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Strong earthquakes (magnitude ≥7) occur worldwide affecting different cities and
countries while causing great human, ecological and economic losses. The ability to
forecast strong earthquakes on the long-term basis is essential to minimize the risks and
vulnerabilities of people living in highly active seismic areas. We have studied seismic
activities in North America, South America, Japan, Southern China and Northern India in
search for patterns in strong earthquakes on each of these active seismic zones between
1900 and 2021 with the powerful mathematical tool of wavelet transform. We found that
the primary seismic activity patterns forM ≥ 7 earthquakes are 55, 3.7, 7.7, and 8.6 years,
for seismic zones of the southwestern United States and northern Mexico, southwestern
Mexico, South American, and Southern China-Northern India, respectively. In the case of
Japan, the most important seismic pattern for earthquakes with magnitude 7 ≤ M < 8 is
4.1 years and for strong earthquakes with M ≥ 8, it is 40 years. Every seismic pattern
obtained clusters the earthquakes in historical intervals/episodes with and without strong
earthquakes in the individually analyzed seismic zones. We want to clarify that the intervals
where no strong earthquakes do not imply the total absence of seismic activity because
earthquakes can occur with lesser magnitude within this same interval. From the
information and pattern we obtained from the wavelet analyses, we created a
probabilistic, long-term earthquake prediction model for each seismic zone using the
Bayesian Machine Learning method. We propose that the periods of occurrence of
earthquakes in each seismic zone analyzed could be interpreted as the period in
which the stress builds up on different planes of a fault, until this energy releases
through the rupture along faults and fractures near the plate tectonic boundaries. Then
a series of earthquakes can occur along the fault until the stress subsides and a new cycle
begins. Our machine learning models predict a new period of strong earthquakes between
2040 ± 5 and 2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2 and
2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five active seismic zones of United States,
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Mexico, South America, Japan, and Southern China and Northern India, respectively. In
additon, our methodology can be applied in areas where moderate earthquakes occur, as
for the case of the Parkfield section of the San Andreas fault (California, United States). Our
methodology explains why a moderate earthquake could never occur in 1988 ± 5 as
proposed and why the long-awaited Parkfield earthquake event occurred in 2004.
Furthermore, our model predicts that possible seismic events may occur between
2019 and 2031, with a high probability of earthquake events at Parkfield around
2025 ± 2 years.

Keywords: probabilistic earthquake prediction, machine learning, wavelet, stress, artificial intelligence

1 INTRODUCTION

Different natural phenomena like the fall of meteorites, tsunamis,
volcanic eruptions, droughts, ice ages, the reversal of geomagnetic
field, forest fires, droughts, earthquakes, and others can pose a
significant danger and threat to human life and humanity’s
economic developments and resource managements (Murray,
2021).

Earthquakes are caused not only by natural seismic and
tectonic processes but often time can also be induced by
various anthropogenic activities such as nuclear bomb
detonations, large dams, and subsurface exploitation of natural
resources. The danger and risk posed by usually low intensity
earthquakes induced by anthropogenic activities can be indeed
mitigated by reducing or completely stopping the human
activities that are responsible by these types of minor
earthquakes. In a sharp contrast, especially earthquakes of
great intensity that are caused by natural processes cannot be
avoided but only forewarned with their often catastrophic and
damaging impacts minimized.

Different sources and mechanisms have been suggested as
triggers and modulators of earthquakes (see, for example
Batakrushna et al., 2022, for a full review). For example, even
the Sun’s activity has been suggested as a significant agent causing
earthquakes (Anagnostopoulos et al., 2021). Other proximate
causes discussed in the literature include pole tide (Shen et al.,
2005), pole wobble (Lambert and Sottili, 2019), surface ice and
snow loading (Heki, 2019), glacial isostatic rebound (Hampel
et al., 2007), heavy precipitation (Hainzl et al., 2006), atmospheric
pressure (Liu et al., 2009), sediment unloading (Calais et al.,
2016), seasonal groundwater change (Tiwari et al., 2021), seasonal
hydrological loading (Panda et al., 2020). In addition, the Earth’s
rotation and tidal spinning have also been suggested as driver of
plate tectonic activity.

The present geological paradigm about solid Earth is the plate
tectonic theory which describes that the lithosphere is segmented
into a series of plates that are in constant motions due to mantle
mobility or convection. As a result of their interaction, a series of
geological, mainly convergent and divergent, processes take place
at their plate margins, ranging from seismicity, orogenic
processes, and volcanism. The World Stress Map (WSM)1

compiles the orientation of maximum horizontal stress (σHmax)
where we delimited our study areas in Figure 1 (Heidbach et al.,
2016).

The dynamics of the plate tectonics provide a framework to
understand the evolutive shape and dynamics of the earth’s
surface. Plate boundaries involve either divergence, like at
oceanic spreading centers and continental rifts, or
convergence, such as subduction (ocean to continent or ocean
to ocean) and collision zones with different angles of
displacement ranging from orthogonal towards subparallel one.

Only minor cases involve transform boundaries that facilitate
plate kinematics on the global sphere. These boundaries
accommodate plate-parallel relative displacement by strike-slip
motion on vertical or steeply dipping faults. Due to these
frictional contacts between the different types of plates,
seismicity is triggered, producing a succession of earthquakes
that progressively decrease in intensity in increasingly distant/
remote areas away from the seismic center/zone.

The sliding between tectonic plates is quite varied. Some plates
slide without any consequences on Earth’s surface, while
catastrophic failures punctuate others. Also, after a few
hundred meters some earthquakes stop. Nevertheless, others
continue to collapse even after thousands of kilometers
(Kanamori and Brodsky, 2004).

The driving mechanisms of plate tectonics remain not well
unknown or poorly understood. Are they due to internal factors
or external astronomical forces? We are hoping that the analysis
of seismic patterns could provide some clues and information
about the sources and mechanisms that are responsible for both
tectonic movements and earthquakes.

Earthquake forecasting is one of the most difficult areas of
research even though it is clear that its early prognosis can save
many lives (Jain et al., 2021). Deterministic prediction of the exact
coordinates of the epicentre, its depth, magnitude and exact time
of one earthquake at the moment remains difficult and possibly
impossible (see, for example, Shcherbakov et al., 2019; Beroza
et al., 2021). Ogata (1988) suggests that the seismic pattern and
temporal variation are usually very complicated. Furthermore,
temporal seismic clustering is complex and difficult to discern or
anticipate in advance. Different models have been proposed to
analyze space-time clusters of seismicity in a region. One example
is the Epidemic Type Aftershock Sequence (ETAS) model. This
model suggests that the earthquake of a particular magnitude (M)
in a region during a period of time can be approximately1http://www.world-stress-map.org/casmo/
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considered as a Poisson process (Ogata, 1988). In addition, the
method of the minimum area of alarm for earthquake magnitude
prediction (Gitis and Derendyaev, 2020) and a method for
earthquake predictions based on alarms (Zechar and Jordan,
2008) have all been suggested and evaluated.

The studies of earthquake precursors such as observing crustal
geochemical fluids and gases, ultra-low frequency magnetic
signals, atmospheric effects including ionospheric total
electron content measurements, and several recording
seismicities in regions experiencing earthquakes in terms of
atmospheric, geochemical, and historical information can all
help to improve and refine earthquake prediction (see for
example, Pulinets and Boyarchuk, 2005; Ouzounov et al., 2018;
Pulinets and Ouzounov, 2018). Since 2007, the Collaboratory for
the Study of Earthquake Predictability (CSEP) has actively
conducted and rigorously evaluated earthquake forecasting
experiments as well as the prospective evaluations of
earthquake forecast models and prediction algorithms (see, for
example, Schorlemmer et al., 2018). CSEP’s main targets and
focuses are to optimize earthquake forecasting, advance forecast
model development, test model hypotheses, and improve seismic
hazard assessments.

The medium-term prediction of the strongest earthquakes has
been carried out by the M8 algorithm, which is an algorithm for

evaluating times of increased probability (TIPs) for strong
earthquakes (Keilis-Borok and Kossobokov, 1990) from
intensity of an earthquake flow and rate differential on a
specific seismic region of earthquake source concentration and
clustering. Also, the prediction of extreme events such as
earthquakes demonstrates the efficiency and potential of the
algorithms based on a pattern recognition approach as
example the M8 algorithm (Kossobokov and Soloviev, 2008,
2018). In addition, the M8 algorithm shows that the
hypothesis that the largest earthquake events are mere random
variations in seismically active regions can be confidently rejected
(Kossobokov and Soloviev, 2021). Kossobokov et al. (2015)
suggested that “forecasting earthquake information must be
reliable, tested, confirmed by evidence, and not necessarily
probabilistic”. We disagree slightly with this opinion and
interpretation of Kossobokov et al. (2015). Probabilistic
forecasts in the last century have provided new results to
understand natural phenomena (see, for example Wigner,
1967; Landau and Lifshitz, 1988b; Feynman et al., 2011b). In
this work, we show the results of a Bayesian model of Machine
Learning, which is a probabilistic model. We do agree with
Kossobokov et al. (2015) that all forecasts which are either
probabilistic or not probabilistic must indeed be confirmed by
evidence. We think that only future events will show if our

FIGURE 1 |World Stress Map fromWSM 2016 database release. Lines show the orientation of maximum horizontal stress (σHmax) for the 40 km upper crust from
different stress indicators displayed by different symbols; line length is proportional to data quality (A–C). Colors indicate the stress regime: I) red = normal faulting (NF), II)
green = strike-slip faulting (SS), III) blue = thrust faulting (TF), and IV) black = unknown regime (U). Grey lines give plate boundaries from global model PB2002 of Bird
(2003). The seismic zones analyzed are shown in the marked rectangles: (A)United States-Mexico, (B) South America, (C) Southern China and Northern India, and
(D) Japan.
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probabilistic Machine Learning predictions are on the right track
or not.

