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Heavy precipitation tends to cause mountain torrents, urban waterlogging and other
disasters. It poses a serious threat to people’s life and property safety. Therefore, real-time
quantitative precipitation estimation is especially important to keep track of precipitation
changes and reduce negative impacts. However, high-resolution and high-accuracy
quantitative precipitation estimation is a challenging task due to the complex spatial
and temporal variability of microphysics in precipitation processes. Previous studies have
focused only on small-scale radar reflectivity factors above rain gauges and did not pay
enough attention to the contribution of covariates to model performance. Meteorological
and geographical factors play an important role in rain process, so these factors are taken
into account during our research. In this study, a quantitative precipitation estimation
model that can employ multi-scale radar reflectivity factors and fuse meteorological and
geographical factors is proposed to further improve precipitation accuracy. In addition, we
propose the muti-scale self-attention (MS-SA) module that can further utilize information at
multiple spatial scales to improve the accurate precipitation estimation. The proposed
model reduced the root mean square error of precipitation estimation by 83.8% compared
to the conventional Z-R relationship that correlates the rainfall and radar reflectivity factors,
i.e., Z � aRb, and by 43.7, 24.6, and 22.7% compared to the back propagation neural
network (BPNN), convolutional neural network (CNN), and convolutional neural network
with the addition of meteorological factors and geographical factors as covariates in the
proposed model, respectively. Therefore, we can conclude that multi-scale radar
reflectivity factors fused with meteorological and geographical factors can produce
more accurate precipitation estimation.
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INTRODUCTION

Rainfall is a fundamental part of the natural water cycle and is
necessary for the continuation of all life in nature. In recent years,
as global warming has intensified, the atmosphere contains higher
levels of water vapor and the frequency and intensity of heavy
precipitation events have increased significantly (Groisman et al.,
2005; Cremonini and Tiranti, 2018; Giang, 2021; Zhao et al.,
2021). This inevitably leads to natural disasters such as floods and
has many indirect negative effects on human social activities such
as transportation and agriculture (Iwashima and Yamamoto,
1993; Ramos et al., 2005; Sun and Huang, 2011; Lee et al.,
2014; Wu J. et al., 2020; Paxton et al., 2021). Therefore,
quantitative precipitation estimation (QPE) based on weather
radar with high spatial and temporal resolution can be of great
help for decision makers to make timely and correct decisions
with great reference value, which in turn also plays an important
role in mitigating urban flash floods and warning extreme
weather (Morin and Gabella, 2007; Germann et al., 2009;
Chen and Chandrasekar, 2015; Gou et al., 2018; Lu et al.,
2019). Real-time and high-precision QPE is also continuously
studied by meteorologists as an important topic (Sadeghi et al.,
2019; Wu H. et al., 2020). Rain gauges are a direct means of
measuring rainfall and their measurements are often used in QPE
as a label for the ground truth value at a fixed location. However,
rain gauge networks suffer from low spatial density, uneven
distribution, inconsistent historical recording periods, and high
costs in the task of measuring the depth of precipitation in a
certain area (Fan et al., 2021). Therefore, rainfall measurements in
a certain region based only on rain gauges are not spatially
representative. Weather radar, as an indirect means of
measuring rainfall, is commonly used to observe the spatial
structure characteristics of microscopic particles in the high-
dimensional space of precipitation and rainfall fields.
Furthermore, in the business of Radar Quantitative
Precipitation Estimation (RQPE), weather radar has the
advantages of high spatial and temporal resolution, wide
geographical coverage, and real-time data transmission (Berne
and Krajewski, 2013; Tian et al., 2020). It should be noted that its
performance depends on the physical model of the raindrop size
distribution and the relationship established by the radar
parameters and the physical model. Thus, due to the above-
mentioned advantages of radar, and the nature of the spatial
distribution of the radar network, it is able to count and model
extreme weather and the natural hazards it causes on both spatial
and temporal scales. This compensates for the deficiencies of the
rain gauge network (Yang et al., 2004; Delrieu et al., 2009;
Germann et al., 2009). However, estimating precipitation by
radar is a complex process, which is mainly caused by the
complex spatiotemporal motion and variation of microscopic
particles in the precipitation process, as well as the poor
measurement accuracy due to multiple error sources in the
radar measurement process (Berne and Krajewski, 2013; Chen
et al., 2019). The traditional quantitative precipitation estimation
(QPE) algorithm uses the relationship between weather radar
echo intensity and rainfall intensity, i.e., the Z-R relationship
where Z is the radar echo intensity, R is the rainfall intensity, to

