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In 2018–2020, meteorological droughts over Northwestern Europe caused severe
declines in groundwater heads with significant damage to groundwater-dependent
ecosystems and agriculture. The response of the groundwater system to different
hydrological stresses is valuable information for decision-makers. In this paper, a
reproducible, data-driven approach using open-source software is proposed to
quantify the effects of different hydrological stresses on heads. A scripted workflow
was developed using the open-source Pastas software for time series modeling of
heads. For each head time series, the best model structure and relevant hydrological
stresses (rainfall, evaporation, river stages, and pumping at one or more well fields) were
selected iteratively. A new method was applied to model multiple well fields with a single
response function, where the response was scaled by the distances between the pumping
and observation wells. Selection of the best model structure was performed through
reliability checking based on four criteria. The time series model of each observation well
represents an independent estimate of the contribution of different hydrological stresses to
the head and is based exclusively on observed data. The approach was applied to
estimate the drawdown caused by nearby well fields to 250 observed head time series
measured at 122 locations in the eastern part of the Netherlands, a country where summer
droughts can cause problems, even though the country is better known for problems with
too much water. Reliable models were obtained for 126 head time series of which 78
contain one or more well fields as a contributing stress. The spatial variation of the modeled
responses to pumping at the well fields show the expected decline with distance from the
well field, even though all responses were modeled independently. An example application
at one well field showed how the head response to pumping varies per aquifer. Time series
analysis was used to determine the feasibility of reducing pumping rates to mitigate large
drawdowns during droughts, which depends on the magnitude and response time of the
groundwater system to changes in pumping. This is salient information for decision-
makers. This article is part of the special issue “Rapid, Reproducible, and Robust
Environmental Modeling for Decision Support: Worked Examples and Open-Source
Software Tools”.
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1 INTRODUCTION

The competition for groundwater resources is fierce, including
demands for agricultural production, drinking water supply,
groundwater-dependent ecosystems, and for mitigation of
land subsidence to maintain the stability of buildings. Dry
summers and the growing demand for freshwater increases the
pressure on limited groundwater resources. The groundwater
table may drop significantly during and after dry summers
(e.g., Brakkee et al., 2022) due to a set of stresses on the system
including a decrease in precipitation, an increase in
evaporation and transpiration, lower surface water levels,
and higher groundwater use for both drinking water and
irrigation (e.g., Van Loon et al., 2016). The effect of
pumping wells on the head is one of the few stresses on the
system that can be controlled. Estimates of the head response
to pumping wells are therefore salient information for decision
makers to manage groundwater resources and possibly
mitigate low groundwater tables.

The effect of pumping on the heads in a multi-aquifer system
can be estimated with a numerical groundwater model (e.g.,
Anderson et al., 2015). Such process-based models typically
require a large amount of input data to incorporate system
and process details (e.g., Hugman and Doherty, 2022).
Significant time investment is required to build and calibrate
these models, and, even after considerable effort, they are rarely
able to simulate the transient head variation with reasonable
accuracy. Alternatively, models based on time series analysis are
generally much better at simulating the heads measured in an
observation well (e.g., Bakker and Schaars, 2019). Additionally,
time series models have the advantage of low data requirements
and can be developed in a short amount of time.

Many time series analysis approaches are black-box models,
for example ARIMA models (e.g., Patle et al., 2015) or deep
learning methods (e.g., Wunsch et al., 2018). A disadvantage of
such black-box models is that it can be difficult to physically
interpret the resulting models. More transparent, gray-box
approaches include lumped conceptual models (Mackay et al.,
2014) or time series modeling using physically-based response
functions (e.g., Von Asmuth et al., 2012; Collenteur et al., 2019).
The latter also allows for the differentiation between the stresses
causing the head variation (e.g., Von Asmuth et al., 2008).

An important application of time series analysis is the
estimation of the drawdown caused by pumping. For example,
Von Asmuth et al. (2008), Obergfell et al. (2013), and Shapoori
et al. (2015) applied time series analysis to determine the
drawdown due to pumping from a single well field. Many
observation wells worldwide are impacted by multiple well
fields. The pumping rates at these well fields are commonly
correlated, which complicates the estimation of the
contributions of different well fields and may lead to increased
uncertainty in the model outcomes and less robust models.

The objective of this paper is to present a data-driven,
reproducible, and robust approach to estimate the head
response at observation wells that are potentially affected by
variations in rainfall, evaporation, rivers stages, and pumping
from multiple well fields. The main objective is to quantify both

the magnitude and timing of the head response to the
surrounding well fields at each observation well using a new
parsimonious approach to incorporate multiple well fields in a
time series model. The approach is tested in an area of the
Netherlands where the heads are measured at 213 observation
wells at multiple depths, resulting in 395 head time series. The
heads are potentially affected by four different well fields. A
detailed decision tree is developed to determine which stresses
have a significant effect on the head variation. Time series analysis
is conducted with the open-source Pastas software (version
0.20.0 Collenteur et al., 2019) to determine the response of
each well field. The analysis is entirely implemented in Python
scripts and is fully reproducible as advocated by Fienen and
Bakker (2016) & White et al. (2020).