In recent years artificial intelligence (AI), deep learning (DL),
machine learning (ML) (see, for example, Essama et al., 2021)
have been applied to earthquake forecasting. In particular the use
of ML in the study of earthquakes has been implemented in the
detection, arrival time measurement, phase association, location
and characterization (Beroza et al., 2021). In addition, the use of
ML has focused on forecasting the exact magnitude of the next
strong earthquake in different seismic zones (see, for example,
Yousefzadeh et al., 2021).

In this paper, we propose a new method of analysis and
algorithm for forecasting strong earthquakes (i.e., magnitude
≥7). We suggest that one promising progress to earthquake
forecasting may consist in changing the prediction paradigms
from an “exact” approach to probabilistic forecasting of future
seismic activity cycles. This work aims to find the temporal
seismic patterns of high and low seismicity in four major
seismic zones: 1) the United States and Mexico, 2) South
America, 3) Japan, and 4) Southern China and Northern India
as sketched in Figure 1. We have made a probabilistic long-term
earthquake prediction using a Bayesian ML model in these
seismic zones based on the seismic patterns deduced from our
wavelet analyses.

2 SEISMIC STUDY ZONES

We are analyzing the earthquake activity records in four major
seismic zones in this work, and in turn we have made the
probabilistic prediction for large earthquake (magnitudes M ≥
7). The probability density function (PDF) of the spatial
coordinates of all earthquake zones has been calculated for
each seismic zone analysed. The PDFs of the longitudes and
latitudes are shown at the top and left panels in Figures 4, 9,
13, 15.

• Seismicity related to transform and subduction margins in
North America (Southwestern regions of both United States
and Mexico)

The scope of the tectonics setting related to the seismicity
along Mexico’s Pacific coast is divided into two regions: Northern
and Southern (Figure 4).

In the northern Mexican subduction zone, the Gulf of
California spreading center and the triple junction point
around the Jalisco and the Michoacán Blocks represent the
most active seismogenic belts inducing significant seismic
hazard in the Jalisco-Colima-Michoacán region (Dañobeitia
et al., 2016). The oblique to sub-parallel motions between the
North American and Pacific plates at the latitude of the San
Andreas fault produce a broad zone of large-magnitude
earthquake activity mainly associated with dextral strike-slip
faults extending more than 500 km into the continental
interior. This seismic and tectonic activity patterns define the
western limits of plate interaction as well as dominate the overall
pattern of seismic strain release (Castro et al., 2017). Due to the

Rivera Transform Fault, this seismic source corresponds to the
shallow seismicity (mean depth value of 16 km), showing strike-
slip faulting mechanisms delimiting the southwestern border
between the Rivera and the Pacific Plates (Sawires et al., 2021).

Most of the earthquakes in Southwestern Mexico are due to
the subduction process between the Cocos and North American
tectonic plates (Pardo and Suárez, 1995). The subduction zone
extends 1,300 km along the coast of the Pacific Ocean from the
Chiapas state to the Jalisco states showing an angle in the range of
12°–45° (Suárez et al., 1990; Singh and Pardo, 1993). The Rivera
plate moves with a relative velocity between 2.5 and 5.0 cm/year
(Kostoglodov and Bandy, 1995), and the relative velocity of the
Cocos plate in the Pacific Coast is in the range of 5.0–7.5 cm/year
(Singh and Pardo, 1993). The subduction earthquakes are
originated on the Pacific Coast with reverse fault focal
mechanism and depths in the range of 10–40 km. The rupture
lengths of these earthquakes are between 50 and 250 km, and
their widths vary between 75 and 150 km (García et al., 2005).
The deeper, in-slab earthquakes are also related to the subduction
process, and their epicentres are located inside the continent. The
hypocenters of these events have occurred at depths between 40
and 150 km in Mexico’s central and western zone, and they are
produced by the rupture of the subducted lithosphere (Jara et al.,
2015).

• Seismicity in South America (subduction oceanic
lithospheric plate versus continental lithospheric plate,
Andean case)

The South American plate is bounded for the subduction of
the oceanic Nazca plate towards the west and the South Atlantic
crustal oceanic section of the plate towards the east (Figure 9).
This westerly subduction and the easterly spreading stresses due
to the opening of the Oceanic Middle Ridge produces a
compressional stress pattern on all the continents (Figure 1).

Earthquakes along the Andean cordillera show a progressively
deep from the Chilean trench towards east associated with reverse
(majority) or strike-slip faulting mechanisms with the principal
significant compressional stress (σ1) roughly in E-W direction.
Along the Pacific coast, the deadliest earthquakes associated with
tsunamis were registered during the last decades.

The seismicity in central Chile observed from 0 to 30 km depth
beneath the western Andean thrust is due to the subduction of the
Nazca plate. It shows essential seismicity beneath the Principal
Cordillera located at a depth of 10 km, and deeper seismicity
(~15 km) aligned with the main Andean thrust (Ammirati et al.,
2019).

Rivas et al. (2019) determine in the foreland Andean region
that has 44 seismic locations with focal depths mechanisms
showing mainly reverse and in less proportion strike-slip
solutions ranging between 10 and 30 km and magnitudes 1.2 ≤
M ≤ 4. The intermediate principal stress (σ2) is also
compressional and more significant than the lithostatic
pressure (σv). In the mid-plate South America, earthquakes
seemed related to purely compressional stresses pattern (both
σHmax and σhmin larger than σv). Along the Atlantic margin, the
regional stresses are affected by coastal effects due to transform
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fault stresses as well as flexural effects from sediment load at the
continental margin (Assumpcao et al., 2016).

This coastal effect tends to make σHmax parallel to the
coastline and σhmin (usually σ3) perpendicular to the
coastline. Few available breakout data and in-situ
measurements are consistent with the pattern derived from
the earthquake focal mechanisms (Heidbach et al., 2016). The
Rio de la Plata craton and surrounding areas of Argentina and
Uruguay located on the Atlantic margin of the South America
plate have always been known as having deficient and shallow
earthquakes activity related to preexisting faults (Rossello
et al., 2020).

• Seismicity in Japan (subduction oceanic lithospheric plate
versus oceanic lithospheric plate)

Japan’s most densely populated area is subjected to intense
crustal stress due to the convergence by subduction of two
oceanic lithospheric plates (Figure 12). This compressional
context produces consequently high seismic activity, among
other geological processes associated with the subduction, such
as volcanism and exhumation (Heidbach and et al., 2016). There
are approximately 5,000 minor earthquakes recorded per year,
mainly between 3.0 and 3.9 magnitudes and around 160
earthquakes with a magnitude of 5 or higher, which caused
significant damages or casualties.

Geological analyses previously performed in the field, such
as geomorphological markers, trench surveys and radiometric
dating along the Nojima fault, associated with the 6.9
magnitude 1995 Kobe earthquake, revealed significant
activity during the Pleistocene-Holocene times. Mainly, at
least two significant earthquakes preceding the 1995
earthquake occurred in the last 1800 years (Lin, 2018).
According to these authors, there would be no consistency
between the recurrence intervals of seismic events proposed in
previous contributions.

In this region, among many other areas of interest, the
Hinagu-Futagawa fault zone (HFFZ) represents a study case,
where the 7.1 magnitude Kumamoto earthquake occurred in
2016, which produced a surface rupture of ~40 km in length.
Detailed geological studies in the field and radiometric dating
(Lin et al., 2017) allowed inferring four events in the last
4,000–5,000 years on this fault, suggesting a mean late
Holocene recurrence interval of 1,000 years for the associated
morphogenic earthquakes. However, as expressed by the authors
mentioned above, these results contradict previous studies
estimating recurrence intervals of 3,600–11,000 and
8,000–26,000 years for the target segments of the Hinagu and
Futagawa faults, respectively. Different methods have been
carried out to predict seismic events in this region (Uyeda,
2013), albeit with numerous difficulties inherent to the
complexity of the discipline and the non-linear nature of such
complex chains of phenomena.

• Seismicity in Southern China-Northern India (collisional
margin continental lithosphere plate versus continental
lithosphere plate, Himalayan case)

The seismicity of this zone (Figure 15) corresponds to the
sutured obducted margin formed by the collision of the Indian
plate against the Asian plate, which is occurring for the last tens of
millions of years.

As a result of this collision, the high Himalaya orogen was
formed (Tapponnier et al., 1982). As the process is still active even
today, intense crustal N-S oriented stress (Heidbach et al., 2016)
associated with intense seismic activity and cortical deformation
were produced (Figure 1).