invert the rainfall amount of a rainfall field (Legates, 2000;
Rosenfeld and Ulbrich, 2003; Barros and Prat, 2009). The
empirical coefficients a and b in the Z-R relationship are
influenced by many environmental factors, such as weather
conditions, geography, etc. It is fundamentally influenced by
the spectral characteristics of raindrop size. Therefore, the
range and environment to which a fixed Z-R relationship can
be adapted is greatly limited. The same Z-R relationship can
produce great errors in different areas, especially in mountainous
areas and under strong convective weather. Previous studies have
mainly focused on increasing the accuracy of the Z-R relationship
and trying to break out of this dilemma. Alfieri et al. (2010)
considered the Z-R relationship to be closely related to time and
they improved it to be constantly updated with time. Specially,
they took all available Z-R relationship pairs for each time step to
correct the parameters and then adjusted the power law equation
to convert the radar reflectivity factor measurements into rainfall
rates. Wu et al. (2018) suggested that the echo top height can
reflect the stage of storm development and the intensity of
precipitation system. Therefore, a new dynamic Z-R
relationship for RQPE was established using echo top-height
classification, and better performance was obtained in
comparison experiments with different seasonal precipitation
events. However, although previous studies have considered
the effects of independent time and space on the Z-R
relationship and calibrated it, or dynamically adjusted the
empirical coefficients a, b by grouping reflectivity and
precipitation, none of them have addressed the essential
problem of the Z-R relationship. The Z-R relationship, as an
ideal model that is difficult to satisfy, cannot capture the spatial
and temporal variability in the rainfall process well, and because
of the Z-R relationship generally operates on independent lattice
points and does not take into account the spatial correlation
between regions. It is difficult to meet the demand of the
meteorological community for high-quality QPE. All these
dilemmas have been solved in our study, and the model
proposed in our study can be more adaptable to the complex
geographical and climatic environments. In addition, our model
can provide more accurate precipitation estimation than the Z-R
relationship and its derivative methods.

The rapid development of machine learning, especially deep
learning in recent years has advanced the research of QPE in the
meteorological community (Teschl et al., 2006; Gagne et al., 2014;
Kühnlein et al., 2014; Sorooshian et al., 2016; Beusch et al., 2018;
Chen et al., 2020; Min et al., 2020; Zhang et al., 2020; Wu et al.,
2021). In the era of big data, machine learning has great potential
for parsing the underlying patterns of huge data without
assuming any physical relationships. And deep learning, with
the powerful learning ability of deep neural networks for complex
nonlinear relationships in nature, has broadened the applicable
field of machine learning and realized numerous applications. In
addition, deep neural networks have powerful adaptive and fault-
tolerant capabilities. Therefore, the deep neural network is a new
option for improving the accuracy of QPE (Wu et al., 2021). Shin
et al. (2019) evaluated the applicability of random forests,
stochastic gradient augmentation models, and extreme
learning machine methods to QPE and used multivariate
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combinations as inputs. The results show that the approach based
on machine learning performs better than the model with Z-R
relationship and resolves the time lag between the radar data and
ground observations, and the accuracy is improved by an
appropriate combination of multiple input variables. The
overall performance of their proposed three models is
8.18 mm/h, 8.38 mm/h, 7.91 mm/h for root mean square error
(RMSE) values, respectively. Sivasubramaniam et al. (2018)
developed a nonparametric prediction model, the K-nearest
neighbor regression estimator, and demonstrated that the
inclusion of air temperature as an additional covariate for
model significantly improved prediction results in cold air
with an improvement of 15% in RMSE compared to radar
precipitation rate as a single predictor in model. Chen et al.
(2019) designed a two-stage neural network for estimating
precipitation intensity and inversion of satellite radar profiles,
respectively. They demonstrated that the machine learning
approach can better detect changes in precipitation
microphysical processes. Moreover, Chen et al. (2020) also
proposed a data fusion framework based on a multilayer
perceptron model with machine learning. The results indicate
that the machine learning model is more flexible and can fuse
multiple data sources. In addition, the data fusion framework can
better capture precipitation intensity. However, although the
previous studies used covariate or multiple data sources fusion
models proved the validity, they considered only in one
dimensional space and did not use two-dimensional data. In
other words, they ignored the role of the spatial structure of
variables on rainfall estimation during the rainfall process.