In the following, the approach to quantify the effects of
groundwater pumping using time series analysis is
presented. Next, the study area and all available data are
described and the results of the analysis are presented
including an estimate of the uncertainty. A possible
application of the results is presented for the mitigation of
low heads in dry summers. The applicability and limitations
of the method are discussed, including some challenges faced
while performing the study. Concluding remarks are
presented at the end of this paper.

2 METHODOLOGY

A time series model represents an independent estimate of the
contribution of different stresses on the heads in an observation
well that is derived exclusively from observed data. A multi-
model approach is applied to determine which hydrological
stresses are relevant in describing the head dynamics in an
observation well.

Precipitation-excess, river stage, and groundwater pumping
are included as potentially relevant hydrological stresses. Eight
different model structures are tested for each head time series.
The simplest model considers only precipitation-excess,
computed from precipitation and potential evaporation. The
next model adds the river stage as a stress. In the next three
models, up to three well fields are added as potential stresses,
starting from the closest well field and moving towards the
farthest one. The final three models repeat this last step but
leave out the river as a stress.

A set of criteria is used to determine which model structures
are deemed reliable. The best model structure is selected from the
set of reliable models for each observation well. Split-sample
testing, in which a portion of the time series is kept separate, is
applied to test the calibrated model.

2.1 Time Series Modeling
The time series modeling approach, also referred to as transfer
function noise modeling, uses physically-based impulse response
functions that describe the head response to different stresses
(Von Asmuth et al., 2002). Simulation of the effect of
precipitation-excess, river stage variations, and noise modeling
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is based on the standard approach of Von Asmuth et al. (2008).
The time series model is written as

h t( ) � ∑
M

m�1
hm t( ) + d + r t( ) (1)

where h(t) are the observed heads, hm(t) is the contribution of
stress m to the head, d is the base elevation of the model, and
r(t) are the residuals. Each model has an arbitrary number of
stresses M, depending on the chosen model structure. The
contribution of each stress is computed through
convolution as

hm t( ) � ∫t

−∞
Sm τ( )θm t − τ( )dτ (2)

where Sm(t) is the time series of a stressm and θm is the associated
impulse response function. An auto-regressive noise model of
order 1 (AR1) is used in an attempt to transform the residuals
into a noise time series n(t) that is approximately white noise
(Von Asmuth and Bierkens, 2005)

n ti( ) � r ti( ) − e ti−ti−1( )/α (3)
where n(ti) is the remaining noise at time ti and α is the auto-
regressive parameter.

The precipitation-excess, N(t), is modeled as

N t( ) � P t( ) − fEr t( ) (4)
where P(t) is the precipitation, Er(t) is the Makkink reference
evaporation (de Bruin and Lablans, 1998), and parameter f is used
to scale the reference evaporation to local hydrological
conditions. The impulse response of groundwater to
precipitation-excess is described using the scaled Gamma
distribution (Collenteur et al., 2019)

θ t( ) � A

anΓ n( )t1−ne
−t/a (5)

whereA, a, and n are fitting parameters. In this formulation of the
response function, parameter A is the gain of the response
function, i.e., the rise in the head due to a constant unit
precipitation-excess. The groundwater response to river stage
fluctuations is described with an exponential response function,
which is a special case of the scaled Gamma response function
with n = 1.

The head response to groundwater pumping may be simulated
with a response function that has the same mathematical form as
the Hantush well function (Hantush and Jacob, 1955). There is a
risk of over-parameterization of a time series model when
multiple pumping wells are added to the model that each have
their own response function and corresponding parameters. For
example, adding three pumping wells with a Hantush well
function would already add 9 parameters to the model. The
use of a single response function is proposed, scaled with the
distance to the well field, to quantify the effect of all groundwater
pumping wells. The response function is based on the Hantush
response function used by Von Asmuth et al. (2008) and is
modified to include the distance of the well field to the

observation well r explicitly, so that the impulse response
function is

θ r, t( ) � A

2t
e−t/a−abr

2/t (6)

where A, a, and b are fitting parameters. The gain of the response
function is AK0(2r

�
b

√ ), where K0 is the modified Bessel function
of the second kind and order zero. It is noted here that the
parameter A for this response function does not equal the gain.

