas et al., 2022). Hampton

(1972) and Hampton (1975) showed experimentally that

competence of debris flows—a measure of the largest clast

supported in the flow—reflects in part the relative abundance

of water and the type of clay present. However, with increasing

water, the sediment imposes a load on the fluid, and fluid

buoyancy begins to support sediment in addition to matrix

strength (Hampton, 1979). Taken together, these studies

imply that subaerial debris flow deposits with characteristics

attributable to rheologic flow transformation indicate

environments with abundant entrainable sediment (leading to

bulking) and water (leading to flow dilution) (Fisher, 1983).

These conditions are common in proglacial environments (Scott

et al., 1995; Cui et al., 2010, De Blasio et al., 2011), but are also

common in various mountainous settings (e.g., Berti et al., 1999;

Hungr and McDougall, 2005; de Haas et al., 2022) and in heavily

forested and post-wildfire regions (e.g., Santi et al., 2008; Reid

et al., 2016).

3.2.4 Outburst flood deposits
Seasonal flooding, as well as glacial lake outburst floods

(GLOFs) are common in glacial systems, especially wet-based

valley glaciers (e.g., Davies et al., 2003; Dessouki, 2009; Cui et al.,

2010; Begam et al., 2018; Neupane et al., 2019). The rapid release

of a large volume of water during outburst flood events produces

a variety of deposits. For example, large bars can result in cross-

stratification with foreset heights >1 m that extend laterally for

hundreds of meters (Russell and Marren, 1999; Marren, 2002;

Rushmer et al., 2002; Russell et al., 2005; Blazauskas et al., 2007;

Benn and Evans, 2010). Deposits can record both the flow surge

and its subsequent wane (Maizels, 1993). The surge is recorded

by upward coarsening, massive to graded poorly structured sand

and granule deposits, and HFFs (Maizels, 1993; Benn and Evans,

2010). Superjacent deposits recording decreasing flow conditions

include trough cross-bedded sand and gravel, upward fining,

normally graded sand, and crude horizontal stratification in sand

and granule deposits (Maizels, 1989; Maizels, 1993; Maizels,

1997). Isolated pools of stagnant water can form in the latest

stages of the waning flood, enabling suspension settling to form

mm-to cm-thick mud drapes (e.g., Benn and Evans, 2010).

Failure of natural dams—resulting from landslide or volcanic

blockage of a drainage system (Fenton et al., 2006; Kataoka et al.,

2008; O’Connor et al., 2009; Xiangang et al., 2017; Liu et al.,

2019)—can produce similar deposits. However, relative to dam

failures, proglacial systems are more likely to record repetitive

occurrences of these high water-volume flood deposits because

glacial meltwater is highly seasonal, resulting in abrupt

discharges (e.g., Dessouki, 2009).

3.2.5 Case study: Proglacial fluvial sedimentation
in the Pennsylvanian-lower Permian Cutler
Formation (CO, United States)

Above, we focused on quartz grain microtextures in the

Pennsylvanian-Permian Cutler Formation where exposed in

their most uplift-proximal location (Case Study 3.1.1); but we

FIGURE 4
Cumulative grain-size distribution of fine-grained debris
flows (black), and the fluvial facies from Soreghan et al. (2009; red)
with dashed lines inferred to extend the distribution.
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hypothesize that fluvial deposits here also demonstrate glacial

influence, owing in part to the predominance of granule-to-

cobble dominated strata recording flows with inferred high

sediment concentration and abundant water. The larger

context is also critical (Figure 2): Proximally, these deposits

onlap a paleovalley carved in Precambrian basement of a

FIGURE 5
Inferred frozen ground phenomena (see Sweet and Soreghan, 2008) including (A,B) small-scale (20–75 cm) polygon interiors bounded by a
polygonal fracture network in sand-rich substrate in the Pennsylvanian Fountain Formation, Colorado, (C) inferred frost wedging from the Fountain
Formation, and (D–F) ice crystal casts from the lower Permian Usclas Formation, France (see Pfeifer et al., 2021). All scalebars are 1 cm.
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paleo-uplift (the Uncompahgre uplift), and the most-proximal

strata comprise hypothesized proglacial lacustrine facies

exhibiting inferred dropstones, Gilbert-delta-like topsets and

foresets, and boulder-to granule subaqueous mass flows

deposits (Moore et al., 2007; Soreghan et al., 2009). Dilute

stream-flow deposits with dune structures here are quite rare,

similar to other proximal proglacial settings (Maizels, 1993;

Zielenski and Van Loon, 1998), and most cross-strata are low-

angle and best characterized as scour-and-fill deposits

(Figure 3A). HFF deposits are common to the Cutler system,

typically as crudely stratified coarse to very coarse sand- and

(predominantly) granule deposits with outsized floating clasts

(Figures 3B,C) indicating that both fluid buoyancy and

turbulence acted as sediment support mechanisms. One

instance of high-angle cross-stratification is noteworthy in

that the foresets approach 2 m in height and extend laterally

for at least 750 m (Figures 3D–F; Soreghan et al., 2009), recording

a major flooding event—analogous to the large prograding bars

observed during GLOFs (e.g., Marren 2002; Blazauskas et al.,

2007). Rip-up clasts of underlying non-cohesive (fine sand)