In addition to using traditional machine learning methods,
Sadeghi et al. (2020) used a U-Net convolutional architecture
with infrared information and geographic information as input to
verify that adding latitude and longitude information to infrared
information can improve real-time precipitation estimation.
Then, for RMSE, mean absolute error (MAE) and correlation
coefficient (CC), their models were more accurate in summer
(winter) than the comparison model, i.e., PERSIANN-CCS
(Hong et al., 2007), by 20% (10%), 21% (16%) and 140%
(38%), respectively. Wu H. et al. (2020) analyzed the
advantages and disadvantages of rainfall gauges and satellite
products in rainfall operations. Moreover, they used deep
learning methods to model the spatial and temporal
correlations of these two sensors. Their CNN-LSTM model
provides more accurate rainfall estimates. Specifically, their
model outperformed the comparative models (CNN, LSTM,
and MLP) with a 17.0 and 14.0% reduction in RMSE and
MAE, respectively, and an increase in correlation coefficient
from 0.66 to 0.72. It demonstrates the importance of capturing
the spatiotemporal correlation of precipitation. A multi-model,
multi-task precipitation estimation depth model was proposed by
Moraux et al. (2019). The model uses an encoder-decoder as the
main framework, and combines multiple modalities and multiple
scales in a multitasking manner to suppress the respective errors
and improve accuracy. More specifically, it estimates
precipitation amount with a MAE of 0.605 mm/h and a RMSE
of 1.625 mm/h for instantaneous rates. Furthermore, Moraux
et al. (2021) also investigated combining different precipitation

measurement modes to improve the accuracy of QPE. They
combined well the inputs of three modes, rainfall gauge, radar
and infrared satellite imagery, on the basis of the original model
and obtained the best accuracy. The results show that RMSE
decreases to 1.488 mm/h for rainfall estimates. Then, they
demonstrate that building deep learning methods on basis of
traditional methods is highly promising in the field of
meteorology. Previous deep learning-based approaches have
demonstrated the effectiveness of deep learning models in
rainfall estimation operations. In addition, multiple sources of
two-dimensional data were widely adopted as model inputs.
However, considering that the input features can intermingle
with information unrelated to rainfall, their model lacks the
ability to adaptively adjust the proportion of weights to the
features. In our study, we achieve a non-uniform distribution
of weights and combine multi-scale information through a multi-
scale self-attention module.

Previous studies have focused only on radar reflectivity
factors at small-scales, while rainfall is the result of the
interaction of complex weather systems at multiple scales
(Zhang M. et al., 2021). Inspired by this, we believe that
large scale radar reflectivity factors can also provide valid
information for rainfall estimation, so we adopt multi-scale
rainfall field information as the observations for the model,
i.e., covering different ranges of rainfall fields centered on the
rainfall collection points. In addition, although previous
studies have used additional inputs as covariates, such as
temperature (Sivasubramaniam et al., 2018). However, they
ignored the influence of the spatial structural characteristics of
the covariates on rainfall, so we used meteorological and
geographic factors in two dimensions as covariates to
establish their association with rainfall at the spatial scale.
Finally, we also designed a multi-scale self-attention module,
which helps our model to focus on factors that contribute to
rainfall estimation and suppress noise. To the best of our
knowledge, this has not been considered in previous studies,
and our study demonstrates the effectiveness of this module.
However, the process of this study also has some
shortcomings. Since the radar detection process is affected
by ground clutter, biological clutter, etc., the preprocessing
scheme used in this study may not completely eliminate the
influence of clutter, and this problem will be gradually
improved in future studies.