Numerous contributions (Bilham, 2019) have been analyzed
through different methodologies, rupture zones and rupture
propagation directions, regular convergence rates, as well as
evaluated the slip potential in different segments of the
Himalaya and the occurrence of potential high magnitude
earthquakes. There is increasing evidence that Himalayan
seismicity may be bimodal: blind earthquakes (up to M ~ 7.8)
tend to cluster in the lower part of the seismogenic zone, while
infrequent large earthquakes (Mw 8+) propagate up the
Himalayan frontal thrust (Dal Zilio et al., 2019).

Recently, Michel et al. (2021), considering many variables and
uncertainties, suggest that earthquakes of magnitude greater than
8.7 (such as the one that occurred in 1950) are the most likely
candidates to be the largest possible earthquakes in the
Himalayas. However, they emphasize that, given the
magnitude frequency distribution model used, the probability
of a magnitude 8 + earthquake occurring in 100 years ranges from
~60–80%. The most likely associated recurrence time for such an
event exceeds 1,000 years.

3 DATA AND METHOD

3.1 Spatial Clustering
For this work, the orographic basemap comes from the ArcMap
map library. The ocean bathymetry layer is obtained from the
General Bathymetric Chart of the Oceans (GEBCO)2. The seismic
records of the period 1902–2021 of the North America, South
America, China and Japan regions taken from the U.S. Geological
Survey (USGS)3, are processed in a geographic information
system (GIS) to create a vector layer of geo-referenced points.
Continuous surface maps with seismic magnitude information
are designed with the Kriging-type interpolation method within a
GIS. This probabilistic method is widely used to generate seismic
maps (Türker and Bayrak, 2018; Teves-Costa et al., 2019;
Moradia et al., 2020) to its efficiency in predicting information
from one variable to the other. Through the spatial structure of its
discrete values. Eight classes with equal intervals (0.5) are defined
to better represent and interpret the spatial results. The
processing and plotting of seismic magnitude data on a map is
done using GIS. Plate Boundary and Movement Information
from USGS was added to the interpolated map to find out its
geographic location and plate type, as well as its displacement. A
spatial data filter is applied to the seismic record layer to extract

2https://www.gebco.net/data_and_products/gridded_bathymetry_data/
3https://www.usgs.gov/
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values ≥7 for inclusion in the interpolated map to locate the
largest earthquakes. Using spatial analysis tools, density zones
from the seismic records are defined for the filtered data.

3.2 Seismic Events
In order to analyze and search for any coherent seismic patterns,
it is necessary to have an excellent catalogue of seismic activity.
Seismic patterns should show periods when there is seismic
activity as well as when there is no seismic activity at a certain
magnitude if it exists. In this work, we have analyzed the seismic
activity in four different and important seismic zones:

1) Seismicity in North America (Figure 4)
2) Seismicity in South America (Figure 9)
3) Seismicity in Japan (Figure 12)
4) Seismicity in Southern China-Northern India (Figure 15)

The public data on seismic activity have been obtained from
USGS. These data contain the list of all registered seismic activity.
The table also contains information on the date of each seismic
event, its magnitude, depth, type of magnitude, longitude, and
latitude. We will analyze seismic activity for strong earthquakes
magnitudes ≥ 7 available from 1900 to 2021. Also, we only
analyze the earthquakes that are delimited in the areas/zones
shown and discussed in Figures 4, 9, 12, 15.

3.3 Time Series With Data Gaps
One of the biggest problems of analyzing incomplete time series
(such as the seismic activity catalogues) is to extract the
information of the phenomena. A solution used regularly to
analyze this type series is to apply different interpolation
methods Sturges (1983). However, any interpolation can lead
to an underestimation of spectral power at both higher and lower
frequencies. Another technique sometimes used is to extract the
mean value of the data (Carroll et al., 1997). Though, this
technique can fail for data records that have a trend.

In particular, gaps in geological, geophysical, geographic, and
seismic databases exist because those records contain errors, or
were not complete nor homogeneous, and were created with data
from different epochs (Jopek and Kaňuchová, 2017; Soon et al.,
2019). In this case, a Bayesian block in the geosciences record can
be applied to suppress the inevitable corrupting observational
errors (see, for example, Scargle et al., 2013). The statistical
inference using a Bayesian approach is used for analyzing an
incomplete database (Gelman and Meng, 2005). In addition,
spectral analysis has also been used to study time series with
missing data (Maoz et al., 1997; Ding et al., 1998; Ramírez-Rojas
et al., 2019). For example, the Fourier Transform (FT) is applied
for analyzing these data. Nevertheless, this method may not often
be suitable for non-stationary and irregularly spaced time series
(Velasco Herrera V. M. et al., 2022). Therefore a new and reliable
method is required to study a time series with gaps such as the
seismic events.

The classical wavelet technique (see, e.g., Torrence and Compo
(1998); Velasco Herrera et al. (2017)) is used to analyzed non-
stationary times series, but this technique can only be used for
regularly spaced time series. This is why a modified wavelet

technique has been proposed and used to analyse incomplete
time series. This technique has been named gapped wavelet (Frick
et al., 1997; 1998; Soon et al., 2019). In our study, we have used the
gapped wavelet spectral algorithm to analyze seismic events.
Another variant for the analysis of irregularly spaced time
series with wavelet has been proposed in Salcedo et al. (2012)
recently.

3.4 Gapped Wavelet
In order to find seismic patterns in an area, it is necessary to
analyze the periodicities that the seismic time series could have.
Since earthquakes do not occur continuously, this implies
frequent inactive or zero-activity “gaps” in the seismic
catalogues. That is why we propose to analyze the seismic
catalogues with the gapped wavelet transform. The gapped
wavelet transform (Wg) of a time series with data gaps fg(t) is
a matrix (Ω) and is defined by Frick et al. (1997) as:

Wg fg t( ){ } � ϕΩ t, a( ) (1)
with

ϕ �
��������

1
a C a, t( )

√
(2)

ψ′ t′, t, a( ) � h
t′ − t

a
( ) − C a, t( )[ ]Φ t′ − t

a
( )G t′( ) (3)

C a, t( ) � ∫∞

−∞h
t′−t
a( )Φ t′−t

a( )G t′( ) dt′∫∞

−∞Φ
t′−t
a( )G t′( ) dt′ (4)

G t( ) � 1, if the signal is registered
0, lost data or no data reported

{ (5)

Ω t, a( ) � ∫∞

−∞
ψ′p t′, t, a( )fg t′( ) dt′ (6)

where t is the time index and a is the wavelet scale, the superscript
(*) indicates the complex conjugate, and ψ is the mother function.
We applied the Morlet’s mother function (ψ) to analyze the
power spectral density (PSD) of seismic activity since this mother
function does not only provide a higher periodicity resolution but
also is a complex function that allows calculating the inverse
wavelet transform (Torrence and Compo, 1998; Velasco Herrera
et al., 2017; Soon et al., 2011, 2019). Then Φ(t) � e(−t2/2),
h(t) � eiwot, with wo = 6.

The meaningful wavelet periodicities with a confidence level
greater than 95% must be inside the cone of influence (COI), and
thin black contours mark the interval of 95% confidence
(Torrence and Compo, 1998). The global spectra show the
power contribution of each periodicity inside the COI. Also,
we established the significance levels in the global wavelet spectra
with a simple red noise model that increases power with
decreasing frequency (Gilman et al., 1963). The uncertainties
of every peak position are obtained from the peak full width at
half maximum (Mendoza et al., 2006).

3.5 Inverse Wavelet Spectral Analysis
The decomposition of fg in channel (yn) can be obtained from the
inverse wavelet (Torrence and Compo, 1998) as:
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yn � δjδt1/2

Cδψo 0( ) ∑j2
j�j1

Re Wg(sj)( )
s1/2j

(7)

where j1 and j2 define the scale range of the specified spectral
bands, ψo(0) is an energy normalization factor, Cδ is a
reconstruction factor, and δj is a factor for scale averaging. For
the Morlet wavelet, δj = 0.6, Cδ = 0.776, and ψo(0) = π−1/4.

The input data in the Wg are the seismic catalogues between
1900 and 2021. The Wg has two main outputs as shown in
Figures 2, 5, 7, 10, 13; the global spectrum, which shows the
periodicities existing in the seismic record with the 95%
confidence level above the red noise spectrum drawn as red
dashed line (left panel) and the wavelet power spectral density
(PSD) that shows the evolution over time of these periodicities
(central panel).

3.6 Machine Learning Algorithms for
Forecasting Seismic Activity
3.6.1 Non-Linear Autoregressive eXogenous Model
The system’s state can describe the dynamics of seismic activity
from its input (V)-output (Y) behavior, which describes its
evolution over time. Different models can approximate the
state of the system. In particular, we use the Non-linear
Autoregressive eXogenous (NARX) (Suykens et al., 2005)
model in order to create forecasting models of seismic activity
variation (Ŷ) that is defined as:

Ŷ k + 1[ ] � Ξ
V k, P[ ]
Y k,Q[ ]( ) (8)

where Ξ is a transfer function of the state of the system at the
moment “k” to the moment “k + 1”, that depends intrinsically on
the input and output data (V and Y, respectively), p and Q are the
delay times, and Ŷ is the estimated seismic activity at a time
“k + 1”.

We used the Least-Squares Support-Vector Machines (LS-
SVM) algorithms to estimate the transfer function (Ξ), a non-
linear function (Suykens et al., 2005) as:

Ξ � ∑n
k�1

ωkD
k + B (9)

where D is training data, in our case the seismic records. Also Dk

denotes the input data, i.e., the seismic records at time “k”
(discrete time index from k = 1, . . . , n), ωk is the weighting
factor which in turn has functional dependence onVk and B is the
bias term.

