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The global seismic noise, recorded on a network of 229 broadband seismic stations
located around the globe for 25 years, from the beginning of 1997 to the end of 2021, has
been investigated. To study the noise properties a set of statistics estimated daily have
been used: the multifractal singularity spectrum support width, the minimum entropy of the
squared wavelet coefficients, and the wavelet-based Donoho-Johnstone (DJ) index. It is
shown that the time points of local extrema of the average values of the analyzed noise
properties (minima for singularity spectrum support width and DJ-index and maxima for
entropy) tend to occur before strong earthquakes. The time interval from the middle of
2002 to the middle of 2003 is determined, when the trend of decreasing the average
coherence of the noise properties in the auxiliary network of 50 reference points changed
to an increase. Along with an increase in the average coherence, there is an increase in the
radius of the spatial maximum coherences of noise properties. Both of these trends
continue until the end of 2021, which is interpreted as a general sign of an increase in the
degree of criticality of the state of the planet and, as a result, an increase in global seismic
danger. After two mega-earthquakes close in time: 27 February 2010, M=8.8 in Chile and
11 March 2011, M=9.1 in Japan, there was an increase in the spatial scales of the strong
coherence of noise parameters, which is a sign of an increase in the critical state. The
response of seismic noise properties to variations in the length of the day (LOD) has been
studied. An estimate of the correlation function between the mean values of the response
to LOD and the logarithm of the released seismic energy in a time window of 1 year
indicates a delay in energy release with respect to the maxima of the response of noise
properties to LOD with a delay time of about 500 days. In connection with this result, an
additional intrigue is the extreme increase in the average value of the response to LOD
in 2021.

Keywords: seismic noise, global seismicity, wavelet-based entropy, DJ-index, singularity spectrum, length of day,
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INTRODUCTION

In (Kobayashi and Nishida, 1998; Tanimoto, 2001; Rhie and Romanowicz, 2004; Tanimoto, 2005;
Aster et al., 2008; Kedar et al., 2008; Nishida et al., 2008; Nishida et al., 2009; Ardhuin et al., 2011) it
was shown that the energy source of low-frequency seismic noise is the processes occurring in the
ocean and atmosphere. Since the earth’s crust is the propagation medium for seismic waves, changes
in the lithosphere are reflected in the statistical properties of the noise. Analysis of changes in these
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properties makes it possible to evaluate the effects associated with
the seismic process occurring in different regions of the Earth and
at the global level. Changes of seismic noise spectral parameters in
different frequency bands in India during the nationwide
COVID-19 lockdown were estimated in (Pandey et al., 2020).
Seismic noise in the frequency range 0.5–18 Hz continuously
recorded by seismic network in the Central Italy before L’Aquila
earthquake, 2009, was investigated in details in (Shi et al., 2020).

The article continues the studies carried out in (Lyubushin,
2014; Lyubushin, 2015; Lyubushin, 2018; Lyubushin, 2020a;
Lyubushin, 2020c; Lyubushin, 2021c) to investigate the
correlation and coherence properties of low-frequency seismic
noise on a global scale covering the entire planet. Since 1997, the
total number of broadband seismic stations from various
networks has become quite large (229 stations), and their
location provides satisfactory coverage of the earth’s surface.
This makes it possible to estimate the spatial and temporal
correlations of various properties of seismic noise and
compare the identified features with the seismic process. The
multifractal singularity spectrum support width, the minimum
entropy of squared orthogonal wavelet coefficients, and the
Donoho-Johnstone index, equal to the ratio of the number of
“large”wavelet coefficients to their total number, were considered
as main properties of seismic noise. These noise statistics were
evaluated for each station in successive time intervals of 1 day. An
auxiliary network of 50 reference points is introduced, distributed
over the Earth’s surface, for each of which daily time series of
median values of seismic noise properties from 5 nearest
operational stations were calculated. In a sliding time window
with a length of 365 days, the mean moduli of the pairwise
correlation coefficients of the daily noise properties between
the values at all reference points were estimated. It turned out
that the behavior of average correlations for all properties has a
common qualitative feature: before 2003, a decrease is observed,
but after 2003, a rapid increase in correlation begins. In
(Lyubushin, 2020a; Lyubushin, 2020c), it was hypothesized
that the break in the average correlation trends in 2003 is due
to a high-frequency anomaly in the Earth’s rotation regime,
which can also be a trigger for an increase in the intensity of
the strongest seismic events after the Sumatran mega-earthquake
on 26 December 2004. The kink in the trend of correlations in
2003 is accompanied by a kink in the trends of the values of the
seismic noise properties being analyzed: after 2003, the average
widths of the carrier of the singularity spectrum support width
and DJ-index decrease, and the average values of the noise
entropy increase. This behavior of seismic noise properties
(simplification of the statistical structure) considered as an
indicator of an increase in seismic hazard (Lyubushin, 2018;
Lyubushin, 2021a; Lyubushin, 2021b). Thus, the simplification of
the statistical structure of seismic noise and the increase in their
spatial correlations occur synchronously, and this behavior can be
interpreted as an increase in the global seismic hazard.

Themethodological basis of the used approach to data analysis
is the general property of synchronization of the behavior of the
constituent parts of complex systems as they approach critical
states (Gilmore, 1981; Nicolis and Prigogine 1989). The goal of all
methods used is to search for synchronization effects by

estimating the coherence of seismic noise in different regions
of the planet.

SEISMIC NOISE STATISTICS

Let x(t) be a time series of a random signal and t � 1, ..., N let be
an integer index numbering successive data points (discrete
time). The normalized entropy of a finite sample is given by
the following formula:

En � −∑N
k�1

pk · log(pk)/log(N), pk � c2k/∑N
j�1
c2j , 0≤En≤ 1

(1)
where ck are orthogonal wavelet coefficients. Let us choose the
optimal orthogonal wavelet for the sample under consideration
from the entropy minimum condition (1) on a finite set of
Daubechies wavelet bases (Mallat, 1999) with the number of
vanishing moments from 1 to 10. After the wavelet basis is
determined for a given signal from the entropy minimum
condition, we can determine the set of wavelet coefficients that
are the smallest in absolute value. We assume that the noise is
concentrated mainly in variations at the first highest frequency
level of detail.