material are commonly incorporated into these HFF deposits

(Figures 3G,H), which appear analogous to rip-ups of frozen

bank material depicted in Diffendal (1984). Numerous

occurrences of stacked facies demonstrate the rise and fall of

flood hydrographs (Soreghan et al., 2009). For example, rare

lower flow regime dune deposits are locally overlain by reverse

graded granule deposits inferred as high-concentration HFFs

(Figure 3I). These in turn are commonly overlain by crudely

stratified granule deposits reflecting a low-concentration HFF

deposit. This progression of stacked facies suggests normal

stream conditions evolved to high-concentration HFF

conditions as the flood event hydrograph peaked, and then on

the falling limb of the hydrograph, low-concentration HFF

conditions prevailed. Comparatively, deposits in fluvial

systems and experiments with hyperconcentrated silt and clay

in suspension in fully turbulent conditions exist up to a

concentration of about 8% suspended mud, but with increased

sediment concentration turbulence is progressively muted and

then fully suppressed by about 25% suspended concentration

(e.g., Baas et al., 2011; Baas et al., 2016). Abundant granule

deposits are not consistent with such conditions. Locally,

laminated siltstone overlies these facies, which may indicate

deposition from an isolated pond that formed after the flood

subsided (e.g., Benn and Evans, 2010). Figure 3 depicts the wide

variety of facies associations observed in this system and

commonly demonstrate changing flow conditions within the

same deposit.

Flow transformation can also be inferred from some deposits.

For example, deposits with abundant granule-sized grains in a

muddy matrix (Figures 3J,K) are inferred to record cohesive fine-

grained debris flow deposits (Sweet, 2017). However, these

deposits uniformly lack the larger cobbles and boulders

otherwise pervasive within the system (Figure 4), indicating

the action of a mechanism to rid the flow of the larger clasts.

The simplest explanation is flow inflation by ~ 60% through the

incorporation of water after the flow initiated to account for the

loss of competence (Sweet, 2017), similar to debris-flow

transformations in modern proglacial systems (Lawson, 1982;

Pierson and Scott, 1985; Scott et al., 1995). These fine-grained

debris-flow deposits indicate the ready availability of abundant

water, given the persistent occurrence of these deposits in the

studied stratigraphic succession (Soreghan et al., 2009; Sweet and

Soreghan, 2010b). Moreover, the deposits are common to other

coeval strata regionally indicating that they were an important

process acting in the late Paleozoic uplift-proximal alluvial

systems of Colorado (Sweet and Soreghan, 2010b).

Previous authors viewed the crude bedding, inferred fluvial

and sediment-gravity flow facies of the Cutler system, and its

position adjacent to a paleouplift to argue for alluvial-fan

deposition (Mallory, 1958; Elston and Shoemaker, 1960; Baars,

1962; Cater, 1970; Werner, 1974; Mack, 1977; Campbell, 1979,

Campbell, 1980; Mack and Rasmussen 1984; Schulz, 1984),

and—indeed—many types of flows, including HFFs and debris

flows are common to non-glacial alluvial and fluvial systems.

Some (Campbell, 1979, Campbell, 1980) argued specifically for a

hot-humid fan, whereas others (Mack, 1977; Mack and

Rasmussen, 1984) argued for a hot-arid fan. But signs of

subaqueous deposition for the proximal-most mass flow

deposits (Shultz, 1984; Soreghan et al., 2009), in addition to

the large-scale bar deposits recording abundant water in the

fluvial system—yet relatively low chemical weathering—hint at

alternative interpretations. The proglacial—or cold-humid—

interpretation advocated by Soreghan et al. (2009) emanates

in part from consideration of facies analyses indicating that

the proximal-most Cutler system represents a lacustrine

environment complete with inferred dropstones and dump

structures near its onlap contact with Precambrian basement

of the paleo-uplift. Furthermore, it fills a small paleovalley visible

in outcrop that leads into Unaweep Canyon, an inferred glacial

paleovalley dating from the late Paleozoic (Soreghan et al., 2007;

Soreghan et al., 2008b). These associations, taken together with

the common occurrences of faceted clasts in the proximal Cutler

and widespread paleo-loess in the distal Cutler (Murphy, 1987;

Soreghan et al., 2002) support a proglacial interpretation for this

system.

3.3 Frozen ground phenomena

Cold-weathering phenomena, such as polygonal cracking of

sand-rich sediment (e.g., Lachenbruch, 1962; Black, 1976), or

preservation of ice-crystal impressions in fine-grained sediment,

are common in modern periglacial environments. But direct

evidence of freezing temperatures (even ephemeral freezing) in

the ancient record can have significant implications for

paleoclimate reconstructions. For example, the recent
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documentation of low-latitude, low-elevation ice-crystal

impressions and frozen ground features from the late

Paleozoic record of eastern and western equatorial Pangea

(Figure 5; Sweet and Soreghan, 2008; Pfeifer et al., 2021; Voigt

et al., 2021) require much colder temperatures than typically

assumed for low-elevation equatorial paleolatitudes.

FIGURE 6
Macromorphological (outcrop-scale) attributes of loess and eolian-transported dust including (A,B) massive, structureless bedding from the
Permian Salagou (France) and Flowerpot (OK, United States) formations, (C,D) blocky-to-angular fracturing from the Permian Dog Creek Formation
(OK, United States), and (E,F) pedogenically-altered loessite from the Maroon (CO, United States) and Salagou (France) Formations.
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Bedding-plane traces of ice crystals (pseudomorphs) that

record at least intermittent freezing of water-saturated sediment

are recognized in the geological record from the Ordovician

(Morocco and Libya; Nutz et al., 2013; Girard et al., 2015) to the

Pleistocene (United States; Mark, 1932; French and Shur, 2010)

and in several intervening intervals (e.g., Clarke, 1918; Udden,

1918; Lang et al., 1991), with the largest incidence of low-latitude

ice-crystal impressions dating exclusively from the upper

Carboniferous—lower Permian [Germany, France, New

Mexico, and Colorado (Lang, 1937; Reineck, 1955; Pfeifer

et al., 2021; Voigt et al., 2021)]. Laboratory-simulated features

that mimic the impressions left by the freezing of water-saturated

mud (Allan, 1926; Mark, 1932; Reineck, 1955; Pfeifer et al., 2021)

support interpretations of ice crystal molds in the ancient record.