The step response Θ(t), the response to a constant unit stress,
is obtained from the impulse response function through
integration

Θ t( ) � ∫t

0
θ t − τ( )dτ (7)

An example of the Hantush step response is shown in
Figure 1. The t50 and t95 represent the time when 50 and 95%
of the total response has occurred, respectively. For this modified
Hantush response function, the t50 can be conveniently computed
following Veling and Maas (2010).

t50 � ar
�
b

√
(8)

The calculation of the variances of the gain and the t50 is
provided in the Supplementary Material.

2.2 Model Calibration, Reliability Criteria,
and Selection
The most complex model considered in this paper has a total of
eleven parameters: four parameters for the response to
precipitation-excess, two parameters for the response to river
stages, three parameters for the response to pumping wells, one
parameter for the noise model, and one parameter for the base
elevation of the model.

The head time series of each observation well is divided
into a calibration period and a validation period. The
calibration data is used to calibrate each time series model
with a two-step optimization approach following Collenteur

FIGURE 1 | An example of the Hantush step response. The t50 and t95
represent the time when 50 and 95% of the total response has occurred,
respectively.
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et al. (2021). In the first step, the parameters are optimized
without the use of a noise model by minimizing the sum of
squared residuals. In the second step, the noise model is
added and the sum of squared noise is minimized using
the optimized model parameters from the first step as
initial parameter values.

A set of criteria is applied to all eight model structures to
determine which model structures are considered reliable for
further analysis. A reliable model is defined here as a model
meeting four acceptance criteria. From the model structures
passing these criteria, a single model structure is selected for
each observation well based on two selection criteria. The
selection scheme including all reliability criteria is presented in
Figure 2. The following four acceptance criteria are used:

1) Goodness of fit. The model goodness of fit in the calibration
period, measured as the coefficient of determination (R2),
must be equal or larger than 0.7, which means that the model
has at least a basic fit.

2) Autocorrelation. There must be no significant autocorrelation
in the noise. This is determined with the Runs-test for
autocorrelation (Wald and Wolfowitz, 1940) using a
significance level of α = 0.05. This requirement is
important to obtain reliable estimates of the parameter
uncertainties (Hipel and McLeod, 1994).

3) Response time. The response time, expressed as the t95 (see
Figure 1), must not exceed half the length calibration period.
The calibration time series is potentially too short to
accurately estimate the parameters of the response function
when the t95 of the response is longer than half the length of
the calibration period.

4) Uncertainty of gain. The estimated gain of each response
function must be significantly different from zero. This is
checked by requiring that the estimated gain is larger than
twice the estimated standard deviation of the gain (e.g.,
Collenteur et al., 2019).

When multiple model structures are reliable, the Akaike
Information Criterion (AIC; Akaike, 1974) is used to select
the best model structure, by selecting the model with the
lowest AIC (Burnham et al., 2011). After the AIC selection,
the selected model structure is visually inspected for both the
calibration and validation periods. Model structure must
perform well in both the calibration and the validation
period.

The described approach to determine the best model
structure for each observation well is applied to all
observation wells in a study area. The entire analysis is
implemented in Python scripts to ensure reproducibility of
the results. All data, scripts, and environment settings required
to reproduce the results from this study are available from
Zenodo (Brakenhoff et al., 2022).

3 STUDY SITE AND DATA

The study area is the Overbetuwe area in the Netherlands, a
polder region of approximately 30 km by 10 km, flanked by two
branches of the Rhine river (see Figure 3). The land surface
elevation varies from around +10 m in the east to around +7 m in
the west (all elevations are given relative to the Dutch reference
level called NAP, which is approximately equal to mean sea-
level). The region is divided into several polders that each strive to
keep water levels at a fixed level with a complex system of ditches,
canals, weirs, and pumping stations. The land use is a mix of
agriculture, nature, and urban environments.

The shallow subsurface is characterized by a low-permeable
phreatic layer consistingmostly of clay and clayey sand, underlain
by two aquifers, separated by an aquitard (see Figure 3). The
aquitard consists of clay with a thickness varying from 0 to 15 m.
The groundwater is relatively shallow with the depth to water
table varying between 0.8 and 4.2 m.

Heads are actively monitored at 213 observation wells in the
study area, some measuring heads in multiple filters at
different depths, resulting in 395 head time series. Heads

FIGURE 2 | Criteria for reliable models and selection of best model
structure.
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are measured with automatic pressure loggers, with daily, or
shorter, measurement intervals for the period 2004–2020.
Head measurements prior to 2004 are manual
measurements, which are available at lower frequencies for
some of the wells.

Daily precipitation data is available at seven measurement
stations in the region (KNMI, 2022). Daily Makkink reference
evaporation (de Bruin and Lablans, 1998) is available at two
automatic weather stations. Mean yearly precipitation for
1990–2021 is 850 mm/year while mean yearly reference
evaporation is 584 mm/year.