Seismic noise entropy (1) was used in (Lyubushin, 2014;
Lyubushin, 2015; Lyubushin, 2017; Lyubushin, 2018;
Lyubushin, 2020a; Lyubushin, 2020b; Lyubushin, 2020c;
Lyubushin, 2021a; Lyubushin, 2021b; Lyubushin, 2021c) to
analyze seismic noise for different regions of the Earth and at
the global level as a standalone tool. By its design, entropy (1) is
also multiscale, like the entropy proposed in (Costa et al., 2003;
Costa et al., 2005) for studying the properties of random signals.
In (Koutalonis and Vallianatos, 2017; Vallianatos et al., 2019) the
non-extensive entropy of Tsallis was used to analyze seismic
noise. The natural time approach to the analysis of random data
uses a related definition of entropy in (Varotsos et al., 2003a;
Varotsos et al., 2003b; Varotsos et al., 2004; Varotsos et al., 2011).

The noise standard deviation is estimated as the standard
deviation of the wavelet coefficients at the first detail level of
wavelet decomposition. This estimate must be stable,
i.e., insensitive to outliers in the values of the wavelet
coefficients at the first level. To do this, we can use a robust
median estimate of the standard deviation for a normal random
variable:

σ � med{∣∣∣∣c(1)k

∣∣∣∣ , k � 1, ..., N/2}/0.6745, (2)
where c(1)k are wavelet coefficients at the first level of detail;N/2 is
the number of such coefficients. The estimate of the standard
deviation σ from formula (2) determines the value σ

�������
2 · lnN√

as
a “natural” threshold for extracting noise wavelet coefficients.
This quantity is known in wavelet analysis as the
Donoho–Johnstone threshold (Donoho and Johnstone, 1995;
Mallat, 1999). As a result, we can define the dimensionless
signal characteristic γ, 0< γ< 1, as the ratio of the number of
the most informative wavelet coefficients for which the inequality
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|ck|> σ
�������
2 · lnN√

is satisfied to the total numberN of all wavelet
coefficients. Formally, the larger the index γ, the less noisy the
signal is.

Qualitatively, the multifractal singularity spectrum F(α) for a
random signal x(t) can be defined as the fractal dimensionality of
the set of time points t, for which the Holder-Lipschitz exponent
is α, which means |x(t + δ) − x(t)|~|δ|α, δ → 0. The
quantitative calculation of the singularity spectrum requires
the introduction of some auxiliary quantities (Feder, 1988).
Let’s define the measure of variability μX(t, δ) of a random
signal x(t) on a time interval [t, t + δ] as its range

μx(t, δ) � max
t≤u≤t+δ

x(u) − min
t≤u≤t+δ

x(u) (3)

Signal is a scale-invariant (Feder, 1988), if M(δ, q)~δρ(q),
when δ → 0 i.e. the next limit exists:

ρ(q) � lim
δ→0

(lnM(δ, q)/ln δ) (4)

The signal is mono-fractal if ρ(q) � Hq,H � const, 0<H< 1.
If ρ(q) is a nonlinear concave function of q the signal is multi-
fractal. The value of ρ(q) for a finite sample could be calculated by
detrended fluctuation analysis (DFA) (Kantelhardt et al., 2002).
The time series is split into adjacent intervals of the length s:

I(s)k � {t: 1 + (k − 1)s≤ t≤ ks, k � 1, ..., [N/s]} (5)
Let’s consider a part of x(t) corresponding to the interval I(s)k :

y(s)
k (t) � x((k − 1)s + t), t � 1, ..., s (6)

Let p(s, m)
k (t) be a polynomial of the order m which is fitted to

y(s)
k (t) and let’s consider deflections:

Δy(s, m)
k (t) � y(s)

k (t) − p(s, m)
k (t), t � 1, ..., s (7)

and the sum:

Z(m)(q, s) � ⎛⎝ ∑[N/s]

k�1
(max

1≤t≤s
Δy(s,m)

k (t) −min
1≤t≤s

Δy(s,m)
k (t))q/[N/s]⎞⎠

1/q

(8)
The value (8) could be regarded as an estimate of

(M(δs, q))1/q. Let’s consider a function h(q) as a linear
regression coefficient between ln(Z(m)(q, s)) and ln(s):
Z(m)(q, s) ~ sh(q) within range of scales smin ≤ s≤ smax.
Minimum value of the scale s in the formulae (5-8) was
chosen 20, maximum value—smax � N/5. For mono-fractal
signal h(q) � H � const, in general case ρ(q) � qh(q). The
Gibbs sum is defined as (Feder, 1988):

W(q, s) � ∑[N/s]

k�1
(max

1≤t≤s
Δy(s,m)

k (t) −min
1≤t≤s

Δy(s,m)
k (t))q

(9)

The mass index τ(q) is defined from the condition
W(q, s) ~ sτ(q). Formula τ(q) � ρ(q) − 1 � qh(q) − 1 is the
consequence of (8). The values of q in the formula (8) are
taken from interval [−Q,+Q] where Q is some a
priory large number (the value Q � 10 was used). The

function F(α) � min
q∈[−Q,+Q]

(αq − τ(q)) is calculated for

α ∈ [Amin, Amax] where Amin � min
q∈[−Q,+Q]

dτ(q)/dq and

Amax � max
q∈[−Q,+Q]

dτ(q)/dq. The derivative dτ(q)/dq is

calculated numerically. Its accuracy is nonessential because
this derivative was used for rough estimate of a priory interval
of α values. Values of αmin and αmax are defined as minimum and
maximum α, for which F(α)≥ 0. Thus, multi-fractal spectrum
F(α) is defined according to formula:

F(α) � max{ min
q∈[−Q,+Q]

(αq − τ(q)), 0} (10)

Let’s consider estimates of singularity spectrum F(α) within
moving time window. In this case its evolution could provide
important information about the structure of chaotic pulsations
of time series. In particular the singularity spectrum support
width Δα � αmax − αmin is regarded as a measure of complexity of
stochastic behavior.