The morphologies of these enigmatic features can resemble rare

forms of saline minerals (e.g., gypsum, halite, barite), and thus

might be overlooked as ice-crystal traces, but ultimately the

strong resemblance to ice crystal impressions in modern

mudflats (in scale and form) supports ice crystal growth as

the primary mechanism of formation (Figure 5D–F; Pfeifer

et al., 2021).

3.3.1 Case study: Frozen ground phenomena in
the upper Pennsylvanian Fountain Formation

A polygonal network of fractures occurs in Pennsylvanian strata

of the Fountain Formation along the Front Range of Colorado

(proximal to the ancestral Front Range; Figures 5A,B). The fractures

occur in two discrete intervals and at two different scales. The

interior polygons <75 cm in diameter for the smaller set are

observable in outcrop, while the larger set is 10 s of meters in

diameter and inferred based on variably oriented deeply penetrating

cracks (Sweet and Soreghan, 2008). At each locality, the cracked

substrate is massive (structureless) with sand and granule volume

ranging from 70% to 95%. Cracks taper downward from the top of

the paleosol horizon and penetratemore deeply (typically 2–3 m) for

larger polygons (Sweet and Soreghan, 2008).

Polygonal cracking observed within paleosol intervals is most

commonly attributed to desiccation of a muddy substrate; however,

a desiccation origin is untenable where the substrate comprises non-

cohesive sediment such as sand and/or granules (e.g., 50%–88%

sand precludes crack development in various experiments; Fellows,

1951; Neal, 1978; Kleppe andOlsen, 1985;Weinberger, 2001). In the

Fountain Formation, the granulometry of the substrate precludes

desiccation (e.g., mud cracking) as an explanation, and the host

lithology and characteristics similarly preclude the operation of

other binding mediums (e.g., evaporites, fossil algae) that could

impart the volume change needed to facilitate cracking (Sweet and

Soreghan, 2008). Thus, these features are inferred to represent frozen

ground that underwent volume change due to diurnal and seasonal

temperature swings, producing the polygonal network of cracks.

Thermal cracking of frozen soils occurs when already frozen ground

is subjected to further cooling (Lachenbruch, 1962; Mackay, 1974;

Maloof et al., 2002). Thus, if the polygonal cracks in the Fountain

Formation are the result of thermal cracking of frozen ground, then

the features record at least seasonally frozen ground conditions.

3.4 Loess and eolian-transported dust
deposits

3.4.1 Definition and origin of loess deposits
Loess refers to wind-transported continental deposits of

predominantly silt size (Muhs et al., 2003; Muhs et al., 2013)

and composed largely of quartz, feldspars, and clay minerals

(Muhs et al., 2003). By outcrop area and volume, loess is the most

abundant terrestrial deposit for the Quaternary (Catt, 1988),

covering about 6% of land area today (Li et al., 2020b); many

authors consider loess particularly characteristic of the

Quaternary (e.g., Catt, 1988; Smalley, 1995; Muhs et al., 2003;

Li et al., 2020b), for reasons explored further below.

Although the eolian origin of loess is well established, the

genesis of the silt-sized material has been long debated.

(Tutkovskii, 1899; in Smalley et al., 2001) was the first to

suggest a link between loess and glaciation, a view

subsequently echoed (e.g., Smalley, 1966; Smalley, 1995;

Smalley et al., 2001), and demonstrated in part by the

abundant silt content of subglacial till (Boulton, 1979), as well

as the close spatial and temporal association between (former)

glaciation and loess deposits (Catt, 1988; Smalley, 1995).

The efficacy of glacial grinding as a silt-production

mechanism is now unequivocal, but significant debate has

lingered regarding the possible role of other, non-glacial

processes in silt production, particularly the role of

intergranular collisions during eolian saltation. Whereas

Kuenen (1960) found this to be an ineffective means of silt

production, subsequent studies suggested the opposite (e.g.,

Whalley et al., 1987; Smith and Lowe, 1991; Wright et al.,

1998; Wright, 2001; Bullard et al., 2004; Bullard et al., 2007;

Enzel et al., 2010). However, more recent studies (Swet et al.,

2019; Adams and Soreghan, 2020) designed to realistically test

the capacity of saltation-induced grain fracturing as a silt

production method showed negligible silt production,

reinforcing Kuenen’s (1960) original conclusions. This, and

the absence of significant loess surrounding large deserts (e.g.,

Sahara and Australian deserts; Smalley and Krinsley, 1978;

Smalley, 1995) call into question the efficacy of hot-desert

processes for primary silt production in the “loess mode”

variously defined as 20–50 µm (Smalley and Krinsley, 1978) or

20–30 µm (Tsoar and Pye, 1987; Assallay et al., 1998). Rather,

desert regions with significant loess are invariably associated with

distal glaciated mountains (Smalley and Krinsley, 1978; Smalley

et al., 2009; Li et al., 2020).

The manufacturing of silt-sized material from non-silty

protoliths requires comminution, an energy-intensive process

readily achieved in the subglacial environment (Smalley, 1995;

Assallay et al., 1998). The other way to easily generate abundant

Frontiers in Earth Science frontiersin.org14

Soreghan et al. 10.3389/feart.2022.904787

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.904787


silt is to liberate it from precursor lithologies composed of ready-

made silt, such as siltstone, volcanic ash (tuff), or fine-grained

metamorphic rocks such as phyllite (Kuenen, 1960).

Alternatively, silt and clay can be deflated from dry lake beds,

such as the diatom-rich silt emanating from the Bodélé

Depression, termed by some the “dustiest place on Earth”

(Washington et al., 2006; Bristow et al., 2009).