The river stage is measured at 10-min intervals at eight
observation stations along both rivers (Figure 3)
(Rijkswaterstaat, 2022). The time series are resampled to daily
mean values. The maximum recorded daily mean river stage in
the period 1990–2021 is 15.8 m, while the minimum recorded
stage is 2.9 m.

Drinking water is extracted from the second aquifer at four
well fields, at depths between −28 m and −74 m. From west to
east, the well fields are Hemmen, Zetten, Fikkersdries, and
Sijmons (see Figure 3). The date when pumping started, the
average well screen depth, and mean pumping discharge are
summarized in Table 1.

3.1 Data Preparation
The calibration period was selected as 1990–2014 and the
validation period as 2015–2021. All head data was pre-
screened. Outliers were removed and head data was corrected
for sudden unexpected jumps in the time series. Time series were
discarded if they had fewer than 6 years with at least 180
measurements per year in the calibration period and/or fewer
than one year of at least 180 measurements in the validation
period. In addition, time series were discarded that visually
showed a strong effect of the on- and off-switching of
individual pumping wells in a well field. The resulting dataset
consists of 250 head time series at 122 observation wells. Each
head time series is assigned to one of the aquifers based on the
observation depth.

The river stage is spatially interpolated at the point nearest to
the observation well along the center line of the nearest river.
Time series are calculated using a distance-weighted average
between two observation stations. If the nearest point does not
lie between two observation stations, the time series of the nearest
observation station is used. The time series of the river stage is
normalized by subtracting the mean.

The pumping data was resampled to obtain a time series of
daily discharge for each well field. The available data was a mix of

FIGURE 3 | Overview of study area with locations of observation wells, and locations at which stresses are measured (A). Cross-section of the subsurface along
well fields showing well screens, aquifers and aquitards (B).
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monthly (before 2007) and daily (after 2007) volumes. The time
series prior to 2007 were converted to daily volumes by equally
dividing the monthly volumes over each day in the month. The
time series of daily pumping discharge for each well field are
provided in the Supplementary Material (Supplementary
Figure S1). The average location of all wells in a well field was
used to measure the distance between a well field and an
observation well (r in Eq. 6).

Heads are computed in the calibration period using daily
data for all stresses. The noise model (Eq. 3) is rarely adequate
for obtaining uncorrelated noise when using daily head
observations, but works reasonably well for head data at 14-
days intervals (e.g., Von Asmuth and Bierkens, 2005;
Collenteur et al., 2021). The calibration data is obtained by
taking a sample from each head time series on a 14-days
interval within the calibration period.

4 RESULTS

4.1 Example Results at One Observation
Well
The results obtained for one observation well are discussed here
in detail to illustrate the output of the time series model. Consider
observation well B39F0579 (highlighted point in Figure 3),
situated close to pumping station Hemmen (0.6 km) and at
larger distances from stations Zetten (3.1 km) and Fikkersdries

(7.1 km). Precipitation-excess, reference evaporation, river stage,
and pumping rates from all three pumping wells are shown in
Figure 4. Pumping at the well field in Fikkersdries started in the
1960s, before the start of the head observations. The pumping
stations Hemmen and Zetten started operation in late 2006 with a
relatively constant pumping rate until 2015, after which the
pumping rate varied somewhat, with a significant increase in
pumping in Hemmen in the last year of data. Observed heads in
screen 5 of well B39F0579 (located in aquifer 2) are shown in the
top graph of Figure 5. A clear decrease in head is visible from
2007 onwards, which coincides with the start of pumping. A
further decline in heads is measured after 2015.

Time series models are developed with eight different model
structures, as described in the previous section. Out of the 8
model structures, 6 model structures passed all four reliability
checks. The selected best model structure includes precipitation-
excess, the variation of the river stage, and three pumping wells.
The results are shown in Figure 5. The simulated heads show a
good fit with the data, as shown by a R2 = 0.90 and R2 = 0.79 in the
calibration and the validation period respectively. During the
validation period, the model overestimates the head in the
summer months. These summers were particularly dry (e.g.,
Brakkee et al., 2022), and possibly stresses not included in the
model (e.g., pumping for irrigation) could explain these
deviations, but this has not been investigated here.

The contribution of each stress (precipitation excess, river
stage, and pumping at the well fields) to the changes in head and

TABLE 1 | Average pumping depth, pumping start date, mean discharge in the period 1990–2021, and the coefficient of variation (CV) for the four well fields. The coefficient
of variation is calculated by dividing the standard deviation of the discharge by the mean discharge in the period 1990–2014.