In summary, a multi-scale neural network is built in this study
to improve the accuracy of QPE by employing rain gauge and
weather radar, with rain gauge data as labels, high spatial and
temporal resolution radar data as the main input, and
meteorological factors and elevation as covariates. The more
accurate the quantitative rainfall estimates are, the better they
can help meteorologists in their deeper study of weather systems
and assist relevant managers in making more precise and timely
warnings to minimize damage caused by natural disasters. The
structure of this paper is presented as follows. “DATA AND
METHODOLOGY” describes the data areas sampled and the
detailed processing of the data set, as well as our specific scheme
design, design ideas, evaluation metrics and information criteria.
The “RESULTS” section discusses our experimental results and
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conclusions. Finally, we summarize our work in
“CONCLUSION” section.

DATA AND METHODOLOGY

Data and Preprocessing
The data were obtained from the Shijiazhuang Meteorological
Station Z9311 Doppler Weather Radar and 17 National Weather
Stations (NWSs) from June to September 2017 to 2019. The
Shijiazhuang domain spans two geomorphic units, the North
China Plain and the Taihang Mountains, with a complex
topography of elevated terrain in the west and flat terrain in
the east. The climate is characterized by an uneven spatial and
temporal distribution of rainfall, with significant seasonal and
regional differences in the trend of precipitation, and a rainy
seasonmostly in summer. The DopplerWeather Radar completes
a body sweep every 6 min to obtain the radar reflectivity factors
and the corresponding latitude and longitude for nine different
elevation angles in all directions, with a volumetric sweep of
VCP21. The NWSs record minute-by-minute meteorological
elements, including barometric pressure, temperature,
humidity, rainfall and other data. The study area was taken
from longitude 113.5°–115.5° and latitude 37.0°–39.0°. The
study area and NWSs are shown in Figure 1.

This study is an estimation of precipitation with radar
reflectivity factors as the main input and meteorological and
geographical factors as covariates, where temperature e and
humidity are used for meteorological factors and elevation is
used for geographical factors. Since the radar detection process is
influenced by clutter and the radar reflectivity factors of a single
elevation angle cannot completely express the real situation of

cloud masses in a certain range, we use combined reflectivity.
Furthermore, as the radar reflectivity factors of low elevation
angles are more closely related to the precipitation, the combined
reflectivity factors with maximum radar reflectivity factors of
0.49°, 1.40°, and 2.38° elevation angles are considered. In addition,
we calculate the average reflectivity intensity of all radar echo
images and sort them from smallest to largest, take the average
reflectivity intensity of the smallest 0.1% number of radar echo
images as background noise, and denoise the remaining radar
echo images to some extent. The radar reflectivity factors need to
be matched with the precipitation amount. Considering the delay
of precipitation, the sum of the precipitation amount 6 min after
the current moment is taken as the rainfall label of this moment.
According to the first law of geography (Wasko et al., 2013), the
correlation between the neighboring grids and the grid to be
estimated decays with increasing distance, so the spatial matching
of the radar reflectivity factors and precipitation is performed
based on the latitude and longitude of the NWSs, and the grid
points closest to the NWSs are selected as the center of the
reflectivity. Specifically, considering that the radar reflectivity
factors closer to the NWSs are more correlated with the
precipitation values and the completeness of rainfall field
information at long distances, multi-scale information is fed
into our network.

Finally, as shown in Figure 2, the radar reflectivity factors
centered at the NWSs in the ranges of 50 km, 25 km, 12.5 km are
taken as the input radar reflectivity factors. The spatial resolution
of the radar reflectivity factors is 0.005°, i.e., the grid points are
0.5 km away from each other, and the temporal resolution is
6 min. For the meteorological factors used in this study,
temperature and humidity are used as covariates. Considering
that the temporal resolution of the radar reflectivity factors is

FIGURE 1 | Elevationmap of Shijiazhuang city. Themap shows the distribution of radar stations (yellow pentagons) and 17 NWSs (pink circles) and the extent of our
study area.
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6 min, while the temporal resolution of the meteorological
elements is 1 min. Therefore, a temporal matching operation is
performed on both data by taking the average of the
meteorological factors for a total of 6 min above and below
the current moment as the value of the current moment.
Specifically, the meteorological factors in the range are
interpolated according to the spherical model using Ordinary
Kriging interpolation based on the meteorological factor data
from the NWSs, and then temporally and spatially matched with
the radar reflectivity factors, which are jointly used as inputs. The
detail process of Kriging is as follows (Oliver and Webster, 1990):

E � ∑n
i�1
λiz(xi) (1)

where E is the estimation of meteorological factors in certain
areas, λi is the proportion of weights for each sampling point and
z(xi) is the data of the real meteorological factors recorded at the
sampling sites. The sampling sites in this experiment are NWSs.