Multifractal analysis is an instruments which is used in
geophysical studies rather actively (Ramirez-Rojas et al., 2004;
Currenti et al., 2005; Ida et al., 2005; Telesca et al., 2005;
Chandrasekhar et al., 2016). The multifractality of seismic
noise was used for earthquake prediction and seismic hazard
assessment in (Lyubushin, 2010; Lyubushin, 2012; Lyubushin,
2013; Lyubushin, 2018; Lyubushin, 2021a). The singularity
spectrum support width is used to study the behavior of
various nonlinear systems. A decrease in the parameter Δα is
a well-known effect that anticipates changes in the properties of
biological and medical systems (Ivanov et al., 1999; Pavlov and
Anishchenko, 2007). In (Pavlov and Anishchenko, 2007) it is
shown that the “loss of multifractality” is also universal in
physical systems. The natural time approach has its own tools
using multifractals and multi-scale entropy for seismicity analysis
(Varotsos et al., 2014; Sarlis et al., 2015).

FIRST PRINCIPAL COMPONENT

The values of the parameters (γ,Δα, En) introduced above are
calculated in successive time windows of a certain length,
resulting in a 3-dimensional time series, the properties of
which are further studied jointly. The used properties of
seismic noise reflect the change in its structure, in particular,
we are interested in the phenomenon of noise structure
simplification as a sign that precedes strong earthquakes.
Attempts to determine the “best” property of noise led to the
idea of using the principal component approach (Jolliffe, 1986) to
aggregate time series (γ,Δα, En) into one scalar time series. Since
the purpose of the analysis is to study the variability of noise
properties both in time and space, the principal component
method was applied in a sliding time window. The
modification of the principal component method was
proposed in (Lyubushin, 2018).

Let’s consider a multiple time series
P(t) � (P1(t), ..., Pm(t))T, t � 0, 1, ... of the dimensionality m
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(in our case m � 3). It is necessary to estimate its first principal
component in the moving time window of the length L samples.
For this purpose let’s consider samples with time indices t under
the condition s − L + 1≤ t≤ s where s is the right-most end of
moving time window. Correlation matrix Φ(s) of the size m × m
is calculated by the formula:

Φ(s) � (φ(s)
ab ), φ(s)

ab � ∑s
t�s−L+1

q(s)a (t)q(s)b (t)/L, a, b � 1, ..., m

(11)
q(s)a (t) � (Pa(t) − �P(s)

a )/σ(s)a , �P(s)
a � ∑s

t�s−L+1
Pa(t)/L, (σ(s)a )2 �

� ∑s
t�s−L+1

(Pa(t) − �P(s)
a )2/(L − 1), a � 1, ..., m

(12)
Let θ(s) � (θ(s)1 , ..., θ(s)m )T be eigenvector of the matrix Φ(s)

corresponding to its maximum eigenvalues. Let’s define 1st

principal component within current time window:

ψ(s)(t) � ∑m
α�1

θ(s)a · q(s)a (t) (13)

and define scalar time series ψ(t) of the adaptive first principal
component in the moving time window by the formula:

ψ(t) � {ψ(L−1)(t), 0≤ t≤ (L − 1)
ψ(t)(t), t≥ L

(14)

Formulae (11-14) are applied independently within each time
window. According to these formulae within first time window
time series ψ(t) consists of L values corresponding to (13, 14). In
all subsequent windows ψ(t) corresponds the only sample in the
right-most time index. Thus, outside the first time window ψ(t) is
dependent on the past values of P(t).

Hereinafter, a window with a length of 365 days will be used.
The choice of this length is quite natural because of presence of
annual periodicity in almost all background processes in Earth’s
crust. Next, the first principal component is calculated, that is, the
projection of all components of the 3-dimensional time series
after normalizing them to unit variance onto this eigenvector. In
the first time window, the principal component is equal to the
projection values for all samples within this window, and for
subsequent windows, only one value is taken, corresponding to
the rightmost time sample of the window. Thus, outside the first
time window, the principal component depends only on past
values with a memory depth equal to the length of the window.

It should be noticed that values of seismic noise parameters
(γ,Δα, En) and their first principal component are
dimensionless.

GLOBAL SEISMIC NOISE DATA

The data used are the vertical components of continuous seismic noise
records at 1 s sampling intervals, which were downloaded from the
Incorporated Research Institutions for Seismology (IRIS) website at

http://www.iris.edu/forms/webrequest/from 229 broadband seismic
stations of 3 networks: http://www.iris.edu/mda/_GSN, http://www.
iris.edu/mda/G, http://www.iris.edu/mda/GE.

Seismic noise records with a sampling rate of 1 Hz (LHZ
records) were considered for 25 years of registration (from 1
January, 1997 to 31 December, 2021). These data were converted
to 1-min time series by calculating averages for successive 60-s
time intervals. Estimates of spectral power densities after coming
to 1-min time step were presented in (Lyubushin, 2020c). The
analysis is restricted by vertical component only because
behaviors of multi-fractal and entropy properties of the noise
which are used in the paper are rather typical for all components
of seismic noise in the investigated range of periods exceeding
2 min.

Consider an auxiliary network of 50 reference points, which
are determined using a hierarchical cluster analysis of the
positions of 229 seismic stations using the “far neighbor”
method. This method of cluster analysis makes it possible
to form compact clusters (Duda et al., 2000). The location of
229 seismic stations and 50 reference points is shown in
Figure 1A.