Smalley and Derbyshire (1990) proposed the term “mountain

loess”—meaning loess produced by cold-climate processes in

mountains—as distinct from “glacial loess”—that produced by

continental glaciation, and posited these as the two main sources

for making the silt that forms loess. In a recent compilation of

loess occurrences globally, Li et al. (2020b) advocated for

classification of loess genesis into three modes as follows:

1) Continental glacier-river transport (CR) mode—produced by

low-elevation continental glaciers and transported to lower

reaches of rivers for deflation. Examples include the large

loess regions of the central United States and eastern Europe.

2) Mountain-river (MR) mode—produced by high-altitude

areas and transported to lower reaches of rivers for

deflation. For this mode, river transport ranges from

200 to 600 km (but up to 1,000 km), with loess deposits

occurring within ~50–300 km of the middle-lower reaches

of the river. Examples include loess deposits associated

with the Alps, Altai Mountains, Alaska Range, and the

Andes.

3) Mountain-river-desert (MRD) mode—produced in high-

altitude areas then transported by rivers to their middle-lower

reaches, or to desert basins, fromwhich they can be subsequently

deflated. For this mode, the average eolian transport distance

from the rivers to the centers of loess accumulation can exceed

700 km. Examples include the Chinese Loess Plateau (the single

largest loess deposit today) and the Negev Loess in Israel

(relatively thin). Thick accumulations of MRD-mode loess are

all associated with glaciated mountain regions, whereas thin or

discontinuous MRD-mode loess deposits are not (e.g., sub-

Saharan loess, Negev loess).

All three loess modes (CR, MR, MRD) include the potential

influence of glaciers within the “zone of production,” although

some amount of transport in rivers is also characteristic (Smalley,

1995; Smalley et al., 2009). On balance, a century of study on the

origin of loess suggests that large volumes of the requisite (silty)

material are most easily produced by glacial grinding

(continental and mountain), albeit mountain weathering (cold

climate, including glacial) processes can play important roles as

well. The close empirical association with glaciation provides a

means to consider loess as a proxy for glaciation, as explored

further below.

3.4.2 Paleo-loess (loessite) as a potential
indicator of glaciation

Common attributes of paleo loess, or loessite (Figure 6)

include thick (up to several-meter “beds”), laterally continuous

and structureless (massive) siltstone that commonly exhibits

pedogenic features or horizons, but neither grain modes that

exceed the silt size, nor channelization (Johnson, 1989; Soreghan

et al., 2008a). An absence of alternative explanations for delivery

of the sediment (e.g., absence of fluvial features) strengthens an

interpretation of eolian delivery. Loessite has also been identified

in core, based primarily on documentation of massive

(unstructured), monotonous siltstone (e.g., Kessler et al., 2001;

Dubois et al., 2012; Giles et al., 2013), and random grain-fabric

orientations (Wilkins et al., 2018). Sedimentary structures (e.g.,

ripples, desiccation cracks, laminations) are common in silt-rich

strata otherwise posited to record eolian delivery, indicating

reworking by water or pedogenic processes (Johnson, 1989;

TABLE 3 Particle size and mineralogy of selected loess deposits.

Location Unit Age Climate Mode (μm) %QF %Clays %Carbs References

Israel Negev Loess Q D 50–60 46 20–55 35 Crouvi et al. (2008)

Canary Island Loess Q D 5 53 <1 40 Menendez et al, (2007); Stuut et al. (2009)

Australia Alluvial loess Q D 58 51 39 4 Haberlah et al. (2010)

United States Peoria Loess Q G 24–56 ~80 17 3 Winspear & Pye (1995); Muhs et al. (2018)

Poland Zlota Loess Q G NR 88 1 6 Kenis et al. (2020)

Switzerland Loess Q G 16–30 84 NR NR Martgnier et al. (2015)

United Kingdom Smith Bank Fm Tr 30–50a 55 35 7 Wilkins et al. (2018), Wilson et al. (2020)

United States (UT) Ankareh Fm Tr 30–45a 45 27 27 Chan, (1999)

France Salagou Fm P 17a 60–70 20–30 NR Pfeifer et al. (2016), Pfeifer et al. (2021)

United States (OK) Dog Creek Fm P 15–50 NR NR NR Foster et al. (2014); Soreghan et al. (2015)

United States (CO) Maroon Fm P 30–35a 95 NR NR Johnson (1989); Soreghan et al. (2008a)

QF, non-clay silicates (mostly quartz and feldspars); Clays, phyllosilicates and Carbs, carbonates, all reported in relative percent. Age: Q, Quaternary; Tr, Triassic; P, Permian. For

Quaternary loess, Climate refers to the inferred origin in desert (D) or glacial (G) regions.
aIn modes indicates 2D analysis of lithified samples.
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Soreghan et al., 2008b; Giles et al., 2013; Sweet et al., 2013; Foster

et al., 2014; Wilkins et al., 2018; Pfeifer et al., 2020), since wet

surfaces enhance dust trapping.