Start Date Screen Top Screen Bottom Mean Discharge CV

Well field [m] [m] [Mm3/yr] [-]

Hemmen 2006–10-01 −32 −49 1.97 0.61
Zetten 2006–10-01 −46 −63 3.62 0.53
Fikkersdries 1961–06-01 −37 −63 12.12 0.11
Sijmons 1980–01-01 −32 −66 4.00 0.28

FIGURE 4 | Stresses included in the time series model for observation well B39F0579 (Filter 5).
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their associated step response functions, as determined by the
time series model, are shown in separate graphs in Figure 5. Up to
2006, the well field Fikkersdries caused a small drawdown that
was stable over time. The drawdown caused by the other well
fields started in late 2006 and stayed relatively constant until
2019, after which the drawdown increased as a result of increased
pumping rates at Hemmen and to some extent Zetten. The total
drawdown caused by all well fields exceeded 1 m after 2020,
according to the model. The calibrated response functions (see
plots on the right in Figure 5) are used to quantify the magnitude
and timing of the drawdown caused by pumping from the three
well fields.

4.2 Results for all Observation Wells
For each of the 250 head time series in the data set, 8 models with
different structures were created and calibrated. The resulting

2000 time series models were evaluated and a best model
structure was selected following the approach outlined in
Figure 2. The total number of models that meet all four
reliability criteria are presented in Table 2. 247 models for 129
unique head time series meet all four reliability criteria and are
considered reliable. Some time series have multiple reliable
models. For 121 (48%) time series no reliable model was
present in the set of 8 model structures, and these time series
are not considered further. Selection of the best model structure
(according to the AIC) at each location, followed by a visual
inspection, yields 126 (50%) reliable models that are used for
further analysis. Out of these 126 models, 75 models include
pumping at one or more well fields as a stress. Table 3
summarizes the model structures of the selected models,
categorized per aquifer.

The steady-state drawdown caused by a well field is computed
for all 75 observation wells where at least one well field has a
significant effect on the head. The steady-state drawdown is
computed using the average discharge of each well field for
the period 2015–2021 and is plotted versus the distance
between the observation well and the well field in Figure 6.
The estimated steady-state drawdown in aquifer 2 shows a clear
relationship with distance at well fields Hemmen, Zetten, and
Sijmons. The estimated drawdown in aquifer 2 decreases with
distance from those well fields (green symbols). There are
insufficient models that meet all reliability criteria in aquifer 2
near well field Fikkersdries to discern any pattern.

In the phreatic layer and aquifer 1, no spatial pattern in
drawdown is discernible. At Hemmen, the phreatic drawdown
is in the same order of magnitude as the drawdown in aquifer
1. At Zetten, there are no models for observation well screens
located in the top two layers within the first 2 km that passed

FIGURE 5 | Contribution of the different stresses and the estimated step responses for the example model for observation well B39F0579 (Filter 5) in aquifer 2. The
shaded areas around the step responses represent the 95% confidence intervals.

TABLE 2 | Results for the reliability and selection criteria for all 2000 time series
models for 250 locations.

No. of Models

1. Goodness of fit 920
2. Autocorrelation 1558
3. Response time 1269
4. Uncertainty gain 743

Reliable models 247

Best models based on AIC 129

Passed visual inspection 126

Selected Models 126
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all reliability criteria. At Sijmons, there are almost no models
for phreatic observation wells and there is no discernible
pattern in aquifer 1. The estimated steady state drawdown
is much smaller in the top two layers, which are separated by
an aquitard from the pumped aquifer. The vertical resistance
of the aquitard is lowest around Hemmen and highest around

Zetten (see Supplementary Figure S2 showing aquitard
resistance in the Supplementary Material). This fits well
with the results from time series analysis, where a
significant effect of pumping was estimated in shallow
observation wells near Hemmen, whereas this is not the
case near Zetten.

TABLE 3 | Summary of model structures for selected time series models, counted per aquifer.

Model Structure Phreatic Aquifer 1 Aquifer 2 Total

Precipitation excess 5 6 1 12
Precipitation excess + river 3 23 13 39
Precipitation excess + river + 1 well 6 20 27 53
Precipitation excess + river + 2 wells 0 2 4 6
Precipitation excess + river + 3 wells 0 0 4 4
Precipitation excess + 1 well 4 5 3 12
Precipitation excess + 2 wells 0 0 0 0
Precipitation excess + 3 wells 0 0 0 0

Total selected (percentage) 18 (38%) 56 (45%) 52 (66%) 126 (50%)
Total no. of time series 47 124 79 250

FIGURE 6 | The estimated steady state head change versus the distance between the well field and the observation well using the average pumping rate ( �Q)
between 2015 and 2020 for each well field. Uncertainty bars are 2 times the estimated standard deviation. The black ticks at the top of each graph indicate the distances
at which an observation well is present but either none of the model structures was reliable or the well field was not included in the selected model structure.
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The drawdown estimates near Fikkersdries show no consistent
and plausible pattern. This may be explained through the historic
development of pumping at this well field, which has been active
since the early 1960s. In the period 2000–2021, the yearly
pumping volumes have been relatively constant, varying
between 10.5 and 13.6 Mm3/year. As such, the time series has
a low coefficient of variation (CV, see Table 1) over the
calibration period (CV = 0.11). In contrast, Hemmen (CV =
0.61) and Zetten (CV = 0.53) started pumping in 2006, and
Sijmons (CV = 0.28) has seen a reduction in yearly pumping rate
from around 5.5 Mm3/year to about 3 Mm3/year towards the end
of the calibration period. The small variation in the pumping
discharge at Fikkersdries makes it difficult to estimate the effect of
pumping in observation wells.