Figures 1B–D show examples of plots of daily property
values of (γ,Δα, En) for three reference points numbered 4, 20
and 34, calculated as median values from the 5 nearest stations
that are operational on each day. The values of these properties
at all other reference points are calculated in the same way.
Before calculating the properties from the daily waveforms of
seismic noise with a length of 1440 min, the trend is removed
by a polynomial of the 8th order. This choice of detrending
polynomial order is discussed in details in (Lyubushin, 2021a).
The 8th order of trend polynomial provides removing of
complicated low-frequency daily waveforms which occur
due to the influence of tides and diurnal temperature
effects. Figure 1E shows the graphs of the first principal
components of properties (γ,Δα, En) in a moving time
window of 365 days for the same reference points with
numbers 4, 20, and 34. The green lines show the graphs of
moving averages in a window of 57 days. The window length of
57 days was chosen experimentally as a value that, on the one
hand, smooths high-frequency pulsations of daily median
seismic noise properties, and on the other hand, allows one
to see the annual frequency of changes in these properties. The
number 57 equals to double length of Moon month (28 days)
plus 1. An additional unit is needed to make the window
length odd.

ANALYSIS OF THE RELATIONSHIP
BETWEEN EXTREMUM POINTS OF NOISE
PROPERTIES AND STRONG
EARTHQUAKES

In (Lyubushin, 2010; Lyubushin, 2012; Lyubushin, 2013;
Lyubushin, 2014; Lyubushin, 2018; Lyubushin, 2021a;
Lyubushin, 2021b), the hypothesis was used that an increase
in seismic hazard is preceded by a decrease in the singularity
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spectrum support width Δα and the DJ index γ, as well as an
increase in entropy En. In the analysis of global seismicity, one
can independently test this idea by analyzing the relationship
between two point processes: a sequence of strong earthquakes
with magnitude M≥ 7 and time points of local extrema of the
average values of noise properties: minima for Δα, γ and
maxima for En. During the period of time 1997–2021 there
were 377 earthquakes M≥ 7. Therefore, for comparison, we
will also select 377 time points of the most “expressive” local
extrema, which have the largest amplitude of deviation from
the local average. We calculate the local average at each
moment of time by smoothing the mean values of the noise
properties by a Gaussian kernel (Hardle, 1990) with an
averaging radius of 2 days. This is a minimum length of
vicinity which provides efficient removing of local mean

value and extracting extremum spikes. To test the
hypothesis, it is necessary to analyze the relationship
between the time moments of earthquakes and the positions
of local minima and local maxima. It is expected that “on
average” local minima Δα, γ and local maxima En will precede
earthquakes, while for local maxima and local minima the
opposite effect should be observed. In addition, the variability
of the links between the analyzed point processes in time is of
interest, that is, it is desirable to carry out the analysis in a
sliding time window.

For the analysis of mutual relationships between point
processes, the method of influence matrices (Lyubushin and
Pisarenko, 1994), developed to analyze the relationships
between several sequences of seismic events from different
regions, was used. Further, a simplified version of the model is

FIGURE 1 | (A)—positions of 229 seismic stations (blue circles) and 50 reference points (numbered red circles); (B–D)—plots of daily values of 3 properties of
seismic noise γ, Δα and En, corresponding to reference points with numbers 4, 20 and 34; (E)—plots of the first principal component of noise properties calculated in a
sliding time window of 365 days length for the specified reference points. The green lines represent moving average graphs in a 57-day window. Values of γ, Δα, En and
first principal component are dimensionless.
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used for the case of analysis of relationships between two
sequences. It can be considered as an analogue of the classical
cross-correlation method.

Let t(α)j , j � 1, ..., Nα; α � 1, 2 represent moments of time of
2 streams of events. Let’s consider their intensities in the form:

λ(α)(t) � b(α)0 +∑2
β�1

b(α)β · g(β)(t) (15)

where b(α)0 ≥ 0, b(α)β ≥ 0 are parameters, g(β)(t) is a function of
influence of the events t(β)j from the stream with number β:

g(β)(t) � ∑
t(β)j < texp( − (t − t(β)j )/τ) (16)

According to formula (15), the weight of the event with the
number j becomes non-zero for times t> t(β)j and decays with the
characteristic time τ. The parameter b(α)β determines the degree of
influence of the flow β on the flow α. The parameter b(α)α

determines the degree of influence of the flow on itself (self-
excitation), and the parameter b(α)0 reflects a purely random
(Poisson) intensity component. We fix the parameter τ and
consider the problem of determining the parameters b(α)0 , b(α)β .
The log-likelihood for a non-stationary Poisson process over a
time interval [0, T] is (Cox and Lewis, 1966):

ln(Lα) � ∑Nα

j�1
ln(λ(α)(t(α)j )) − ∫T

0

λ(α)(s)ds, α � 1, 2 (17)

It is necessary to find the maximum of functions (16) with
respect to the parameters b(α)0 , b(α)β . It is easy to get the following
expression:

b(α)0

z ln(Lα)
zb(α)0

+∑2
β�1

b(α)β

z ln(Lα)
zb(α)β

� Nα − ∫T
0

λ(α)(s)ds (18)

Since the parameters b(α)0 , b(α)β must be non-negative, then
each term on the left side of this formula is equal to zero at
the maximum point of function (16) - either due to the
necessary extremum conditions (if the parameters are
positive), or, if the maximum is reached at the boundary,
then the parameters themselves are equal to zero. Therefore,
at the maximum point of the likelihood function, the
following equality holds:

∫T
0

λ(α)(s)ds � Nα (19)

Substitute the expression g(β)(t) from (15)–(18) and divide by
T. Then we get another form of formula (18):

b(α)0 +∑m
β�1

b(α)β · �g(β) � λ(α)0 ≡ Nα/T (20)

where

�g(β) � ∫T

0
g(β)(s)ds/T (21)

- The average value of the influence function. Substituting b(α)0
from (19), (16), we obtain the following maximum problem:

Φ(α)(b(α)1 , b(α)2 ) � ∑Nα

j�1
ln⎛⎝λ(α)0 +∑2

β�1
b(α)β · Δg(β)(t(α)j )⎞⎠ → max

(22)
where Δg(β)(t) � g(β)(t) − �g(β), under the restrictions:

b(α)1 ≥ 0, b(α)2 ≥ 0, ∑2
β�1

b(α)β �g(β) ≤ λ(α)0 (23)