Geographical and topographical factors are constant
influencing factors of rainfall (Liu et al., 2018; Sadeghi et al.,
2020; Sønderby et al., 2020). Therefore, according to the digit
elevation model of Shijiazhuang city, the elevation values in grid
form are obtained according to the spatial resolution of 0.005°,
and then the spatial matching operation is performed to cut
multi-scale with the NWSs as the center.

To evaluate the model more accurately, we divided the data set
into a training set and a test set in a ratio of 8:2. The training set is
used to help the model fit the relationship between the radar
reflectivity factors and precipitation, and the test set is used to
verify their relationship. For the partitioning of the dataset,
random partitioning will lead to an uneven spatial and
temporal distribution of the dataset. Therefore, the data set is
classified according to the latitude and longitude coordinates of
the NWSs and the month. Finally, they are randomly divided into
training and test sets in the ratio of 8:2.

Methodology
Baseline Model
Traditional methods usually rely on converting the radar
reflectivity factors to rainfall through a nonlinear relationship
between the radar echo intensity and rainfall intensity (Z-R
relationship). Models based on the Z-R relationship are also
widely used in QPE models. The specific equation for the Z-R
relationship is:

Z � aRb (2)
where Z is the radar echo intensity, R is the rainfall intensity, and
a and b are the empirical coefficients. The Z-R relationship is
mainly influenced by the spectral characteristics of the rainfall. In
addition, the Z-R relationship is influenced by many factors such
as geography, meteorological conditions, and hydrology.
Parameters a and b will be adjusted to suit different
conditions according to these factors (Tian et al., 2020).

Therefore, according to the equation of the relationship
between radar reflectivity factor and its physical quantity
dBZ � 10lgZ, the Z-R relationship is rewritten as:

lgR � 1
10b

dBZ − 1
b
lga (3)

Then, we fit the values of the parameters a, b using a linear
regression model. Finally, the value of a takes the value of 1.91
and the value of b takes the value of 0.578.

Model Architecture
It is well known that precipitation is a complex process, which is
closely related to meteorological factors and influenced by
geographical factors. Therefore, only considering the radar
reflectivity factors cannot accurately fit the relationship with
precipitation intensity, and the inclusion of covariates is
particularly important. In this study, meteorological factors
(temperature and humidity) and geographical factors

FIGURE 2 | The graph of the weather station in the figure represents the NWS, and the three red triangles represent the boundaries of the sampling ranges for the
small-scale input, the medium-scale input, and the large-scale input. The sampling area is a rectangular area centered on the NWS at a horizontal resolution of 0.005°.
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(elevation) are mainly used as covariates. In addition, an attention
mechanism among multiple scales is introduced in this study.
With this mechanism, the module not only focuses on the most
relevant influences near the site, but also takes into account the
spatial variability on a large scale to produce more accurate
estimation.

In contrast to the single-scale input of the model in previous
studies, our model called MS-FCVNet uses a multi-scale input
centered on NWSs. In detail, small-scale images have a small
sensory field, focusing on the variation in details of rainfall
fields around the station. Large-scale images have a wide range
of sensory fields, focusing on the overall spatial structure of
weather conditions. And Medium-scale images mainly play a
transitional effect, linking the spatial information of large scale
and small scale, and providing the necessary spatial change
information. In terms of model structure, the model includes
Hybrid Dilated Convolution (HDC), pooling layer, fully
connected layer, and multi-scale self-attention modules
(MS-SA). The model structure is shown in Figure 3, and
the details of the modules and their specific functions will
be explained in detail below.