We use the Bayesian inference ML model (Suykens et al.,
2005) obtained from the seismic records to provide a probabilistic
earthquake prediction of the variation in the seismic activity.
Bayes’s theorem (Bayes, 1763) is the basis of our ML model and
can be expressed as follows:

p Ξ|D( ) � p D|Ξ( )
p D( ) p Ξ( ) (10)

FIGURE 2 | Results of the time-frequency wavelet spectral analysis of earthquake time series record (M ≥7) for the southwestern United States and northern
Mexico seismic zone between 1900 and 2021. The global time-averaged wavelet period (left panel) with the red dashed line indicating the 95% confidence level drawn
from a red noise spectrum. The Morlet wavelet power spectral density (MWPSD) in arbitrary units adopting the red-green-blue colour scales (central panel). The cone of
influence shows the possible edge effects in the MWPSD (i.e., the U-shaped curves outside of which the spectral information can be considered unreliable).
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where Ξ is the Least-Squares Support-Vector Machines (Eq. 9)
regression model.

Furthermore, Bayes’s theorem is used to deduce the optimal
parameters in the LS-SVM model (Eq. 9). In addition, we use the
radial basis function (RBF) kernel in this LS-SVMmethod. In this
work, we have applied and modified the LS-SVM algorithms and
toolbox by Suykens et al. (2005).

3.6.2 Algorithms for the Estimation of the Next High or
Active Phase of Seismic Activity
We apply the following iterative steps to forecast the next high
seismic activity season:

1) Use wavelet transform (Eq. 1) to find the periodicities
(seismic patterns) in each seismic zone analyzed. The
results are shown in Figures 2, 5, 7, 10, 13.

2) The decomposition of the seismic record in time series called
“channels” with the periodicities obtained in step (1) can
next be obtained using the inverse wavelet (Eq. 7).

3) Selection of the model lags P and Q for each Bayesian
inference model that has been analyzed in each seismic zone.

4) Use the Radial Basis Function (RBF) kernel.
5) For training, validation, testing and deduction of the hyper-

parameters of the model. Use the K-fold cross-validation.
6) Set aside 1/K of data. Train the model with the remaining

(K − 1)/K data. Measure the accuracy obtained on the 1/K
data that we had set aside. K independent training is
therefore acquired. The final accuracy will be the average
of the previous K accuracies. Note that we are hiding or
withholding a 1/K part of the training set during each
iteration. This is applied at the time of training. After
these K iterations, we obtain K accuracies that should be
similar to each other; this would be an indicator whether the
model is working well or not. In this work, K = 10 is adopted,
but, it is possible to vary K between 5 and 10.

7) Determination of the weight and bias.
8) Estimation of next high cycle of earthquake activity using Eq.

9. Before forecasting the following period of strong
earthquake activity, it is necessary to quantify the ability
of the Machine Learning to “predict” the recent clustered
earthquakes. We use 80% of the Bayesian clustered model
(that is, data from 1900 to 1996) as input data to “forecast”
the remaining 20% of the Bayesian clustered model
(i.e., 1997–2021) in each seismic zone analyzed. The
Bayesian clustered model of the historical earthquakes
shows that all the historically strong earthquakes were
manifested during the positive phase of the Bayesian
clustered model; this fact indicates that our model has no
overtraining nor undertraining. Furthermore, the wavelet
analysis shows that the high and low seasons of strong
earthquakes have a multiannual and multidecadal
variations, so the Bayesian model we deduced is not
overly complex, which implies that the validation is
simple. We do not show the validation figures but instead
choose to concentrate on the forecasting result.

9) Computation of a cost function.

10) Test of the accuracy of the estimate next high cycle of
earthquake activity.

11) Test of the cost function: if this function was small enough,
we stopped. Otherwise, we change one of the parameters and
repeat from step (2) onwards.

We have used and modified the LS-SVM algorithms and
toolbox by Suykens et al. (2005) for this goal.

We want to add that the accuracy of any forecast of seismic
activity is limited by an uncertainty principle (Velasco Herrera
et al., 2015). Great precision in the spatial location forecast
implies a significant uncertainty in the temporal forecast. This
is why in this work, we focus on the problem of temporal
forecasting by proposing a new Bayesian Machine Learning
composite method. In our case, the possible zones where the
following strong earthquakes in each seismic zone analyzed could
occur have been essentially clustered and pre-determined
according to the methodology described in Section 3.1.

4 RESULTS

In this section, we show the time-frequency seismic patterns of
strong earthquakes (M ≥ 7) from 1900 to 2021 in the following
four major seismic zones: 1) the United States and Mexico, 2)
South America, 3) Japan, and 4) Southern China and Northern
India, using the wavelet transform. After finding seismic patterns
in each of these seismic zones, the oscillation with a given
periodicity that groups the historical earthquakes (M ≥ 7) into
high and low seismicity will be obtained using the inverse wavelet
transform. Each of these oscillations is used to create a
probabilistic long-term earthquake prediction model for each
seismic zone analyzed using the Bayesian Machine Learning
method.

4.1 Southwestern United States and Mexico
Figure 2 shows the wavelet analysis of the strong earthquake
records (M ≥ 7) for the southwestern United States and northern
Mexico (see Figure 4) between 1900 and 2021. The top panel
shows that only seven strong earthquakes have been recorded in
this century-long interval and they are heterogeneously
distributed between 1900 and 2021. The global wavelet
spectrum (left panel) shows periodicities (seismic patterns) at
1.2 ± 0.5, 2.4 ± 0.9, 9.2 ± 2, 15.7 ± 4, and 55 ± 10 years. The time
evolution of the power spectral density (PSD) for these
periodicities is illustrated in the central panel.

Each of the periodicities shown in the global wavelet spectrum
(seismic patterns) obtained with the wavelet transform implicitly
provides information about the intrinsic properties of the tectonic
plates of the southwestern United States, the interaction between
these plates, the sources both internal and external that modulate
the tectonic movement as well as the dynamics of strong
earthquakes. In particular, we are selecting seismic pattern of
55 years that indicates the period of recurrence of strong
earthquakes. The other periodicities shown in the global
wavelet spectrum will be discussed in other future analysis
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FIGURE 3 | (A) Probabilistic earthquake prediction for the southwestern United States and northern Mexico. Bayesian inference of LS-SVM model (blue line and
shade) compared with the historical earthquakes clustered in 3 groups (I-III) and shownwith vertical blue bars from 1900 to 2021. In addition, the probabilistic earthquake
prediction is shown for the two future periods (cluster IV and V). The blue shaded area represents the 95% confidence intervals of the Bayesian model. Furthermore, we
show and contrast the earthquake activity events at Parkfield, California based on (B) the model proposed by Bakun and Lindh (1985) and (C) the results from our
Machine Learning algorithm with the adopted periodicity of 35-years. Please see Section 4.1.1 for the discussion of the earthquake activity and event at Parkfield,
California.
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because in this work the objective is to make a forecast for strong
earthquakes.

Figure 3A shows the probabilistic earthquake prediction
model (blue line/shade). This is a model with a 55-year
periodicity, and it can be seen that the historical seismic
events of the southwestern United States and northern Mexico
(vertical blue bars) could be grouped into three groups (I-III). The
fact that historical earthquakes can be grouped would indicate
that the activity and event are not mere random process but that
they are the result of a complex interaction between the tectonic
plates and the internal and external factors that modulate the
tectonic movement and trigger a series of earthquakes that occur
only in the positive phase of the 55-year periodicity. This pattern
holds for our all new results for other seismic zones
discussed below.

We want to note that there are historical records of strong
earthquakes before 1900 and that these earthquakes also occur in
the positive phase of the 55-years oscillation. However, in this
paper, we do not show these older historical earthquakes.
According to the Bayesian ML model, the next active seismic
period (M ≥ 7) could probably start in 2040 ± 5 and end in 2057 ±
5 (cluster IV), and no earthquake would be expected in this
seismic zone from 2058 ± 5 to 2077 ± 5. Then another new active

period of M ≥ 7 earthquakes would begin again around 2078
(cluster V).

A cursory study of Figure 4A shows that earthquakes could
apparently occur anywhere. The PDF of the longitude and
latitude shows that the seismic zone has a bimodal and
trimodal distribution with maxima at −117° and −93°; and 15°,
25°, and 37°, respectively. However, Figure 4B shows the seismic
activity’s grouping into different classes (see Methodology). In
Figure 4B earthquakes with magnitudes between 5 and 6 are
shown in shades of green. Earthquakes with magnitudes between
6 and 7 are shown in all yellow-orange shades. Earthquakes
greater than seven are shown in shades of red-brown. If strong
earthquakes (red triangles) have a random distribution, then no
more than one should occur in the same area. In addition, it can
be seen the grouping of strong earthquakes that are in the areas
delimited by a black curve, which are practically around the
geological faults. This result can be interpreted in terms of two
scenarios for the successive strong earthquakes.