Function (21) is convex with a negative definite Hessian
(Lyubushin and Pisarenko, 1994) and, therefore, problem (21-
22) has a unique solution. Having solved this problem
numerically for a given relaxation time τ, we can introduce
elements of the influence matrix κ(α)β , α � 1, 2; β � 0, 1, 2
according to the formulas:

κ(α)0 � b(α)0

λ(α)0

≥ 0, κ(α)β � b(α)β · �g(β)
λ(α)0

≥ 0 (24)

The value κ(α)0 is part of the mean intensity λ(α)0 of the process
with number α, which is purely stochastic, part κ(α)α is caused by
the influence of self-excitation α → α and κ(α)β , β ≠ α is due to
external influence β → α. Formula (19) implies the
normalization condition:

κ(α)0 +∑2
β�1

κ(α)β � 1, α � 1, 2 (25)

Figure 2 shows the results of assessing the elements of the
influence matrix (24) to analyze the relationships between local
extrema of the average value of the DJ parameter γ and a sequence
of strong earthquakes around the world. A time window of
5 years was used, the relaxation time τ was 15 days. A pair of
graphs 2 (d1) and 2 (d2) presents the results of the evaluation of
the mutual influence for the pair “seismic events” - “maxima γ ".
Changes in the intensity fractions of the purely random Poisson
part are represented by green lines, and the self-excitation
intensity fractions are represented by blue lines. Of greatest
interest is the change in the shares of intensity that describes
the external excitation (influence), represented by red lines.
Figure 2d1 shows that the “influence” of the parameter
maxima on seismic events is almost zero, while the intensity
fraction of the influence of seismic events on the maxima in
Figure 2d2 is large and sometimes reaches 1. That is, points of
maxima γ arise as a consequence of seismic events with a
characteristic decay time of 15 days.

Graphs 2 (e1) and 2 (e2) describe changes in intensity shares
when considering the interaction of a pair of “seismic
events”—“minima γ ". In Figure 2e1, the red line represents
the change in the proportion of the intensity of the “influence” of
the minimum points of γ on seismic events, and we see that this
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influence is very significant, and it grows with time and for several
finite time windows of 5 years is actually equal to one. Thus, to a
large extent, local minima precede seismic events.

The analysis, the results of which are presented in Figure 2,
was carried out for local extrema of the singularity spectrum
support width Δα and the minimum entropy En. The results of
obtaining estimates of the degree of influence of minima Δα and
maxima En on the sequence of seismic events are shown in
Figure 3 by the purple and blue lines. At the same time, the red
line in Figure 3 shows the proportion of intensity corresponding
to the influence of local minima γ (red line in Figure 2e1).

A notable feature of the graphs in Figure 3 is the simultaneous
reaching of the maximum value equal to 1 for all curves
describing the “prognostic power” of local extrema of the
seismic noise properties under study. Taking into account the
fact that the length of the time window is 5 years, the time interval
during which the “predictive power” of all 3 properties reached its
maximum takes the time interval 2015–2021. At the same time,
the DJ-index γ demonstrates the strongest predictive abilities.

MAPS OF NOISE PROPERTIES AND
DISTRIBUTION OF THEIR EXTREME
VALUES
Having values at 50 points distributed around the world makes it
possible to map the spatial distribution of seismic noise
properties. To build a map, consider a regular grid of 50

FIGURE 2 | (A)—graph of daily average values of the index γ calculated for all reference points, green line - moving average in a window of 57 days; (B)—graph of
average values of the index γ after removal of local trends by a Gaussian window with a radius of 2 days, red and blue dots indicate the 377 most pronounced local
maxima and minima of the DJ index γ after detrending; (C)—the time sequence of 377 earthquakes with a magnitude of at least 7 for the whole world for the time interval
1997–2021; (D) and (E)—pairs of graphs representing the shares of intensities of sequences of seismic events [(d1) and (e1)] and points of local extrema of the DJ
index [(d2) and (e2)] when estimating the model of mutual influence of 2 point processes in a window of 5 years for the relaxation time τ 15 days.

FIGURE 3 | Intensity shares corresponding to the “excitation” of seismic
events M ≥7 by local extrema of average daily values of seismic noise
properties: DJ-index γminima (red line), singularity spectrum support width Δα
minima (purple line), normalized entropy En maxima (blue line).
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nodes in latitude and 100 nodes in longitude, covering the entire
earth’s surface. Let ζk, k � 1, ..., m be the coordinates of the
reference points (in our case, m � 50), Zk are the values of
one or another property of the noise at the reference point #k,
r is the coordinates of node of the regular grid, d(ζk, r) is the
distance along the surface of the spherical Earth between the
points ζk and r, h is the bandwidth (smoothing radius) of
Gaussian kernel function. Then the values at the nodes of the
regular grid are calculated using the Nadaraya-Watson formula
(Duda et al., 2000):

Ẑ(r) � ∑m
k�1

Zk exp( − d2(ζk, r)/h2)/∑m
k�1

exp( − d2(ζk, r)/h2)
(26)

The smoothing radius h � 15+ was used, which corresponds to
a distance of near 1700 km. Values Ẑ(r) calculated daily at all
nodes r make it possible to obtain daily distribution maps over
the space of seismic noise properties. The result of averaging all

daily charts between some 2 dates gives the corresponding
average map.