5 EXAMPLE APPLICATION: TIMING AND
MAGNITUDEOFDRAWDOWNATHEMMEN

The time series analysis revealed a significant effect of
pumping on the heads in 22 observation wells near the well
field of Hemmen. Here, the effect of pumping on heads is
compared per aquifer. Additionally, it is investigated whether
low summer groundwater tables may be mitigated by reducing
the pumping rate. Before implementing a potential mitigation
measure, a decision-maker would need to determine the
effectiveness of such a measure. Information on the
magnitude and timing of the head response to reduced
pumping is required for this purpose. This information is
contained in the response functions associated with the
pumping stresses.

The estimated step responses are plotted for all models that
include pumping at Hemmen as a stress in Figure 7. The step
responses are scaled with the gain for comparison purposes. The
responses in aquifer 2 are the fastest because the well fields pump
from the second aquifer. The responses in the phreatic
observation wells are the slowest and show a 15–30-days lag
after the start of pumping. Using these results, specifically the

magnitude and the timing of the estimated head response to
pumping, a decision-maker can determine the effectiveness of
reduced pumping as a mitigation measure and what type of
pumping strategy is potentially feasible.

The response time, represented by the t50, is plotted versus
the distance from well field Hemmen in Figure 8 for each
aquifer. The t50 is a linear function of the distance from the well
field (Eq. 8) for constant values of the fitting parameters a and
b in the response function (Figure 1). The response times in
the second aquifer are the shortest, ranging from about 1 to 11
days. The model at about 2000 m from Hemmen shows a larger
uncertainty than other points, casting some doubt on the
estimation of the response for this model. In the first
aquifer the t50 varies between 1 and 30 days. For the five
observation wells in the phreatic layer, the t50 is between 30
and 60 days. This means that 50% of the maximum reduction
in drawdown as a result of a change in pumping rate takes
30–60 days to manifest itself in the phreatic layer. The
estimated uncertainties are larger in more shallow aquifers.
The general trend is that the independently estimated t50
response times increase with the distance, as would be
expected, though individual models do show significant
variation.

The timing of the response of the phreatic layer to pumping
at Hemmen means that reduction in pumping informed by
weather forecasts (typically available for a 14-day period) to
mitigate low groundwater tables in the summer would not be
an effective mitigation measure at Hemmen. As an alternative,
a systematic reduction in summer pumping is considered.

Two hypothetical pumping regimes are compared to
investigate the effect of reduced pumping during the summer
months on the heads. The first regime is a constant pumping rate
of 6 Mm3/year. The second regime pumps 7 Mm3/year for
9 months per year and a reduced rate of 3 Mm3/year for three
months. The total yearly production volume is equal in both

FIGURE 7 | Scaled step responses for well field Hemmen, categorized
per aquifer.

FIGURE 8 | Estimated 50% response time for observations wells near
well field Hemmen including estimated uncertainty (2σ).
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scenarios, and equal to the current permit (6 Mm3/year). The
pumping is reduced in the months May, June, and July such that
the drawdown is minimized in June, July, and August,
traditionally the driest months in the Netherlands. This
variable pumping regime requires additional pumping at, e.g.,
well field Zetten to compensate for the reduction in drinking
water production at Hemmen during the dry summer months.
Whether this compensation can be realized in practice is outside
the scope of this research.

Figure 9 shows the drawdown calculated with the response
function for well field Hemmen for observation well B39H0384-
001 (see highlighted point in Figure 3) for both pumping regimes,
including a 95% confidence interval based on estimated
parameter uncertainties. The drawdown at a constant
pumping rate of 6 Mm3/year is 37 cm (with a relatively large
95% confidence interval of 8–45 cm). By reducing the pumping
rate from May to July, the drawdown can be reduced in the
summer. The maximum effect occurs in August, when the
drawdown is reduced to 20 cm (with a 95% confidence
interval of 5–27 cm), a reduction of 17 cm as compared to the
constant pumping scenario. There is a 5 cm larger drawdown
outside the summer months as a result of the increased pumping
rate in those periods. The reduction in drawdown caused by the
variable pumping regime for all five observation wells is shown in
the bottom graph of Figure 9. The effect of the variable pumping
regime is similar in all observation wells. The largest effect occurs
in August and the maximum drawdown reduction varies between
10 and 17 cm.