Loess is a well-known paleoenvironmental proxy, for

parameters such as paleoatmospheric circulation (wind

regimes; Vandenberghe, 2013), and hydroclimate (e.g.,

FIGURE 7
Micromorphological (thin section) attributes of loess and eolian-transported dust in assorted Upper Pennsylvanian-Permian formations in the
western United States including (A,B) proximal and distal Cutler Formation loessite (Colorado and Utah, respectively), (C) Tubb Formation loessite
(New Mexico), (D)Maroon Formation loessite (Colorado), and (E,F) quartz silt (dust) in the marine Naco Formation (Arizona). All scalebars are 2 mm.
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paleoprecipitation; Maher, 2016). Until relatively recently, loess

was recognized exclusively from the Quaternary record, and

linked in part to the widespread icehouse conditions of the

Quaternary; but now paleoloess has been recognized in

Earth’s deep-time record, especially from the Carboniferous-

Permian icehouse (Murphy, 1987; Johnson, 1989; Kessler

et al., 2001; Mack and Dinterman, 2002; Soreghan et al., 2002;

Tramp et al., 2004; Soreghan et al., 2007; Soreghan et al., 2008a;

Giles et al., 2013; Sweet et al., 2013; Foster et al., 2014; Soreghan

et al., 2014; Pfeifer et al., 2020), and the Neoproterozoic icehouse

(Edwards, 1979; Retallack, 2011; Retallack et al., 2015). But a few

examples of inferred Mesozoic (mostly Triassic; one Cretaceous)

loessite (Chan, 1999; Jefferson et al., 2002; Lawton et al., 2018;

Wilkins et al., 2018; Wilson et al., 2020) exist, deposited during

greenhouse intervals, which calls into question what if any

attributes of loess might specifically indicate a glacial genesis.

We hypothesize that, under certain circumstances the

recognition of loess exhibiting particular attributes can raise

the hypothesis of glaciation contemporaneous with loess

deposition.

Assallay et al. (1998) noted that loess occurring in warm

desert regions typically exhibits primary modes either finer

(2–4 µm) or coarser (60–125 µm) than the “typical” primary

loess mode (wherein >50% of the sediment is 10–50 μm; cf.

Browzin, 1985). Crouvi et al.’s (2008) review of warm-desert loess

deposits reinforces this, citing coarse medians (58–80 µm) and

both very fine and coarse modes (multiple: 3–8 μm, 5–20 μm,

50–100 µm). In contrast, examples of classically glacial

(Quaternary) loess deposits display primary modes that

typically range between ~25 and 50 µm (Table 3). Moreover, a

literature review indicates that clay and/or carbonate content of

warm-desert loess units tend to be significantly higher than those

reported from glacial loess, which is dominated by primary

minerals (Table 3).

The few examples of paleo-loess deposits from deep-time

intervals lying outside of icehouse climates, and for which

relevant data exist, indeed commonly exhibit relatively fine

modes (<10 µm), and high clay mineral (27–35%) and/or

carbonate (up to 27%) contents, albeit the carbonate

present in deep-time examples could be purely diagenetic

(Table 3). For example, Wilkins et al. (2018) interpreted

the Smith Bank Formation (Triassic, United Kingdom) as

loessite, but documented a significant component of silt-sized

clay pellets sourced from desiccation of lacustrine systems,

and correspondingly abundant clay mineral content (~35%).

Furthermore, Wilson et al. (2020) showed that the sources for

this loessite comprise primarily fine-grained precursors, such

as sedimentary, and basic and acid-intermediate magmatic

and volcanic lithologies. Similarly, the Mercia Mudstone

(Triassic, United Kingdom) is interpreted to comprise silt-

sized clay agglomerates, akin to the “parna” of Australia,

which is reflected in the high (70) values of the Chemical

Index of Alteration (CIA) of these strata (Jefferson et al., 2002;

Mao et al., 2021). Chan (1999) reported relatively coarse size

modes (estimated 30–45 µm by thin section analysis) for the

Ankareh Formation loessite (Triassic, United States), but high

clay and carbonate contents (27% each; Table 3). Finally, Chen

et al. (2019) inferred “loess” or far-travelled dust from

deposits exhibiting primary modes of ~3 µm (Cretaceous,

China).

In contrast, paleo-loess reported from many units of the

Carboniferous-Permian (Table 3) exhibit modal grain sizes

(silicate fraction) generally in the 15–40 µm range,

predominantly (>80%) primary silicate mineralogical

compositions (with minimal clays, biogenic material, or

carbonate phases), and evidence for minimal chemical

weathering (e.g., low CIA values; e.g., Nesbitt and Young,

1982; Soreghan et al., 2008a). Despite the challenges in

reconstructing accurate volumes, measured sections document

anomalously thick (10 s to >1000 m) and widely distributed

accumulations of loess deposits from this time

interval—including the thickest (700 m to >1.5 km) loess

deposits yet documented from any time or place in Earth

history (Soreghan et al., 2008b; Pfeifer et al., 2020). Given

these examples, we hypothesize that paleo-loess can be an

indicator for glaciation when it exhibits many or most of

these attributes. Used in combination with provenance data,

these attributes can support a hypothesis of silt generation via

glacial grinding (e.g., if protoliths for the silt-sized material are

predominantly coarse-grained igneous and metamorphic

units—see Case Study 3.4.4). In summary, (paleo) loess

exhibiting 1—primary size modes of ~15–50 µm and

provenance data indicating derivation from (mostly) non-silt

precursors, 2—a significant fraction of primary silicate minerals

and relative dearth of clay, and 3—evidence for relatively

minimal chemical weathering, such as CIA values similar to

the source rock(s), signals the probability of silt generation by

glacial grinding. The case is strengthened further given large

volumes of material, and evidence for possible pulsed dust

deposition, with greater flux during inferred glacials relative to

interglacials (M. Soreghan et al., 2014). However, once made, silt

is readily recycled. Hence the need to combine observations from

multiple attributes to narrow the interpretation.

3.4.3 Eolian-marine strata signaling silt
generation

Given the reasoning above, we hypothesize that

preservation of widespread loess in Earth’s past can signal

glaciation contemporaneous with loess (ite) deposition. For

intervals of Earth history when glaciation occurred, but epeiric

seas predominated across lowland regions, however, the proxy

for abundant silt generation might be preserved in epeiric sea

deposits—not as loess, but as eolian-transported marine

strata.