Consider the values of the noise property as a function of two-
dimensional vectors zij � (xi, yj) of longitudes and latitudes of
nodes (i, j) in an explicit form: U(t)

ij ≡ U(t)(zij). For each daily
“elementary chart” with a discrete time index t, we find the
coordinates of nodes z(t)mn � (x(t)

m , y(t)
n ), at which extreme values

ofU are reached with respect to all other nodes of the regular grid. If
U � Δα orU � γ , then theywill look for theminimumvalues, and if
U � En, then theywill look for themaximumvalues. A cloud of two-
dimensional vectors z(t)mn considered within a certain time interval
t ∈ [t0, t1] forms a random set. Let us estimate their two-
dimensional probability distribution function for each node zij of
the regular grid. For this, the Parzen–Rosenblatt estimate with the
Gaussian kernel function (Duda et al., 2000) will be applied:

p(zij∣∣∣∣t0, t1) � 1
2πh2(t1 − t0 + 1) ∑

t1

t�t0
∑
mn

exp( −
∣∣∣∣zij − z(t)mn

∣∣∣∣2
2h2

)
(27)

FIGURE 4 | On the left—(A1–C1)—` averaged maps of the distribution of seismic noise parameters γ, Δα and En, obtained by interpolation of values from the
network of reference points using a Gaussian kernel with an averaging window radius of 15°; on the right—(A2–C2)—probability density maps of the distribution of
extreme values (minima for γ and Δα, maxima for En), also obtained using a Gaussian kernel with a smoothing radius of 15°.
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Here h is the kernel averaging radius, t 0, t 1 are integer indices
that number the daily “elementary” maps. Thus, (t1 − t0 + 1) is
the number of daily charts in the considered time interval. The
smoothing bandwidth h � 15+ was used.

Figure 4 shows the average maps of the distribution of 3
properties of seismic noise, obtained by interpolating the values
from the reference points to the entire surface of the Earth using
formula (15), as well as maps of the probability density
distribution of extreme values calculated using formula (16).
It can be seen that the distributions of noise property values are
strongly correlated with each other. In this case, it should be taken
into account that the maxima of En correspond to the minima Δα
and γ. The correlation coefficients r between the averaged digital
maps in the left column of the maps in Figure 4 are:
r(γ,Δα) � 0.9684, r(En,Δα) � −0.8907, r(En, γ) � −0.9040. In
the right column of digital maps in Figure 4, all correlations are
positive and for the same sequence of property pairs are 0.7640,
0.7509, and 0.8991.

COHERENCE SPECTRA

For the further analysis it is necessary to estimate coherence
spectra between 2 time series within sliding time window. A
parametric model of vector autoregression will be used which
provides a better frequency resolution with respect to methods of
spectra and cross-spectra estimates based on Fourier expansion
(Marple, 1987). For the multiple time series X(t) of
dimensionality q AR-model is defined by a formula:

X(t) +∑p
k�1

Bk·X(t − k) � ε(t) (28)

Here t is a discrete time index, p is autoregression order, B k

are matrices of autoregression coefficients of the size q × q, P �
M{ε(t)εT(t)} is covariance matrix of the size q × q of residual
signal ε(t). Matrices B k and P are computed by Durbin-Levinson
procedure (Marple, 1987). Parametric estimate of spectral matrix
is defined by the formula:

SXX(ω) � Φ−1(ω) · P · Φ−H(ω), Φ(ω) � E +∑p
k�1

Bke
−iωk (29)

where E is a unit matrix of the size q × q. For dimensionality
q � 2 coherence spectrum is computed by the formula:

λ(ω) � |S12(ω)|/ ������������
S11(ω) · S22(ω)

√
(30)

Here S11(ω) and S22(ω) are diagonal elements of the matrix
29) whereas S12(ω) is cross-spectrum.

FIRST PRINCIPAL COMPONENTS AT
REFERENCE POINTS AND MAXIMUM
COHERENCES
As follows from the distribution maps of noise properties and
their extreme values in Figure 4, the behavior of these properties

has much in common, but there are also individual differences.
To extract the common components of noise properties, we
calculate the first principal component of 3 properties
(γ,Δα, En) at each reference point according to formulas (10-
13) in a sliding time window 365 days long. Next, we study the
variability in time and space of coherences between the values of
the first principal components of noise properties at all nodes of
the reference points network. To calculate the pairwise coherence
functions between the values of the first principal components at
the reference points, we used the 2nd order vector autoregression
model (28) with a preliminary transition to increments. The
choice of a low order of autoregression pursued the goal of
suppressing random fluctuations in the coherence estimates
and obtaining smooth frequency dependences. The
calculations were made in sliding time windows 365 days long
with a shift of 3 days. The use of coherence spectra instead of
correlation coefficients (Lyubushin, 2020c) makes it possible to
obtain higher measures of connectivity between noise property
values at reference points by choosing the frequencies at which
the maximum values are realized.

Let μ(τ)ij be the maximum with respect to frequencies of the
coherence function between the values of the principal
components at the reference points with numbers i and j for
the window with the time stamp τ of the right end. Calculate the
average values for all pairs of reference points
�μ(τ) � ∑(i,j)μ

(τ)
ij /M, where M � m(m − 1)/2 is the number of

different pairs of reference points from their total number. In our
casem � 50,M � 1225.We extract those pairs of reference points
for which the maximum coherence μ(τ)ij in the current time
window τ exceeded the threshold of 0.8 and denote by n(τ)
the total number of such pairs in each time window, and by ρ(τ)
the average distance between such reference points. The threshold
0.8 for maximum coherence value is considered as a large enough
one for extracting strong linear frequency-depended connection
between seismic noise properties in different reference points.
Dependences �μ(τ), n(τ) and ρ(τ) are shown in Figure 5.