6 DISCUSSION

The objective of this paper is to develop and apply a data-driven,
reproducible, and robust approach to estimate drawdowns as a
result of pumping at multiple well fields. The proposed method is
based on time series models that are derived exclusively from
commonly observed data. The models can be constructed in a
limited amount of time with low input data requirements. The
described approach is implemented in Python scripts using the
open-source software Pastas (Collenteur et al., 2019) to ensure
full transparency and reproducibility.

The challenge of anymodeling study is that a number of more-
or-less subjective modeling decisions must be made. In the
following, five major challenges are discussed:

1) Selection of the time periods used for model calibration and
validation. A validation period is potentially valuable to test
model performance, but the downside is that there is less data
available for calibration. Shen et al. (2022) even propose
skipping model validation entirely, based on a study of
river discharge data in the United States. In the current
study, the validation period (2015–2021) contains the driest
years on record while at the same time the pumping stations of
Hemmen and Zetten show a distinct increase in pumping
rates (see Figure 4). This dry period may contain information
of the head response that is not present in the calibration data.
Exclusion of this period from the calibration period means the
models might not be able to simulate these periods accurately.

FIGURE 9 | Comparison of the effect of two pumping regimes (A) on the calculated drawdowns for well B39H0384 (B) and the differences between calculated
drawdowns corresponding to different pumping regimes for all 5 phreatic models (C). The drawdown is calculated using the derived response to pumping at well field
Hemmen. The shaded areas represent the 95% confidence intervals.
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On the other hand, if models perform well despite this choice,
this is a strong indication that the models are performing well
for the right reasons. The mean R2 for the selected models in
the calibration period is 0.82 and 0.66 in the validation period.
Good performance in the validation periods suggests the
method and the models are robust. A robust method
should yield the same model structure while a robust
model should not produce significantly different estimates
for the drawdown for an extension of the calibration period.

2) Time interval between head observations. A related challenge
was the selection of the time interval between head
observations used for model calibration. Higher frequency
observations (i.e., daily) mean faster processes are captured by
the data, potentially providing additional information to
quantify the effects of the different stresses (Kavetski et al.,
2011). However, the use of high frequency data increases the
autocorrelation in the model residuals, troubling the
estimation of parameter uncertainties. Reliable estimates of
the parameter standard errors are important in this study,
because they are used in the reliability criteria. Theoretically,
autocorrelation can be reduced by improving the input data,
improving the deterministic model, and/or improving the
noise model. There is probably a point, however, where
more head observations introduce more problems (e.g.,
autocorrelation) than they solve (e.g., better models).
Different frequencies (daily, weekly, bi-weekly) of head
observations were evaluated to calibrate the models
(following Collenteur et al., 2021). A time interval of
14 days yielded good models while greatly reducing the
number of models with significant autocorrelation in the
noise. As a result, 1558 out of 2000 models (78%) passed
the autocorrelation check, showcasing the effectiveness of the
AR(1) noise model for data at a 14-days interval. The
robustness of the method and the models to a different
sample of head observations was tested by shifting the
sample by 7 days and comparing the results visually. This
led to somewhat different drawdown estimates for some
models, but most models showed no significant changes in
the estimated drawdowns. This analysis can be repeated
14 times to give additional insight into the robustness of
the method to the selected sample of head observations (as
was done by Collenteur et al., 2021).

3) Goodness-of-fit criterion. One of the four reliability criteria is
the goodness-of-fit criterion that R2 ≥ 0.7 (Figure 2). This is
obviously a subjective criterion. It basically means that the
model must fit the data reasonably well. It is unclear whether
this requirement is really necessary. Other studies, for
example Zaadnoordijk et al. (2019), opted for a much
lower R2 cutoffs of 0.1–0.3. When the R2 criterion is
dropped entirely, the number of observations wells where
at least one model structure passes the three remaining
reliability criteria, increases from 50 to 85%. The
underlying question is whether the drawdown of the well
fields can be estimated with sufficient accuracy even though
the model fits the data poorly. Further research is needed to
determine whether, and under what conditions, a goodness-
of-fit criterion is needed to estimate the drawdown accurately.

4) Selection of the best model structure. The minimum AIC was
used to select the best model structure from all reliable model
structures for an observed head time series. In some cases, the
differences in AIC values for different model structures were
smaller than 2, meaning that multiple model structures are
potentially supported by the data (Burnham et al., 2011). This
introduces an uncertainty to the model selection step that was
not taken into account in this study. Other methods of
selecting the best model structure were considered, such as
the model goodness-of-fit in the validation period, but
occasional dubious observation data in the validation
period, or minute differences in model performance,
sometimes resulted in the selection of the model with the
most parameters, while this did not seem to be warranted.