The first scenario is that the next high seismic season,
including the “Big One” could occur according to our model
between 2040 ± 5 and 2057 ± 5 (see Figure 3), around any of the
areas outlined with a black line (Figure 4B). Also, it is possible
that occur around the yellow-orange areas, which are the areas

FIGURE 4 | Earthquakess in the Southwestern United States and Mexico. (A) Seismic activity between 1900 and 2021 is shown as yellow triangles for 5 ≤
earthquakes magnitudes < 7. Earthquakes magnitudes ≥7 are marked with red triangles. Plate motion vectors (rotated based on the direction of plate movement), plate
limits and earthquakes data were taken from the USGS. The PDF (probability density distribution) of the longitude and latitude shows that the seismic zones have a
bimodal and trimodal distribution, respectively (see main text for more details and discussion). (B)Distribution of seismic hazards in the Southwestern United States
and Mexico. The probabilistic spatial clustering occurrence for 5 ≤ earthquakes magnitudes < 6 is shown in shades of green; for 6 ≤ earthquakes magnitudes < 7 is
shown in shades of orange; and for earthquakes magnitudes ≥7 is shown in shades of red.
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where historically, earthquakes of categories 6 and 7 have
occurred.

The second scenario is that successive strong earthquakes can
occur arbitrarily and sporadically in any zone. However, the fact
that strong earthquakes are clustered temporally and spatially
may indicate that there are both temporal and spatial seismic
patterns that had not previously been considered for their study
and forecast. So from theML point of view, this second scenario is
less likely.

4.1.1 Forecasting Earthquakes at Parkfield, California
The Parkfield section of the San Andreas fault (California,
United States) was officially recognized by the United States
government as a seismic physics laboratory for developing
earthquake forecasts due to its apparent regularity in six
moderate earthquakes (magnitudes between 5 and 7) since
1857 (Bakun and Lindh, 1985). The interval between these
seismic events at Parkfield on 9 January 1857; 2 February
1881; 3 March 1901; 10 March 1922; 8 June 1934; and 28
June 1966 is, on average, 21–22 years (Bakun and McEvilly,
1984; Bakun and Lindh, 1985; Bakun et al., 2005). Based on the
average recurrence time of 22 years, the Parkfield recurrence
model by Bakun and Lindh (1985) forecasted that the next
following characteristic Parkfield earthquake could have
occurred on 1988.0 ± 5.2 years, i.e., the possible next Parkfield
earthquake should occur between 1983 and 1993. However, this
expected Parkfield earthquake never occurred within the
anticipated interval until 2004 (Bakun et al., 2005).

Our methodology proposed for analyzing strong earthquakes
can also be applied to study moderate earthquake activity and
events at Parkfield. We seek to analyze and explain why the
seventh earthquake could never occur in 1988.0 ± 5.2 years as
predicted, but instead occurred between 1993 and 2007. In
addition, we made the forecast for the eighth earthquake in
Parkfield. One of the differences between the methodology
proposed by Bakun and Lindh (1985) and the methodology in
this work is that while Bakun and Lindh (1985) had chosen an
average value between the events, we use the periodicities (seismic
patterns) of the Parkfield earthquakes. A mean value is a global
characteristic of a phenomenon or event, while a periodicity is an
intrinsic property of the phenomenon or events (see, for example,
Velasco Herrera et al., 2021; Velasco Herrera et al., 2022a; Velasco
Herrera et al., 2022b). Furthermore, a periodicity is intrinsically
related to spectral and temporal power, which is a fundamental
concept of physics (Landau and Lifshitz, 1988a; Feynman et al.,
2011a). In another deeper sense, a periodicity is also related to the
underlying symmetry of the physical phenomenon (Wigner,
1967).

The mean value has the characteristic that all events associated
with this value oscillate around it. In fact, the Parkfield seismic
events vary between 12 and 38 years, so the mean value of these
seismic events is 21 years. Therefore, using the mean value of
seismic events to forecast earthquakes from the point of view of
signal theory, signal processing, and machine learning is not the
most appropriate. While, the periodicities in the wavelet spectra
of earthquakes allow us to identify the intrinsic properties of the
earthquakes, determine the characteristics of the earthquake’s

source, and ultimately determine the interaction between the
earthquake and its source and/or the interaction between the
earthquake and the faults involved (see for example, Ramírez-
Rojas et al., 2019; Soon et al., 2019). In addition, the periodicities
cluster the events in high and null seasons (Velasco Herrera V. M.
et al., 2022), which allows for constructing models for the
forecasts of events with Machine Learning (Velasco Herrera
et al., 2021; Velasco Herrera et al., 2022a; Velasco Herrera
et al., 2022b).

Figure 3B shows the grouping of earthquakes in Parkfield with
the period of 22 years proposed by Bakun and Lindh (1985) for
the first six seismic events between 1857 and 1966. For the first
five events, the group of historical earthquakes are in the positive
phase of the 22-years oscillation grouped by the clusters I to V.
Also, these five events occur practically during the five maxima of
this periodicity. However, in cluster VI, there was no Parkfield
earthquake, but the sixth characteristic earthquake in Parkfield
occurred in the positive phase of Cluster VII, which was the
1966 event.

With these six seismic events in Parkfield, we can offer a
prognosis for the next characteristic earthquakes of Parkfield with
the 22-year period proposed by Bakun and Lindh (1985). The
result of this forecast is clustering labeled VII to X. According to
the periodicity of 22 years, the seventh characteristic earthquake
must have occurred in the positive phase of cluster VII which was
between 1979 and 1990. But, the seventh event occurred in 2004
(this seventh characteristic event seismic is not shown in or
directly indicated on Figure 3B because it was never used for
the forecast) i.e., during the positive phase of cluster IX.
Therefore, earthquakes did not occur in Parkfield in two
clusters (VI and VIII). Based on these results, the empirical
evidence suggests that the periodicity of 22 is not a
characteristic seismic pattern of earthquakes around the
Parkfield seismic zone. This is because, according to the
grouping of the 22-years oscillation, the forecast either can be
fulfilled or cannot be fulfilled. The fact that an earthquake did not
occurred (as predicted) could mean that there were no human
and economic losses for the population that lives near these active
seismic areas. However, for the development of the science of
earthquake forecasting, the fact that a predicted earthquake or
earthquake event did not occurred means that the proposed
model does not have all the necessary information. In turn,
such failure simply means that it is necessary for a more
serious and careful re-analysis of the data and a deeper
understanding of the particular seismic zone.

Almost 2 decades after the 2004 Parkfield earthquake and
nearly 4 decades after the pioneering Bakun and Lindh (1985)
forecast, it is necessary to explain why physically and
geologically, an earthquake could not occur in 1988.0 ±
5.2 years as proposed. In addition, it is necessary to correct
the pioneering/original model proposed by Bakun and Lindh
(1985). Wavelet analysis (figure not shown) of the earthquake
activity around the Parkfield seismic section show
periodicities of 6.2, 11.1, 20.8 and 35.1 years. We are not
going to focus on the periodicities of 6.2 and 11.1 years in this
paper. We note that the periodicity of 20.8 ± 5 years, with its
associated uncertainty, is practically the 22-years oscillation
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proposed by Bakun and Lindh (1985), which was presented in
Figure 3B.

Next we will focus on the result of the 35.1± 7-year periodicity
from our wavelet analysis. Figure 3C shows the groupings of
historical earthquakes with a periodicity of 35.1 ± 7 years. It can
be observed that all, absolutely all, Parkfield earthquakes are
occuring during the positive phase of the six clusters identified.
This is the first contrast of our results with the model proposed by
Bakun and Lindh (1985). Furthermore, it is recognized that more
than one event can occur within a single cluster. Such is the case
of cluster IV, where two seismic events occurred.

According to the Bayesian Machine Learning model with the
chosen period of 35 years, the characteristic earthquakes in
Parkfield can never occur in the negative phase, especially
between 1978 and 1992, as proposed by Bakun and Lindh
(1985). Our model suggests that during cluster VI (which is
between 1994 and 2007), the seventh seismic event would occur.
Again, in this forecast, we do not use the 2004 earthquake tomake
the actual forecast; which is the reason why we did not plotted the
2004 event in Figure 3C. Indeed, we wish to highlight in this
paper that the seventh event at Parkfield is correctly “forecasted”
within the cluster VI. In addition, we want to note that the next
season in which at least one characteristic Parkfield earthquake
can occur would be around cluster VII starting in 2019 and
ending in 2032. Except for cluster IV, Parkfield seismic events
occur around the maximum of each cluster. So with a high
probability, the eighth earthquake in Parkfield seismic zone/
section can be reasonably expected to occur at around 2025 ±

2 years. This date will be coming soon, so it will be possible to
follow in great detail the seismic events in this well-recognized
recognized seismic laboratory at Parkfield, California. We are
cautiously hopeful that this is indeed a significant area for the
development of the science of earthquake forecasts in order to
proffer effective and reliable early warnings with the worthy
objective of minimizing human and economic losses.

4.1.2 Mexican Earthquake
Figure 5 shows the wavelet analysis of the earthquake records (M
≥ 7) for southwestern Mexico (see Figure 4) between the years
1900 and 2021. A more significant number of earthquake is
observed here when compared to the southwestern United States
and northern Mexico. This shows a completely different seismic
activity and pattern between Northern and Southern Mexico.
Also, this could indicate that in southwestern Mexico there is less
viscosity between the tectonic plates when compared to the
southwestern United States and northern Mexico. The global
wavelet spectrum (left panel) shows periodicities at 1.3 ± 0.4, 2.2 ±
0.5, 3.8 ± 0.6, 7.7 ± 1, 16.4 ± 3, 30.1 ± 4, and 56 ± 5 years. The time
evolution of the power spectral density (PSD) for these
periodicities is shown in the central panel. We have selected
the periodicity of 3.7 years to group the strong earthquakes in
southwestern Mexico.