Upper Devonian (Fammenian) through Permian strata of a

growing number of regions, especially in the US mid-continent
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contains a remarkably rich record of marine silt- and mudstone

inferred to reflect eolian transport (Soreghan et al., 2008b;

McGlannan et al.1). The most straightforward examples of

eolian-transported siliciclastic material are those preserved

within carbonate buildups or carbonate platforms that formed

(paleo) geographically isolated—or at least far removed—from

fluvio-deltaic source regions (e.g., Soreghan et al., 2008a; Sur

et al., 2010; Carvajal et al., 2018; Oordt et al., 2020; Sardar Abadi

et al., 2020; McGlannan et al.). Attributes that signal eolian

transport include 1—grain-size modes predominantly in the

silt fraction, although these can skew toward the fine to

lower-medium silt sizes in cases of longer transport distances

(c.f. McGlannan et al.), 2—blanket-like distribution over wide

regions, and 3—absence of nearby fluvio-deltaic or submarine-

fan feeders or other explanations for siliciclastic incursions. As

above, attributes that signal a possible glacial derivation include a

large volume/wide distribution, low clay-mineral content (and

thus correspondingly low chemical alteration, such as low

aluminum content), and provenance from known uplands

that exposed silt-poor protoliths.

3.4.4 Case study: Loess of the Permian Salagou
Formation (Southern France)

Pfeifer et al. (2020) interpreted the Salagou Formation—a

~1.5 km-thick monotonous section of fine-grained Permian

redbed strata preserved in the intramontane Lodève Basin

(south-central, France)—to record eolian transport and

deposition as loess. Despite its now well-lithified and

diagenetically altered state, the interpretation as paleoloess

is based on sedimentological characteristics (detailed facies

and petrographic analysis), quantitative grain-size analysis,

geochemical analysis that reflects a low degree of chemical

weathering, provenance data that indicates the action of

comminution to reduce grain size from source to sink, and

a lack of evidence for fluvial deposition or any other suitable

mechanism for generating or delivering such a large

volume of uniformly silt-sized sediment into the basin.

Relative quartz grain-size analysis was possible using 2D

backscatter electron (BSE) image analysis techniques

and stereological corrections (e.g., Soreghan and Francus,

2004).

Sedimentological attributes that define this ancient loessite

(Figures 6, 7) include 1) a predominance of massive

(structureless) and homogeneous mudstone occurring in beds

up to 15-m thick that fracture in a blocky-angular manner, 2) a

silt-sized distribution of quartz in an illite-hematite-rich matrix,

and 3) evidence for pedogenic overprinting at the macro- and

microscale including 10+ cm randomly oriented semi-radial

slickensides and abundant micromorphological attributes such

as wedge-shaped peds, clay grain coatings, and other pedogenic

fabrics.

Detrital zircon data from the Salagou Formation loessite

(Pfeifer et al., 2016) record coarse-grained protoliths within

the Montagne Noire core complex situated on the western

margin of the Lodève Basin. Quantitative (2D) quartz grain-

size analysis from known source lithologies in the Montagne

Noire show that quartz size must have been reduced

substantially—especially from the coarsest lithologies (granite),

but even from the finest lithologies (schist)— to achieve the silt

modes prevailing in the Salagou Formation. Furthermore,

TABLE 4 Summary assessment of proxies discussed in this paper.

Proxy Strength Weakness

High-stress quartz microtextures
(grooves, troughs)

Strong correlation with generation in proximal (<50 km, up to
~200 km) glacial systems

Also present in fluvial/eolian deposits where recycled from
glacial systems.
Frequency of occurrence varies by glacial system (ice
thickness)

Scour and fill deposits Produced by fully turbulent flows in proglacial systems. More typical of
proglacial where deposits lack upper flow regime characteristics or
intercalated mud/eolian sand

Common across a variety of high-discharge depositional
settings (including non-glacial)

Hyperconcentrated flood flow
deposits

Both low- and high-concentration HFF deposits are ubiquitous in
proglacial systems

Common across a variety of depositional settings (including
non-glacial)

Subaerial debris flows (w/rheologic
transformation)

Especially common in proglacial systems owing to abundant water and
entrainable sediment

Common across a variety of depositional settings (including
non-glacial)

Outburst flood deposits (seasonal) Common in proglacial systems, especially wet-based valley glaciers,
owing to seasonal and subglacial melting and impounding

Failure of natural dams can produce similar deposits

Frozen ground phenomena Demonstrates at least seasonally- diurnally cold temperatures conducive
to glaciation

Consistent only with temperatures that can enable
glaciation; no correlation to proximity of glaciation

Loess (ite) and eolian-transported
dust

Strong empirical association between wet-based glaciation and silt
production, large loess deposits

Silt occurs in non-glacial systems

1 McGlannan, A. J., Bonar, A., Steinig, S., Valdes, P., Pfeifer, L. S., Adams, S.
An eolian dust origin for clastic fines of Devono-Mississippian
mudrocks of the greater North American Midcontinent. J. Sediment.
Res. In review.
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geochemical proxies record a low degree of chemical weathering:

CIA values of the Salagou Formation loessite (average 63) are

consistently low and overlap with CIA values from known source

rocks in the Montagne Noire (59–70).

These data are most consistent with physical (glacial and

periglacial) weathering in the paleo-uplands as the primary

mechanism by which to generate large volumes of silt-sized

grains, ultimately reinforcing the interpretation of the Salagou

Formation as an ancient loessite.