Hybrid Dilated Convolution
HDC consists of a number of dilated convolutions (Wang
et al., 2018a). Dilated convolution mainly involves adding
empty holes, i.e., zero pixels, to the feature mapping of the
convolution kernel for the purpose of expanding the receptive
field. Ordinary convolution generally achieves the purpose of
expanding the receptive field by adding a pooling layer, which
leads to the loss of detailed information. Compared to ordinary
convolution, dilated convolution can improve the resolution of
the sampled image without increasing the number of
parameters to achieve dense feature extraction in deep
CNNs. For an ordinary convolution kernel of size K, the
corresponding dilated convolution kernel size is
K + (K − 1)p(R − 1), where R is the dilation rate when we

sample the feature map. Taking the two-dimensional dilated
convolution as an example, the process can be expressed as the
following equation:

⎧⎨⎩ f [l]i,j � ∑S−1
m�0

∑S−1
n�0

w[l]
m,nx

[l−1]
(m−S//2)pr+i,(n−S//2)pr+j + b[l]

x[l]
i,j � g(f[l]

i,j) (4)

where f is the feature points extracted from the convolution
kernel after the convolution operation, S is the length of the
convolution kernel, and w is the weight of the convolution
kernel. x is the position of the sampled points, b is the bias,
and g is the activation function. However, simply stacking the
dilated convolutions will lead to a grid effect, i.e., the pixel
points on the sampled final feature map will view the
information of the original feature map in the form of a
grid. This will lead to discontinuities in local information,
weakening spatial correlation and not conducive to capturing
the spatial information of the image. Therefore, HDC is used
to build the network in this study. Specifically, different
dilation rates are used for several phase-consecutive
dilation convolution kernels in HDC. The main purpose is
to compensate for the holes caused by a series of
convolutions, so that the pixel points of the sampled
feature map can sample a complete region of the original
feature map. For a number of N convolution layers, the
convolution kernel size of each layer is K, and its void rate
is [r1, r2, ..., rn], and its maximum dilation rate needs to
satisfy the following equation:

Mi � max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] (5)
where ri is the dilation rate of layer i and Mi is the maximum
dilation rate of layer i. With HDC, it can achieve a wider field of
perception without losing local information and capture more
global information. Figure 4 shows the specific configuration of
our HDC, where we take 1, 3, and 5 as consecutive dilation rates.

FIGURE 3 | The MS-FCVNet model receives information input from three scales, undergoes multi-scale feature extraction and fusion, and finally outputs the
predicted values through a fully connected layer.
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Multi-Scale Self-Attention Modules
In our study, we consider that the large-scale radar reflectivity
factors will contain more complete meteorological information,
such as the overall condition of the cloud mass and the
meteorological conditions near the site will be much more
important compared to the distant ones. To balance the
consideration of large-scale images and small-scale images
centered on the site, we design the MS-SA. Its model structure
is shown in Figure 5.

The design of MS-SA is based on the non-local block
module. The essence of the non-local block module is to
capture the global spatio-temporal characteristics for each
pixel point on the image, assign different weights, and
finally aggregate them at each location to enrich the spatio-
temporal characteristics (Wang et al., 2018b). The input is xi,

i ∈ Smpn. Smpn is the set of all pixel points in the image, if the
input is spatio-temporal sequence then i ∈ Stpmpn. The default
input in this paper is the image. conv K, conv Q, conv V are
three different feature mappings, and we use 1*1 convolution
operation to implement them in the model. The result of the
input after conv K, conv Q, i.e., the Key module and Query
module are multiplied to get the global pixel similarity score
between any two pixels in the global pixel, which is expressed
as fi,j � (WQpxi)Tp(Wkpxj). The expression can be simplified
as f � QTpK. The similarity score is then transformed into the
weight score of the global information for each pixel point by
the softmax function. The output of each location is
represented by zi, which is the weighted sum of the global
information.

zi � Wz
⎛⎝ 1
C(x) ∑mpn

j�1
fi,jpV(xj)⎞⎠ + xi (6)

i is the index of the input and output points, j is the index of the
global sampling points, C(x) is the normalization factor, andWz

is the weight fraction of the global location with respect to
location i. V is also a mapping operation on the input, i.e., the
Value module, and multiplying the two results is the input of each
location after non-equal distribution of weights. The addition of
the input as the residual term in the formula can make the non-
local block module more stable.