5) Visual inspection. Visual inspection of model performance in the
validation period was deemed necessary as a last step in the
selection process. A visual inspection remains valuable to identify
models that show odd results, even though they pass all criteria,
but a visual inspection is subjective as it is based on the expertise
of the modeler. It is desirable to eliminate this subjective step, but
this requires additional reliability criteria or fine-tuning of
current criteria to local conditions. In each of the three cases
where a model was rejected based on visual inspection, the t95 of
the response to river stage exceeded several years, but was not
long enough to be rejected by the model reliability criteria. The
model used the long response time to simulate a long-term trend
in the data. For this specific study site, an additional reliability
criterion can be added to limit the response time of changes in
river stage, as such eliminating the necessity for visual inspection.
This was not done, however, as such a criterion is applicable only
for this local situation, while the four reliability criteria presented
in Figure 2 are broadly applicable.

In groundwater hydrology, drawdowns of well fields are
commonly estimated with physically-based groundwater
models that are calibrated against head observations by
adjusting the (spatial distribution) of the aquifer parameters.
As a result, the estimated drawdowns make hydrological sense,
as they are derived from basic principles such as continuity of
flow and Darcy’s law. The approach presented in this paper is
fully data-driven. The drawdown is estimated independently at
each observation well using physically-based response functions.
Each model had to pass four reliability checks and the uncertainty
of the modeled drawdowns was estimated and plotted (e.g.,
Figure 6). The resulting spatial pattern of drawdowns makes
hydrological sense, with drawdowns decreasing within a limited
distance from a pumping station. Collenteur et al. (2019) applied
a similar approach for single well fields and showed for an
example application in the Netherlands that the drawdowns
estimated with time series analysis compared well with the
results of an analytic element model.

Application of time series analysis has been shown to be a
viable method to estimate drawdowns, for example, through the
use of synthetic data generated with a MODFLOW model
(Shapoori et al., 2015). The same study also showed, however,
that drawdown estimates can be biased if important processes
(e.g., groundwater evaporation) are not taken into account in the
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model. In the current paper, eight different model structures were
tested for each observation well. Different models to compute
groundwater recharge (e.g., nonlinear approaches, Peterson and
Western, 2014) were not considered, because a linear
precipitation-excess model is commonly adequate to simulate
head time series with 14-days time intervals in the Netherlands. A
final uncertainty in the estimated drawdowns is the possible
impact of unknown stresses. For example, pumping for
irrigation probably occurs in the area during dry summers.
Irrigation wells are largely unmetered, however, so that they
can not be included in the model. This may affect the
estimated drawdowns, but this is not any different from the
application of a physically-based groundwater model.

A reproducible and transparent workflow was presented to
develop reliable time series models. Application of this workflow
at the study site resulted in reliable models for approximately 50% of
the observed head time series. Asmentioned above, the goodness-of-
fit criterion was responsible for most of the rejections. It is the
experience of the authors that a 50% success rate is pretty common
in the modeling of transient flow. For example, Zaadnoordijk et al.
(2019) obtained 47%decent or good time seriesmodels, according to
their criteria. There are numerous reasons that can lead to a poor fit
varying from data errors and missing stresses to inadequate model
structures or local phenomena that affect the head variations.
Additional research is needed to increase the percentage of
successful models.

7 CONCLUSION

A reproducible, data-driven approach using open-source software is
proposed to quantify the effects of different hydrological stresses on
heads. A new method was developed to estimate the drawdown
caused by pumping at multiple well fields. The data and the code for
(re)producing the results presented in this study are available from a
dedicated Zenodo repository (Brakenhoff et al., 2022). Themethod is
able to derive reliable models for 50% (126) of the 250 considered
head time series and quantify the effect of one or multiple well fields
for 78 head time series.

The relative simplicity of the time series models allows the
modeler to test multiple model structures (such as stresses and
response functions) and model settings (such as the time interval
between observations, and the calibration and validation periods)
in a short amount of time. This quickly yields valuable insights
into the driving hydrological processes affecting the head
variations. The data-driven nature of the approach avoids the
many approximations that have to be made when analyzing a
similar problem using more traditional modeling techniques (e.g.,
numerical groundwater models). Each time series model is valid
only at the specific location of the observation well where the
heads are measured. Results at multiple observation wells show
clear spatial patterns: drawdowns are larger in the pumped
aquifers and decrease with distance from the well field while
response times increase with distance from the well field, even

though the data at each observation well is analyzed independent
from the other observation wells.

The example application at well field Hemmen shows how
time series models can be used to estimate the effects of the well
field, both spatially and over time. Reduced pumping in May-July
can reduce drawdown by about 10–20 cm in the summer months
June-August. This is valuable information for decision-makers
weighing potential strategies for mitigating low groundwater
tables in dry periods.
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