Figure 6 shows the probabilistic earthquake forecast (M ≥ 7)
for southwestern Mexico. This model has adopted a nominal
recurrent periodicity of 3.7 years and it can be seen that this
model groups the historical earthquakes (black bars) into

FIGURE 5 | Results of the time-frequency wavelet spectral analysis of earthquake time series record (M ≥7) for the southwestern Mexico seismic zone between
1900 and 2021. The global time-averaged wavelet period (left panel) with the red dashed line indicating the 95% confidence level drawn from a red noise spectrum. The
Morlet wavelet power spectral density (MWPSD) in arbitrary units adopting the red-green-blue colour scales (central panel). The cone of influence shows the possible
edge effects in the MWPSD (i.e., the U-shaped curves outside of which the spectral information can be considered unreliable).
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FIGURE 6 | Probabilistic earthquake prediction(M ≥ 7) for southwestern Mexico. Bayesian inference of LS-SVM model (blue line and shade) compared with the
historical earthquakes clustered in nineteen clusters (I-XIX) and shown with vertical blue bars from 1900 to 2021. In addition, the probabilistic earthquake prediction is
shown for the following three periods (clusters XX-XXII). The blue shaded area represents the 95% confidence intervals of the Bayesian model.

FIGURE 7 | Results of the time-frequency wavelet spectral analysis of earthquake time series record (M ≥7) for the South American seismic zone between 1900
and 2021. The global time-averaged wavelet period (left panel) with the red dashed line indicating the 95% confidence level drawn from a red noise spectrum. The Morlet
wavelet power spectral density (MWPSD) in arbitrary units adopting the red-green-blue colour scales (central panel). The cone of influence shows the possible edge
effects in the MWPSD (i.e., the U-shaped curves outside of which the spectral information can be considered unreliable).
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nineteen clusters. Furthermore, it can be seen that these seismic
events also occur in the positive phase of the 3.7-years oscillation.
This characteristic shows that strong earthquakes in
southwestern Mexico are not temporally random. According
to this model, the next period of greater earthquakes (M ≥ 7)
would start in 2024 ± 1 and last until 2026 ± 1. This is clearly a
testable scientific proposition.

In Figure 4B, the cluster of strong earthquakes in
southwestern Mexico can be studied. It can be seen that these
earthquakes occur preferentially in the subduction zone. In
addition, the following strong earthquakes may occur in the
cluster zones and in the yellow-orange areas where magnitude
6 to 7 earthquakes have historically occurred. In addition to the
interplate earthquakes in southwestern Mexico, there are also
intraplate earthquakes in central Mexico. If successive
earthquakes occur in this area, it could cause significant
damages in the cities of central Mexico with serious human
and economic losses (e.g., Novelo-Casanova et al., 2013).

4.2 South America
Figure 7 shows the wavelet analysis for earthquakes (M ≥ 7) in
the South American seismic zone. The global wavelet spectrum
shows the periodicities of 1.10.3, 2, 2 ± 0.5, 3.6 ± 0.7, 4.5 ± 0.7,
7.7 ± 1.7, 12.1 ± 2.5, 24.6 ± 5.5, and 46.8 ± 8.4 years.

In order to group strong earthquakes, we use the periodicity of
7.7 years. This nominal choice of longer recurrent periodicity
may indicate or imply that there is greater viscosity between the
tectonic plates in South America than in southwestern Mexico.
Figure 8 shows the probabilistic earthquake forecast (blue line/

shade) model of 7.7-years that grouped historical earthquakes
into fifteen clusters. According to this model, the next seismically
active period would begin in 2026 ± 2 and end in 2031 ± 2
(cluster XVI).

In Figure 9A shown the seismic activity in South America
between 1900 and 2021. Also, the PDF of the longitude and
latitude shows that the seismic zone has a trimodal and
quadrimodal distribution with maxima at −81°, −71°, and −66°;
and −44°, −32°, −21°, and −2°, respectively.

In Figure 9B, the spatial clustering of strong earthquakes in
South America is shown. It can be seen that these earthquakes
occur preferentially in the subduction zone. In addition, the
following strong earthquakes may occur in the cluster zones
and yellow-orange areas where magnitude 6 to 7 earthquakes
have historically occurred.

4.3 Japan
Owing to the significant and relatively more frequent seismic
activity in Japan, we have divided earthquakes in the Japanese
zone into two groups. The first group consists of earthquakes 7 ≤
M < 8. After the 11 March 2011s “Great East Japan Earthquake”,
offshore of the Tohoku region (see, for example, Davis et al., 2012,
for a full discussion about the missed opportunity for disaster
preparedness), there is a new fundamental question in developing
earthquake forecasts in Japan: When could another similar or
equal magnitude earthquake occur? To offer a possible answer,
we analyze earthquakes in Japan for magnitudes equal to or
greater than 8. Therefore our study of the second group is focused
on the strongest earthquakes M ≥ 8.

FIGURE 8 | Probabilistic earthquake prediction for the South America (M ≥ 7). Bayesian inference of LS-SVM model (blue line amd shade) compared with the
historical earthquakes clustered in fifteen groups (I-XV) and shown with vertical blue bars from 1900 to 2021. In addition, the probabilistic earthquake prediction is shown
for the following two periods (cluster XVI and XVII). The blue shaded area represents the 95% confidence intervals of the Bayesian model.
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Figure 10A shows the wavelet analysis for the Japanese
earthquakes of the first group. The global wavelet spectrum
shows the periodicities of 1.2 ± 0.3, 2.4 ± 0.5, 4.1 ± 0.7, 10.9 ±
1.5, and 36.8 ± 5 years. Figure 10B shows the wavelet analysis for
the second group of Japanese earthquakes M ≥ 8. The global
wavelet spectrum shows the periodicities of 1.1 ± 0.3, 1.7 ± 0.5,
5.1 ± 0.7, 23.1 ± 4.5, and 40 ± 7 years.

Figure 11A shows the probabilistic earthquake forecast (7 ≤
M < 8) model (blue line/shade) of 4.1-year that grouped
historical earthquakes into twenty-nine clusters. We want to
highlight a high seismic activity between clusters IX and X,
XIV and XV, and XVI and XVII. Furthermore, there was no
seismic activity in cluster XXIV. Seismic cluster number XXIX
began in 2019 ± 1 and will end in 2022 ± 1. Therefore, it is
possible that strong earthquakes may occur during 2022.
During the preparation of this work, on 16 March 2022 an
earthquake of magnitude 7.3 (37.702oN, 141.587oE) was
recorded in Japan. So this strong earthquake verifies the
accuracy of the Bayesian machine learning event
classification and forecast for Japan in real time. According
to this model, the next active seismic period would begin in
2024 ± 2 and end in 2029 ± 2 (cluster XXX). Here is another
imminently testable forecast contributed by our Bayesian ML
algorithm and analyses.

Figure 11B shows the probabilistic forecast of earthquakes
M ≥ 8. This model has a 40-years oscillation and groups
historical earthquakes into three clusters. It is observed that

earthquakes occur in the positive phase and that the next
period of high seismic activity would begin in 2035 ± 5 and end
in 2050 ± 5 (cluster IV).

In Figure 12A shown the seismic activity in Japan
between 1900 and 2021. The PDF of the longitude and
latitude shows that the seismic zone has a trimodal and
bimodal distribution with maxima at 131°, 142°, and 147°;
and 37° and 43°, respectively. In Figure 12B, the spatial
clustering of strong earthquakes in Japan is shown. It can
be seen that these earthquakes occur preferentially in the
subduction zone. In addition, the following strong
earthquakes may occur in the cluster zones and yellow-
orange areas where magnitude 6 to 7 earthquakes have
historically occurred.

We would like to highlight that the earthquake of 16 March
2022 that was recorded in Japan with a magnitude of 7.3 (with
epicenter at 37.702°N, 141.587°E) which was recorded off the
coast of Japan’s Fukushima prefecture. It is within the areas
where, according to our spatial model shown in Figures 12A,B
strong earthquake would be expected.

4.4 Southern China-Northern India
Figure 13 shows the result of wavelet analysis for strong
earthquakes with M ≥ 7 around the Southern China-Northern
India zone. The global wavelet spectrum shows the periodicities
of 1 ± 0.3, 1.8 ± 0.5, 3.4 ± 0.7, 6.9 ± 1.2, 8.6 ± 1.3, 13 ± 2, and 20.7 ±
5 years.

FIGURE 9 | Earthquakes in South America. (A) Seismic activity between 1900 and 2021 is shown as yellow triangles for 5 ≤ earthquakes magnitudes < 7.
Earthquakes magnitudes ≥7 are marked with red triangles. Plate motion vectors (rotated based on the direction of plate movement), plate limits and earthquakes data
were taken from the USGS. The PDF (probability density distribution) of the longitude and latitude shows that the seismic zone has a trimodal and quadrimodal
distribution, respectively. (B)Distribution of seismic hazards in South America. The spatial probability of occurrence for 5 ≤ earthquakesmagnitudes < 6 is shown in
shades of green; for 6 ≤ earthquakes magnitudes < 7 is shown in shades of orange; and for earthquakes magnitudes ≥7 is shown in shades of red.
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Figure 14 shows the probabilistic forecast of the Southern
China-Northern India earthquakes withM ≥ 7. This model has a
8.6-years oscillation and groups historical earthquakes into
twelve clusters. It is observed that earthquakes occur in the
positive phase and that the next period of high seismic activity
would begin in 2022 ± 1 and end in 2028 ± 2 (cluster XIV).