4 Discussion: Bolstering our
understanding of paleoclimates with
upland knowledge

4.1 Amassing evidence to discern a glacial
influence in the deep-time record

Detecting glaciation in Earth’s pre-Quaternary record has

long relied upon features such as striations that can be rare even

in modern systems, and moreover that preserve poorly. This,

together with the universal tendency of glaciers to cannibalize

their own deposits, and/or be removed by post-glacial erosion

aided by isostatic rebound conspires to produce exceedingly

patchy evidence for glaciation—even for the case of

continental glaciation (e.g., Bjørlykke, 1985). For example, Bell

and Laine (1985) estimated that <6% of the glacial sediment

produced by the Laurentide ice sheet remains preserved on land.

The preservational challenges are multiplied many fold in the

case of upland glaciation, given its location in regions typically

subject to wholesale erosion, meaning that ice-contact landforms

and deposits are subject to complete erasure. The glacial “buzz

saw” — rapid glacial denudation above the equilibrium line

altitude—places an upper limit on the relief of modern

orogens (e.g., Brozovic et al., 1997; Spotila et al., 2004;

Mitchell and Montgomery, 2006; Whipple, 2009), and leads to

the mobilization and loss of substantial volumes of eroded

material from ancient glaciated orogens.

Given this, detecting glaciation in paleo-uplands requires

close examination of deposits preserved near the uplands to

assess possible proglacial attributes. This paper highlights various

attributes of a potential paleo-alpine glacial system; Table 4

synthesizes their relative effectiveness as possible indicators of

an upland glacial origin. Distinguishing proglacial from

nonglacial alluvial and fluvial facies is non-trivial, as the

examples of the Cutler and Fountain systems discussed above

illustrate; only recently have these been reinterpreted as

proglacial—interpretations which remain controversial. A

proglacial interpretation for the Cutler fluvial system benefits

from its hypothesized association with an inferred paleovalley

(Unaweep Canyon), as well as interpreted ice-contact facies

preserved adjacent to the paleo-uplift. Still, in the absence of

such preservation of ice-contact attributes, proglacial and

periglacial indicators can persist, providing veiled clues to a

cold past. Features such as a predominance of HFF, debris

flow, and flood (e.g., large-scale cross-beds) strata signaling

abundant water and sediment, yet characterized by minimal

evidence for chemical weathering suggests cold-wet

conditions. Additional evidence for cold temperatures, such as

rip-up clasts of non-cohesive material, microtextures indicating

glacial grinding, and frozen-ground phenomena would then

bolster a proglacial interpretation. Documentation of time-

correlative paleo-loess deposits more distally, or loess-derived

eolian-marine strata with characteristics consistent with glacial

grinding could be preserved up to 100 s to >1000 km from ice

margins. Ultimately, building the case for possible upland

glaciation requires integration of multiple lines of evidence,

none of which might be uniquely diagnostic when considered

individually—analogous to building the case for continental

glaciation (e.g., see review by Isbell et al., 2021). Although we

focus here on upland systems owing to the particularly poor

preservation of ice-contact attributes, these same approaches are

applicable to detecting glaciation for continental glaciation.

4.2 Implications of assessing upland
glaciation in the geologic record

Whether or not the pacing of their advances and retreats

harmonizes with those of continental glaciers, alpine glaciers are

a sensitive archive of climate change. Their equilibrium line

altitudes correlate strongly with regional to global temperature

and local precipitation (Clark and Bartlein, 1995; Hastenrath,

2009; Heavens, 2021). The more difficult question to consider is

whether they could drive regional to global climate change, either by

a direct ice-albedo effect or by indirect effects of surface

thermophysical properties (including albedo) on cloud dynamics.

In this regard, the major region of alpine glaciation whose

effects on climate and climate change have been of interest to

climate modelers is the Himalayas and Tibetan Plateau,

mountainous regions of high elevation near 30°N. The Tibetan

Plateau in particular acts as a winter heat sink and summer heat

source to the middle and upper troposphere (Ye, 1981). The

Tibetan Plateau thus supports anticyclonic circulation in the

upper troposphere in the summer, which coheres well with a

strong Indian and Asian summer monsoon (e.g., Hahn and

Manabe, 1975; KutzbachPrell and Ruddiman, 1993). The

Tibetan Plateau in particular seems necessary to produce this

effect, as opposed to just the Himalayas (e.g., Chen et al., 2014).

Therefore, Earth historians generally have connected the

development of these monsoonal circulations to the uplift of the

Tibetan Plateau over the course of the late Cenozoic (e.g., Zhisheng

et al., 2001). In the winter, the Tibetan Plateau’s strength as a heat

sink is proportional to snow cover, resulting in lower geopotential

height and a stronger jet stream (e.g., Li et al., 2018). However,

spring dust storm activity is dependent on positive spring sensible
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heat flux, so lower snow cover should lead to increased west

Chinese dust storms (Xie et al., 2020).

Therefore, we would hypothesize that lowered ELA andmore

widespread Tibetan Plateau glaciation would tend to transform

the Tibetan Plateau into a year-round heat sink, suppressing the

monsoonal circulations around it and favoring year-round

cyclonic circulation aloft. Indeed, the Indian monsoon

precipitation was much lower than present at the Last Glacial

Maximum (e.g., Jalihal et al., 2019), but any role for the Tibetan

Plateau may have been swamped by continental ice sheet and

greenhouse gas effects (Cao et al., 2019). It is also possible that the

Tibetan Plateau did not significantly glaciate at the Last Glacial

Maximum (Liu et al., 2020). Rather, there was merely an advance

in permafrost.

That said, the general dynamical role of being a mid-upper

troposphere heat source or sink may hold more generally for

sufficiently high alpine areas. At the Equator, the seasonality of

these effects will decrease greatly. For an unglaciated mountain

range, such a mountain range will be a year-round heat source.

However, as glaciation increased, it could be expected to become

at some point, a heat sink.