In the dependence �μ(τ) on Figure 5A, attention is drawn to
the break in the trend in the vicinity of the time point of the right
end of the annual window 2003.5. This feature is highlighted by
linear trend red lines built before and after mid-2003. After
2003.5, a rapid increase in the average maximum coherence
began. This time point of a break in the trend has already
been found for the behavior of the average value of the
absolute values of pairwise correlations, estimated in a sliding
time window of 365 days, for other daily properties of seismic
noise (Lyubushin, 2020a; Lyubushin, 2020c; Lyubushin, 2021c).
As a reason for the change in the trend of the correlation of
seismic noise properties in these works, a hypothesis was
proposed about the triggering effect of a high-frequency
anomaly in the Earth’s rotation regime, which can also be the
cause of an increase in the intensity of the strongest earthquakes
in the world after the Sumatran mega-earthquake on 26
December, 2004. In Figures 5B,C, for the number n(τ) of
pairs of reference points with strong coherence and for the
mean distances ρ(τ) between such points, after the time right
point of the annual window 2012, the regime of high-frequency
chaotic fluctuations with high amplitude begins. At the same
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time, at the time point of 2012, there is another change in the
trend in the behavior of the average maximum coherence �μ(τ) in
Figure 5A. The appearance of another characteristic time point in
the behavior of seismic noise is presumably associated with the
destabilization of the noise field after two mega earthquakes close
in time: 27 February 2010,M = 8.8 in Chile and 11March 2011,M
= 9.1 in Japan (Lyubushin, 2020c; Lyubushin, 2021c).

MEAN CORRELATIONS BETWEEN
SEISMIC NOISE PROPERTIES

Besides the analysis of first principal components of seismic noise
properties, their correlation can also be used to extract the hidden
general features of seismic noise behavior. Since the property
values are tied to a network of reference points, it becomes
possible to calculate at each point the average values of
absolute pairwise correlations between daily values (γ,Δα, En)
in a sliding time window of a certain length and then analyze the
distribution of the maximum values of these correlations both in
space and in time. As before, a time window of 365 days was used.
The results of the analysis of correlations are presented in
Figure 6. Figures 6A,B show the average maps of the
distribution of the maximum values of the mean absolute
correlations over space, calculated using the kernel estimate
(16) for the annual time windows located before and after
2012. Figures 6C,D show graphs of changes in coordinates
(geographical longitude and latitude) of points on the Earth’s
surface, in which the maximum values of average absolute
correlations were realized for each position of the time window.

It can be seen from the distribution of maximum correlation
values in Figures 6A,B that the maxima are concentrated mainly

in the western part of the Pacific Ocean, and after 2012 the points
of maximum correlations completely shifted to the Southern
Hemisphere, and after 2016 they were mainly concentrated in
the region islands of Tonga, where the largest volcanic eruption
Hunga Tonga-Hunga Ha’apai occurred on 15 January, 2022 (Poli
and Shapiro, 2022).

RELATIONSHIP BETWEEN THE
PROPERTIES OF SEISMIC NOISE AND
IRREGULAR ROTATION OF THE EARTH
The uneven rotation of the Earth is mainly explained by the
influence of processes in the atmosphere (Zotov et al., 2017). At
the same time, some researchers pointed to a connection between
the irregular rotation of the Earth and seismicity (Shanker et al.,
2001; Levin et al., 2017). A possible trigger mechanism for the
influence of Earth rotation variations on the seismic process was
studied in (Bendick, and Bilham, 2017). Estimates of the impact
of a strong earthquake on the length of the day are given in (Xu
and Sun, 2012). Length of day (LOD) data are available from the
website at: https://hpiers.obspm.fr/iers/eop/eopc04/eopc04.
62-now.

The maximum quadratic coherences between the LOD and
the first principal components of the seismic noise properties at
each reference point were estimated. The coherences were
evaluated in sliding time windows of 365 days with a shift of
3 days using a 5th order vector (two-dimensional) autoregressive
model. Similar DJ-index response estimates distributed over the
Earth’s surface in a network of reference points were previously
used in (Lyubushin, 2021c). Figure 7 shows examples of graphs of
the maximum quadratic coherence between the first principal

FIGURE 5 | (A)—plot of themean values of the quadratic coherencemaxima between the values of the first principal component of the 3 seismic noise properties in
all pairs of the network of 50 reference points on the Earth’s surface estimated in a sliding time window of 365 days with a shift of 3 days, the red lines represent linear
trends on the time intervals of the right ends of the window 1998–2003.5, 2003.5–2012 and 2012–2022. (B) is a graph of the number of pairs of reference points for
which themaximum coherence exceeded the threshold of 0.8. (C) is the graph of mean distance between reference points with highmaximum squared coherence.
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components at three reference points with numbers 4, 20, and 34
(the same as in Figure 1) and LOD.

Figure 8 shows graphs of two synchronous curves: Figure 8A
shows the logarithm of the released seismic energy (in joules) in a
sequence of time intervals 365 days long, taken with a shift of
3 days; Figures 8B—average values of maximum coherences
between time series of LOD and daily values of the first
components of noise properties at 50 control points. The

behavior of the curve in Figure 8B can be divided into 3
sections. The first 2 time stamps of the right ends of the
windows before and after 2012 differ significantly from each
other in the average values represented by the horizontal red lines.
The final section is due to the most recent data (orange line) and it
is characterized by abnormal spike. Note that the behavior of the
average maximum pairwise coherences exceeding the threshold
of 0.8 in Figure 5B is also very different for the timestamps of the

FIGURE 6 | (A,B) are maps of probability density distributions of the maxima of the average values of the modules of pairwise correlation coefficients between the
values of seismic noise properties γ, Δα and En at each reference point in a sliding time window 365 days long for the timestamps of the right end of the window before
and after 2012. (C,D) are plots of longitude and latitude of points of maximum probability densities of maximum values of average absolute correlations of noise
properties.

FIGURE 7 | Plots of maximum values of quadratic coherences between day length LOD and the first principal component of 3 seismic noise properties γ, Δα and En
at 3 reference points numbered 4, 20 and 34 when estimating in a sliding time window of 365 days with a 3 day offset.
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right ends of the windows before and after 2012. Thus, the
response of seismic noise properties to the irregularity of the
Earth’s rotation turned out to be dependent on the degree of
spatial connectivity of strong coherences of noise properties.