In Figure 15A shown the seismic activity in Southern China-
Northern India between 1900 and 2021. The PDF of the seismic
activity longitude and latitude shows that the seismic zone has
bimodal distributions with maxima at 77° and 94°; and 30° and
40°, respectively. In Figure 15B, the spatial clustering of strong
earthquakes in Southern China-Northern India is shown. It can

FIGURE 10 |Results of the time-frequency wavelet spectral analysis of earthquake time series record for the Japanese seismic zone between 1900 and 2021, with
magnitude: (A) 7 ≤M < 8. (B) greater than or equal to 8. The global time-averaged wavelet period (left panel) with the red dashed line indicating the 95% confidence level
drawn from a red noise spectrum. The Morlet wavelet power spectral density (MWPSD) in arbitrary units adopting the red-green-blue colour scales (central panel). The
cone of influence shows the possible edge effects in the MWPSD (i.e., the U-shaped curves outside of which the spectral information can be considered unreliable).
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be seen that these are intraplate earthquakes. In addition, the
following strong earthquakes may occur in the cluster zones and
yellow-orange areas where magnitude 6 to 7 earthquakes have

historically occurred and we would like to highlight that
strong seismic activities are preferentially distributed around
fault lines.

FIGURE 11 | (A) Probabilistic earthquake prediction for Japan with magnitudes 7 ≤M < 8. Bayesian inference of LS-SVM model (blue line and shade) compared
with the historical Japanese earthquakes clustered in twenty nine groups (I-XXIX) and shown with vertical blue bars from 1900 to 2021. In addition, the probabilistic
earthquake prediction is shown for the following three periods (cluster XXX-XXXII). (B) Probabilistic earthquake prediction for Japan with magnitude greater than or equal
to 8. Bayesian inference of LS-SVMmodel (blue line and shade) compared with the historical Japanese earthquakes clustered in three groups (I-III) and shown with
vertical blue bars from 1900 to 2021. In addition, the probabilistic earthquake prediction is shown for the following period (cluster IV). The blue shaded area represents the
95% confidence intervals of the Bayesian model.
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5 DISCUSSION AND CONCLUDING
REMARKS

Mechanisms conducting the plate motions and the Earth’s
geodynamics related to the triggering, the persistency and the
potency of earthquakes are still not entirely clarified (Kanamori
and Brodsky, 2004; Doglioni and Panza, 2015; Senapati et al.,
2022, and several references cited in these papers) Although it is
not the subject of diagnosis in the present work, the episodic
elastic accumulation and release of energy produced by
earthquakes depend on the multiple prevailing characteristics
when the shear stress exceeds the internal friction between the
sliding plates.

The relationships between stress fields and frictional responses
(Lockner and Beeler, 2002) result from the rheological behavior of
the materials that influence the viscosity of the affected plate
contacts. The pressure by crust overloading and temperature
conditions varies considerably from depth, affecting in
consequence the origin, intensity and frequency of
earthquakes. The velocity and the geometry of spatial
orientations of the tectonic convergences also interact both in
planar sense (magnitudes of the transcurrent components) and in
depth (subduction dip angles).

Other complementary surficial factors such as tidal friction of
the Earth could also induce the earthquake’s triggering (Zschau,
1986; Wilcock, 2001) due to the accumulation of energy for

centuries (Doglioni and Panza, 2015). Based on these multiple
geophysical factors, we consider the main causes of the greater
recurrency and intensity of earthquakes that are expected in long-
lived tectonic contexts of near to orthogonal convergence and
deeper subduction inclinations.

Kossobokov (2004) suggested that an apparent irregularity
and a certain infrequency of earthquake occurrences may
ultimately hinted that earthquakes are ultimately unpredictable
phenomena rooted in stochastic processes beyond any
deterministic rules or probabilities. But the appearance of
stochastic nature or process may be due to the fact that abrupt
or sporadic events such as earthquakes, and explosions, among
others, must be analyzed in a different way than gradual processes
such as temperature, atmospheric pressure, and other physical
phenomena. Velasco Herrera et al. (2017) suggested that there is
another type of natural phenomena that occurs only in a specific
phase of a very particular oscillation such as strong earthquakes.
The apparent irregularity of the strong or moderate earthquakes
analyzed in this work could be observed in the heterogeneous
distribution shown by the seismic events in the positive phase of
each cluster obtained with Machine Learning.

The grouping of historical earthquakes makes it possible to
find the periods of high and null seismic activity, but at the
moment, it cannot answer the deeper questions posed by
Kossobokov (2004): Why, where and when do earthquakes
occur? In addition, Kossobokov (2004) raises a question that,

FIGURE 12 | Earthquake zones in Japan. (A) Seismic activity between 1900 and 2021 is shown as yellow triangles for 5 ≤ earthquakes magnitudes< 7, for 7 ≤
earthquakes magnitudes are marked with red triangles. Plate motion vectors (rotated based on the direction of plate movement), plate limits and earthquakes data were
taken from the USGS. The PDF (probability density distribution) of the longitude and latitude shows that the seismic zone has a trimodal and bimodal distribution,
respectively. (B)Distribution of seismic hazards in Japan. The spatial probability of occurrence for 5 ≤ earthquakes magnitudes < 6 is shown in shades of green; for
6 ≤ earthquakes magnitudes < 7 is shown in shades of orange; and for earthquakes magnitudes ≥7 is shown in shades of red.
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FIGURE 13 |Results of the time-frequency wavelet spectral analysis of earthquake time series record for the Southern China-Northern India seismic zone between
1900 and 2021. The global time-averaged wavelet period (left panel) with the red dashed line indicating the 95% confidence level drawn from a red noise spectrum. The
Morlet wavelet power spectral density (MWPSD) in arbitrary units adopting the red-green-blue colour scales (central panel). The cone of influence shows the possible
edge effects in the MWPSD (i.e., the U-shaped curves outside of which the spectral information can be considered unreliable).

FIGURE 14 | Probabilistic earthquake prediction for Southern China-Northern India. Bayesian inference of LS-SVMmodel (blue line and shade) compared with the
historical Southern China-Northern India earthquakes clustered in thirteen groups (I-XIII) and shown with vertical blue bars from 1900 to 2021. In addition, the
probabilistic earthquake prediction is shown for the following two period (clusters XXIV and XV). The blue shaded area represents the 95% confidence intervals of the
Bayesian model.
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to date, still does not have an answer. Are earthquakes
predictable? Although a negative answer, according to
Kossobokov (2004), is merely a guess. In addition, Kossobokov
(2004) asks if there are intrinsic temporal and physical
characteristics of earthquakes that can be used in other
forecasting types to can be used to reduce human and
economic losses? Different algorithms and models,4,5 have
been used to forecast earthquakes in different seismic zones
(see, for example, Michael and Werner, 2018; Schorlemmer
et al., 2018, for a full review). The medium-term prediction
has been carried with the M8 algorithm for strong earthquakes
(Keilis-Borok and Kossobokov, 1990). In addition, the M8
algorithm demonstrated that the largest earthquakes are not a
random process (Kossobokov and Soloviev, 2021). Also, the
strong earthquakes are forecasted with a limited precision in
their ranges of time, space, and magnitude (Kossobokov and
Soloviev, 2021). We propose a probabilistic algorithm for
forecasting earthquakes (strong or moderate) that can be
applied and implemented in different seismic zones. Different
algorithms and methodologies for forecasting earthquakes
require different tests. For example, we may note that the tests
for the M8 algorithm by V. Kossobokov and colleagues(see,
Kossobokov and Soloviev, 2021) and for our Bayesian

Machine Learning models are very different (see the
Methodology Section 3.6.2).

However, the proposed deterministic methodologies have not
yield effective results nor robust conclusions. The study of seismic
precursors has increased in recent years, but there is no reliable
method to predict earthquakes over long time horizons/windows
of multi-years or even decade to multidecades (Pulinets and
Boyarchuk, 2005; Ouzounov et al., 2018; Pulinets and
Ouzounov, 2018).

Predicting earthquakes must be one of the most significant
challenges in modern science and technology. Earthquake
prediction is necessary to minimize the enormous earthquake
hazard risks in a seismic area. In particular the prediction of
earthquakes is essential to minimize human tragedies and
economic losses. The occurrences of an earthquake are
complex and largely non-linear in character, which is why
there is no deterministic model that can predict the exact
location, magnitude, and time of an earthquake of any
significant magnitudes.

There is currently a great debate in the scientific community
about the origin of earthquakes. While some consider that it may
not possible to predict earthquakes (Geller et al., 1997), others like
us suggest that it could be a predictable phenomenon. Our point
of view is informed by the seismic patterns found in the seismic
zones analyzed adopting the methodology applied in this work.