To take full advantage of the multi-scale input of the model,
MS-SA receives two inputs, i.e., a small-scale feature map xM and
a large-scale feature map xL. The small-scale feature map with
feature mapping conv Q is used as the Query module, and the
large-scale feature map with feature mapping conv K and conv V
is used as the Key and Value modules. Multiplying the Query
module and Key module is the xM and xL pixel-by-pixel
similarity scoring matrix Gi,j � (WQp(xM)i)Tp(WKp(xL)j).
Each row of the similarity matrix is the similarity score of
each position of xM relative to all positions of xL, and each
column of the matrix is each position of xM. After the softmax
function, the elements in xL that are similar to xM will be given
higher weights. These elements, after a series of previous
convolution operations, will gather more spatial information
that is not originally available in the small-scale relative to the
elements of xM, especially the edge positions. It can also be
interpreted as allowing the small-scale range near the site to learn
the spatial information of the wider region and gather in the
center. It not only takes into account the spatial information of
the larger area but also emphasizes the key information of the
small area near the site. As Figure 6 shows the evaluation process
of similarity between multiple scales, the spatial information of
the central region of the large-scale image has higher similarity
with the spatial information of the small-scale image compared
with the spatial information of the remaining location regions in
the large-scale image. This is because the small-scale image is
cropped from the central region of the large-scale image. The
feature map processed by the multi-scale attention mechanism
not only takes into account the spatial information of large
regions but also emphasizes the key information of small
regions near the site. The output of each position is

FIGURE 4 | HDC with expansion rates of 1, 3, and 5.
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represented by zi, which is the result of a preliminary fusion of
small-scale and large-scale information:

zi � Wz
⎛⎝ 1
C(x) ∑mpn

j�1
Gi,jpV((xL)j)⎞⎠ (7)

To make the module more stable, the inputs are often
connected at the end of the model as a shortcut. However,
since there are features on an image that are beneficial for
precipitation estimation and features that are not useful for
precipitation estimation, a simple summation does not

effectively utilize the features that are beneficial for
precipitation estimation. Therefore, the model needs to have
the ability to adaptively assign weights to each location. To
solve this problem, we design a feature fusion module as a
mask branch. Combining the input xM and the output z in
the channel direction after aggregating large-scale spatial
information, learning spatial information by convolution
operation, then feature mapping and adjusting the number of
channels by convolution conv θ with a convolution kernel size of
1, and finally activation by sigmoid function to be used as the
assigned weights ζ .

FIGURE 5 | The model receives inputs at two different scales and undergoes different convolution operations to generate the Query block, Key block and Value
block, respectively. The weighted feature maps are generated by the Query and Key modules, and then multiplied with the Value module to generate the attention-
passed feature maps. Finally, the final feature map is generated by mask branching.

FIGURE 6 | The center region of the large-scale image (right) is convolved with respect to the upper left corner region of the small-scale image (left) and the upper left
corner region of the small-scale image for similarity scoring. Since the small-scale image is cropped from the large-scale image, the same parts are given more weight in
the similarity evaluation by the attention mechanism.
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Ri � ζpzi + (1 − ζ)p(xM)i (8)

Fully Connected Layer
The role of the fully-connected layer is to map the distributed
high-level features extracted by the model to the target space.
Each element of each layer in the fully connected layer is
associated with all elements of the previous layer and has a
strong fitting capability. The final layer of the fully connected
layer outputs the predicted rainfall estimates.

Pooling Layer
The pooling layer mainly plays the role of reducing the
dimensionality of the input feature vectors in this study.
Pooling is divided into average pooling and maximum
pooling, and we use maximum pooling.

y[l+1]
i,j � max

1≤m≤f ,1≤n≤f
(x[l]

m,n) (9)

m, n are the coordinates of the pixel points of the convolution
kernel, x is the position of the sampled points in the lth layer, and
y is the result of the feature extraction in the (l + 1)th layer.