The third time interval is represented by the orange line and
relates to the processing of the most recent time-stamped right
end windows after 2021, then referring to the time span of
2020–2021. The selection of a short 3rd segment based on the
results of data processing in 2021 is due to an unusually large
burst in the response of noise properties to LOD. An additional
intrigue to the occurrence of this burst is introduced by the
estimation of the correlation function between the logarithm of
the released seismic energy in Figure 8A and the average
maximum coherence between the noise and LOD properties in
the GCP network in Figure 8B, represented by the plot in
Figure 8C) for time shifts of ±1200 days. The correlation
function has a significant asymmetry and is shifted to the area
of negative time shifts, which correspond to the advance of the
coherence maxima of the seismic energy emission maxima. The
maximum correlation falls on a time shift of -530 days. This
estimate of cross-correlations suggests that the burst represented
by the orange lines in Figure 8Bmay precede a major earthquake
with an average delay of 1.5 years.

Although the value of correlation near 0.5 is rather small
and it could not be an argument for statistically significant
linear connection between 2 random variables, I suppose that

main purpose of correlation function estimate is establishing
the fact that one variable is shifted with respect to other. The
strong asymmetry of correlation function at Figure 8C
confirms preceding of coherence burst to burst of seismic
energy which could be noticed visually by comparing
graphs at Figures 8A,B.

DISCUSSION

The main result of the article is that since 2003 there has been an
increase in the global seismic hazard, and in the process of this
increase, attention should be paid to the phenomena
characteristic of the last annual time windows. First of all,
these are graphs of the behavior of the “prognostic forces” of
the points of local extrema of the analyzed properties of seismic
noise in relation to the sequence of the strongest earthquakes in
Figure 3. This figure shows that for all analyzed noise properties,
the graphs of their predictive power reached the maximum value
equal to 1. The graphs in Figure 3 show that the DJ index γ has
the highest predictive power compared to the singularity
spectrum support width Δα and entropy En over all 25 years
of observation. However, in the final time intervals of 2015–2021
the predictive power of all noise properties became equal, and it
became difficult to make a choice in the direction of the “best”
property of seismic noise. Therefore, a choice was made in favor

FIGURE 8 | (A)—plot of the values of the decimal logarithm of the released seismic energy (joules) in a sliding time window 365 days long with a shift of 3 days;
(B)—the black line represents the average of the quadratic coherence maxima between the LOD and the first principal component of the 3 seismic noise properties in a
365-day window with a 3-day offset for the positions of the right end of the time window in the interval 1998–2021, the red horizontal lines represent the average
coherence values for time intervals 1998–2012 and 2012–2021. The orange line in Figure (B) represents the plot of the mean coherence for the positions of the right
end of the time window in the interval 2021–2022. The plot in Figure (C) represents the correlation function between the logarithm of the released seismic energy and the
mean quadratic coherence for time shifts of ±1200 days. A strong shift of the correlation function plot towards negative time shifts with a maximum for a shift of -530 days
confirms the hypothesis that bursts of coherence between LOD and seismic noise properties precede seismic energy releases with a delay of about 1.5 years.
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of a joint analysis of all 3 properties using the principal
component method in a sliding time window.

In addition, a strong spike in mean maximum coherence
values between the principal components of the seismic noise
properties in the network of reference points and the LOD time
series represented by the orange line in Figure 8B is a sign of
increasing current hazard. Visually, when comparing the graphs
in Figures 8A,B, it is noticeable that bursts of coherence precede
seismic energy emissions, which is confirmed by the evaluation of
the correlation function in Figure 8C.

Summarizing, we can distinguish two critical time intervals
when the properties of seismic noise have changed significantly.
Considering that the properties of seismic noise are estimated in
sliding time windows of 365 days, the critical time intervals are
also determined with an accuracy of 1 year.

The first time interval 2002.5–2003.5 refers to the change in the
trend of the average maximum coherence between the values of the
first components of the noise properties at the reference points. After
this interval, a systematic increase in the average maximum
coherence is observed (Figure 5A), which is superimposed by
periodic fluctuations with a period of about 1000 days. The
second critical time interval in the behavior of global seismic
noise refers to 2011–2012. After it, chaotic pulsations begin with
a high amplitude of change in the number of pairs of reference points
and average distances between reference points, for which a strong
pairwise coherence has arisen that exceeds the threshold of 0.8
(Figures 5B,C).

Estimating the place of seismic hazard concentration by studying
the properties of seismic noise, according to the method used, is
reduced to determining the places where extreme values are most
often observed, that is, to assessing the spatial distribution densities
of the minima for γ, Δα, and the maxima for En. Such estimates are
shown in themaps in the right column in Figure 4. As already noted,
these digital maps are highly correlated, and attention should be paid
to the region in the west and in the center of the Pacific Ocean.
Another way to assess seismic hazard locations is to estimate the
distribution density of the maximum values of the average absolute
correlations between noise properties, shown in Figures 6A,B.
However, one should keep in mind the low density of seismic
stations, especially in oceanic areas in the Southern Hemisphere, as a
result of which the estimates of the distribution of extreme values of
noise properties are subject to strong uncertainty.

It should be noticed that the used data analysis technique has a
lot of common features with method of investigating properties of
high-frequency seismic noise in Central Italy before L’Aquila
earthquake in 2009 such as using spectral matrices and entropy of
spectral matrices eigenvalues (Shi et al., 2020). The main

differences consist in frequency range and in using nonlinear
transform from initial seismic records to their properties
(wavelet-based minimum entropy, DJ-index and multi-fractal
singularity spectrum support width) estimated within adjacent
daily time intervals.

CONCLUSION

In this paper, a phenomenological approach is applied to the
study of complex multicomponent systems, which include the
earth’s crust, based on the general property of an increase in the
radius and degree of strong coherence of random fluctuations in
the parameters of a complex system as it approaches a sharp
change in its properties, as a result of its own dynamics. As a
result of the study of long-term continuous recordings of low-
frequency seismic noise on a network of broadband seismic
stations covering the entire globe, it was possible to establish
characteristic time points for changing trends in the coherence of
seismic noise properties and to determine the relationship
between changes in these properties and the uneven rotation
of the Earth.
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