Furthermore, we suggest that temporal forecasting of strong
earthquakes should consist of forecasting magnitude widths/

FIGURE 15 | Earthquakes in Southern China-Northern India. (A) Seismic activity between 1900 and 2021 is shown as yellow triangles for 5 ≤ earthquakes
magnitudes < 7. Earthquakesmagnitudes ≥7 aremarkedwith red triangles. The PDF (probability density distribution) of the longitude and latitude shows that the seismic
zone has both a bimodal distribution, respectively. Plate motion vectors (rotated based on the direction of plate movement), plate limits and earthquakes data were taken
from the USGS. (B) Distribution of seismic hazards in Southern China-Northern India. The spatial probability of occurrence for 5 ≤ earthquakes magnitudes < 6 is
shown in shades of green; for 6 ≤ earthquakes magnitudes < 7 is shown in shades of orange; and for earthquakes magnitudes ≥ 7 is shown in shades of red.

4https://cseptesting.org/blog/
5https://www.scec.org/research
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ranges rather than forecasting any “exact” magnitude. Moreover,
from the geological point of view, the exact spatial forecast is not a
correct concept since the geological faults are not point-like
entities. In addition, the release of accumulated energy does
not occur at a single point, nor is it instantaneous. Therefore,
the energy released from an earthquake is an average of the inter-
related cascade processes of rupture of the geological fault in a
volumetric geographical area that occurs within a time interval. In
other words, an earthquake does not occur at one point, nor is it a
momentary event. We suggest that the problem of earthquake
predictions should be viewed as a question of probability. One
possible solution to earthquake forecasting is to calculate the
predicted probabilities of future seismic cycles.

In our point of view, the key challenge in prediction of seismic
activity today is to shift paradigms from deterministic forecasts to
a probabilistic approach to predicting earthquakes with reliable
estimates or quantifications of uncertainties. So earthquake
prediction should be a multidisciplinary task that accounts for
the recent advances in artificial intelligence and should be widely
applied for earthquake forecasting (Beroza et al., 2021).

We have studied seismicity in North America, South America,
Japan and Southern China and Northern India with Machine
Learning by analyzing seismic patterns of variations for
earthquakes with magnitude 7 or greater between 1900 and
2021. We then created a probabilistic earthquake prediction
model for each seismic zone analyzed using the Bayesian
Machine Learning method. Each model obtained groups the
seismic of magnitude greater than 7 in clusters. Our result also
partially explains the periods of earthquakes of magnitude 7 and
the apparent seismic tranquillity for earthquakes of magnitude 7
or greater. We want to clarify that the periods where no
earthquakes of magnitude 7 do not imply the total absence of
seismic activity, indeed earthquakes of lesser magnitude must still
occur during this period.

We suggest that if the dynamics of the tectonic plates have not
changed in the last thousands of years, then no abrupt change in
the tectonic movement would be expected, and therefore, the
seismic pattern found should remain stationary, at least
temporarily and spatially stable and unchanging, for the
following next few decades.

We speculate that the seismic patterns found, that is, the
periods of occurrence of earthquakes in each seismic zone
analyzed could be interpreted as the period in which the
energy accumulates and this energy releases through the
rupture along faults and fractures near the plate tectonic
boundaries.

As it can be seen in the results we obtained, each one of the
analyzed areas has different characteristic frequencies for
earthquakes of the analyzed magnitudes. This is probably due
to the type of plate boundary, the lithological composition of the
related plates and their consequent different friction coefficients,
the geometry of the margin, the convergence angle of the plates,
as well as the velocity of the approach. We leave this briefly
expressed hypothesis awaiting further future studies.

As a highlight of our results, we note that the larger number of
clusters are found and defined for the Himalayan collisional
margin. We could speculate that this phenomenon is related

to the diverse lithological nature of the constituent materials of
the two continental crustal plates that come into contact in a
frontal collision with very different friction coefficients. The cases
of the subduction convergence zones of Southwestern Mexico
and South America seem to have similar frequencies, sensu lato, a
fact that is not surprising because of the type of crust of the plates
involved in the boundaries (oceanic crust versus continental
crust).

To the contrary, convergence by subduction of two oceanic
crust plates, as in the case of Japan, presents a notably higher
frequency. This would be related to the physical properties of
oceanic basalts and their response to imposed stresses.

In the Southwestern North American transform margin, we
observed a very low frequency oscillation and modulation. In this
case, the low frequency of earthquakes of magnitude greater than
7 could be related to the rectilinear geometry of the plate contact
(plus its transcurrence) and the relation of this with the
accumulation-release of elastic energy.

In addition, we would like to highlight the forecast for the
earthquakes in the Southwestern United States of America since
one of the biggest concerns is anymajor earthquake in the densely
populated region of San Andres fault, such as the catastrophic
event on 18 April 1906. This event is known as the San Francisco
great earthquake. So after more than a hundred years, the “Big
One” could occur according to our model between 2040 ± 5 and
2057 ± 5. Although this great earthquake may occur “tomorrow”,
we still have a little time to refine our forecasts of such strong
earthquakes.

In summary, we have analyzed seismicity in North America,
South America, Japan, and Southern China-Northern India forM
≥ 7 earthquakes from 1900 to 2021. The primary seismic patterns
found forM ≥ 7 earthquakes in the analyzed seismic zones are 55,
3.7, 7.7, and 8.6 years, respectively, for the southwestern
United States and northern Mexico, southwestern Mexico,
South American, and Southern China-Northern India. In the
Japanese zones, the primary seismic pattern for 7 ≤ M < 8
earthquake is 4.1 and 40 years for M ≥ 8 earthquakes.

Our Machine Learning models show that there are periods
where there are earthquakes magnitude ≥7 and periods without
earthquakes with magnitude ≥7 in the analyzed seismic zones. In
addition, our Machine Learning models predict a new seismically
active phase for earthquakes magnitude ≥7 between 2040± 5and
2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2
and 2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five seismic zones
in United States, Mexico, South America, Japan, and Southern
China-Northern India, respectively. Finally, we note that our
algorithms can be further applied to perform probabilistic
forecasts in any seismic zone.

Our algorithm for analyzing strong earthquakes in extensive
seismic areas can also be applied to smaller or specific seismic
zones where moderate historical earthquakes with magnitudes
between 5 and 7 occur, as is the case of the Parkfield section of the
San Andreas fault (California, United States). Our analysis shows
why a moderate earthquake could never occur in 1988 ± 5 as
proposed by Bakun and Lindh (1985) and why the long-awaited
characteristic Parkfield earthquake occurred in 2004.
Furthermore, our Bayesian model of Machine Learning
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adopting a periodicity of 35 years predicts that possible seismic
events may occur between 2019 and 2031, with a high probability
of event(s) around 2025 ± 2. The Parkfield section of the San
Andreas fault is an excellent seismic laboratory for developing,
testing, and demonstrating earthquake forecasts. In a few years, it
will be possible to demonstrate whether our algorithm effectively
forecasts strong and moderate earthquakes. We may note in
anticipation that if some of our forecasts are not fulfilled in some
of the analyzed seismic zones, it may not be the sole fault of
Machine Learning algorithms. Instead the complex issues and
problems may lie with our conjectures and the proposed models
for each seismic zones, so we will have to carefully re-analyze
again the seismic zone or zones where the forecast was not
fulfilled. If all our forecasts for the next high season of
earthquakes are fulfilled, then we must incorporate more
elements such as the seismic precursors (see, for example,
Pulinets and Boyarchuk, 2005; Ouzounov et al., 2018; Pulinets
and Ouzounov, 2018, for a full review) of each zone analyzed in
our models to give more accurate earthquake forecasts in order to
provide earlier warnings and greater security to people living in
these earthquake zones.

Spatial forecasting models Zechar and Jordan (2008) have
been suggested, involving variables and metrics such as 1)
Relative Intensity (RI) alarm function, 2) Pattern Informatics
(PI), and 3) the United States Geological Survey National Seismic
Hazard Map (NSHM). These models represent different
assumptions about the spatial distribution of earthquakes.
Concerning RI: the hypothesis is that future earthquakes are
more likely to occur where seismicity is historically higher. On PI:
the hypothesis is based on the fact that anomalous seismic
activities indicate the locations of future earthquakes. Finally,
on NSHM: the hypothesis suggests that future earthquakes will
occur where previous earthquakes have occurred, and that some
earthquakes may occur anywhere.

In our case, the possible zones where the following strong
earthquakes in each seismic zone analyzed could occur have been
essentially clustered and pre-determined according to the
methodology described in Section 3.1. According to this
spatial grouping, the fact that strong earthquakes occur
probabilistically close to where strong earthquakes have
historically occurred could indicate certain information about
the tectonic plates. For example, precisely in those areas, there is
greater fracturing compared to areas where strong earthquakes
have not occurred. In addition, the probabilistic spatial clustering
of Figures 4, 9, 12, 15 could show the areas with the highest
probability of strong earthquakes. Therefore, it would be essential
to analyze these highly probable areas of strong earthquakes with
all the models and precursors that are currently known in order to
minimize economic losses and human losses.

In conclusion, we believe that our results demonstrate that our
methodology is a good alternative to traditional deterministic

earthquake prediction. Thus, the problem of earthquake
predictions should be considered as a question of probability.
We believe the challenge in the study of seismic activity is to
modify the forecast paradigm to a probabilistic earthquake
prediction.
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