A practical example of such a range would be the Appalachian

and Hercynian orogenic belts, which formed an extremely long

mountain range spanning >5000 km near the Equator (e.g., Kent

and Muttoni, 2020), the Central Pangaean Mountains (CPM). Such

a range would tend to focus peak heating at the Equator if weakly

glaciated and displace peak heating from the Equator if strongly

glaciated. The role of orography and other zonal asymmetries in

Hadley cell and monsoonal dynamics remains hotly debated (e.g.,

Geen et al., 2020). Theoretical arguments extended by Lindzen and

Hou (1988) would suggest that displacement of peak heating off the

Equator would generate a strongly asymmetric circulation with a

strong winter Hadley cell and a negligible summer Hadley cell. This

forcing acting over a significant, but still small fraction of the

planetary circumference could be presumed to lead to a strong

summer monsoon or monsoon-like circulation, perhaps explaining

the pseudo-monsoonal circulation around the CPM produced by a

glaciated CPM in a climate model simulation (Heavens et al., 2015).

A similar argument could be made on the basis of idealized

simulations that consider the response of the circulation to an

isolated heat source. The initial response is a region of westerly flow

at the Equator with cyclonic circulation in the tropics to the north

and south (i.e., Pangaea) (Matsuno, 1966; Gill, 1980;Wu et al., 2001;

Vallis and Penn, 2020), again a pseudo-monsoonal circulation in

that it reverses the normal wind direction at the Equator, though

persistently rather than seasonally. The extent of these circulations is

a function of damping (presumably mostly radiative in the real

atmosphere). This disturbance then can propagate eastward as a

convective complex, drawing cold, dry air behind it and enhancing

evaporation ahead of it. The consequence is to focus convective

activity and rainfall to the east of the heat source.

Reasoning from Gill (1980), an isolated heat sink should

cause the exactly reverse scenario, with a positive easterly wind

anomaly and anticyclonic flow in the northern and southern

Pangaean tropics. This situation would reduce precipitation by

two mechanisms: dry continental subtropical air would expand

over the tropics, while convection at the Equator would be

suppressed by the strong inversion at the frozen surface. Some

enhancement of precipitation in the western Panthalassic ocean

would be possible. Heavens et al. (2015)’s glaciated CPM

simulation does suggest a negative Gill-type response, with

significantly reduced precipitation in equatorial and eastern

tropical Pangaea (in the cooling zone and to its northeast and

southeast, where anticyclonic flow would result in winds coming

from the subtropics); non-anomalous precipitation in western

tropical Pangaea and increased precipitation in western

subtropical Pangaea (to the northwest and southwest of the

cooling zone, where anticyclonic flow would come from the

Equator).

The net consequence seems to be much greater aridity

over equatorial and eastern tropical Pangaea. If this occurred

episodically with changes in orbital forcing/ice sheet

expansion, it would greatly enhance the effects of those

changes on tropical climate. Uplift coinciding with low

equilibrium line altitudes in the cold global climates of the

late Carboniferous could explain the greater sensitivity of

Euramerican coal forests to glacial-interglacial changes near

the Moscovian-Kasimovian boundary and the coal forest

breakdown that followed (Falcon-Lang and DiMichele,

2010). However, more detailed modeling of this scenario

would be necessary to understand its consequences, because

Heavens et al. (2015) also expands continental ice sheets in

addition to glaciating the CPM.

The final question to ask is whether alpine glaciation might

enable an ice-albedo feedback like that of continental ice sheets,

that is, with substantive impact on global temperature. The CPM

is the best candidate for having such an effect on account of its

size and its equatorial location. If it were glaciated to 2000 m

elevation, the glaciated CPM alone reasonably could have an area

of up to 1% of the Earth’s surface (~3.3% of the Earth’s surface is

above 2000 m elevation today). Ignoring cloud albedo changes,

its albedo would change from ~0.3 to ~0.9. Assuming 97.5% of

present day insolation (Heavens et al., 2015), glaciation of the

CPM to 2000 m from minimal glaciation would result in a

negative radiative forcing of ~4 Wm-2, a similar

magnitude—albeit opposite sign—as a doubling in pCO2

(3.7 Wm-2) (Myrhe et al., 2017). Depending on the total

sensitivity of the Earth system (e.g., Wong et al., 2021), CPM

glaciation could be expected to result in a further decrease in

global temperature by 2.8°C–5°C, perhaps enhancing the

amplitude of glacial-interglacial temperature variability

significantly. Note that widespread glaciation of the CPM and

its effects on regional climate could be self-limiting. Reduced

precipitation could raise ELA (Mote and Kaser, 2007; Heavens,

2021). If precipitation is low, glaciers can ablate by direct sunlight

well above the level where mean air temperatures are below
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freezing, because there is not enough snowfall to replenish lost

meltwater formed during the day.

5 Conclusion

Continental glaciers leave distinctive marks in the geologic

record, in the form of both glaciated surfaces and ice-contact

deposits subject to potential preservation owing to their

deposition in low-elevation regions commonly below

baselevel. In contrast, the geologic record of upland glaciation

is particularly meager, with extremely low preservation potential.

Yet, far from being insignificant, glaciation in uplands responds

to and can even influence the global climate system. Capturing

the extent of glaciation in upland regions is therefore critical to

accurate hindcasts of Earth’s climate states. Furthermore, even

reconstructions of continental ice sheets can—and do—suffer

from the pervasive cannibalistic character of glaciation, wherein

deposits are eroded by subsequent ice advances and ablation, and

by the effects of isostatic rebound, causing difficulty in accurate

reconstructions of the extents of former glaciations. Stratigraphic

records of pro- and peri-glacial deposits, and attention to

identification of loessite and silt-rich epeiric sea strata that can

signal the operation of glacial grinding can help refine

reconstructions of the extent of glaciation in Earth’s deep-time

past.
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