Loss Function
In the training process, the loss function we use is a weighted
combination of mean square error (MSE) and mean absolute
error (MAE). The specific reason is that in experiments, MSE is
usually used as the loss function because MSE can better reflect
the error between the true and predicted values. However, in
QPE, anomalous values are inevitably generated due to strong
convective weather and the influence of clutter. In addition to
this, there is the problem of skewed distribution of rainfall data. If
a single MSE is used as a loss function, it will cause the model to
trend towards underestimating the evaluation of rainfall in heavy
rainfall situations, as well as paying more attention to the
anomalous values. The specific equation is:

Loss � apMSE + bpMAE (10)
where a, b are the weight parameters of MSE and MAE. After
a series of experiments, we take the case where a is 1 and b is 10
to achieve the best training effect. In addition to this, during
the training process, we use the gradient descent method to
update the errors and get the optimal results based on the
analysis of the experimental results in the time and space
dimensions. Finally, the model has a learning rate of 0.0001, a
batch size of 8, a training epoch of 100, and an optimization
algorithm using Adam.

Evaluation Metrics

RMSE �
�������������
1
N

∑N
i�1
(Gi − Ri)2

√√
(11)

MAE � 1
N

∑N
i�1
|Gi − Ri| (12)

CC � ∑N

i�1(Gi − �Gi)(Ri − �Ri)�������������∑N

i�1(Gi − �Gi)2√ ������������∑N

i�1(Ri − �Ri)2√ (13)

whereN is the number of samples in the dataset, G is the ground
truth value, and R is the model estimation. �G is the mean of the
ground truth value and �R is the mean of the model estimation.
The goal of our study is to make the larger the CC value, the
smaller the values of RMSE and MAE, which represent the
excellence of the model.

Information Criteria
In addition, Since we will compare different models with different
input variables and parameters in the RESULTS section, we use
the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) (Akaike, 1974; Burnham and
Anderson, 2016; Kuha, 2016) which are typically penalized
likelihood criteria used to compare non-nested models and
can be used to measure the complexity and fit of individual
models.

AIC is defined as:

AIC � −2 lnL + 2k (14)
where L is the maximum likelihood of the model and k is the
number of parameters required to fit the model to the nonlinear
relationship.

BIC is defined as:

BIC � −2lnL + k lnN (15)
where the parameters L and k are defined in the same way as in
the above equation. The parameter N is the number of samples
used for the fit.

The AIC mainly depends on the accuracy of the first model
and the number of parameters of the second model. When the
number of parameters of the models used for comparison is
similar, the higher the accuracy of the model, the lower the AIC
value. When the difference in the accuracy of the models used for
comparison is small, the simpler the model structure is, the lower
the AIC value is. Therefore, the lower the AIC, the better the
model performance. BIC additionally takes into account the
sample size.

RESULTS

In this study, to show the superiority of MS-FCVNet, we compare
it with the baseline model (Z-R model), the BPNN network
(Rongrui and Chandrasekar, 1997), the CNN (1) network
(Tian et al., 2020), and the CNN (2) network. It is worth
noting that CNN (1) and CNN (2) have the same network
structure, the only difference between them is the input to the
network. We only use radar reflectivity factors as input for CNN
(1). In contrast, we not only use single radar reflectivity factors as
input, but also multivariate inputs for CNN (2). In detail, it takes
the radar reflectivity factors as the main variable and temperature,
humidity and elevation as covariates, in order to make the inputs
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of the models used for comparison closer to MS-FCVNet and to
make the differences in the experimental results more dependent
on the enhancement brought by our model structure itself.

Figure 7 shows the distribution of the predicted values of the
models relative to the ground truth value. The horizontal axis of
each graph is the ground truth value and the vertical axis is the
estimated rainfall value predicted by the model. The more
accurate the model predicts, the more the dots in the graph
are clustered on the y � x axis. Figure 7A shows the distribution
of the predicted values of the Z-R relationship. It is obvious that
the distribution is very scattered, so it expresses that the predicted
values of Z-R relationship differs significantly from the ground
truth value and the traditional method does not fit the
relationship between radar reflectivity factors and rainfall well
compared to the deep learning method. Among the deep learning
methods, as shown in Figure 7B, the distribution of the
estimation predicted by BPNN performed more concentration
compared to Z-R relationship, which proves the effectiveness of
deep learning in fitting the radar reflectivity factors to the rainfall.
In contrast, Figures 7C,D display that the performance of the
BPNN is slightly less than that of the two CNN networks, which
shows that rainfall has a strong spatial correlation, and the CNN
captures this spatial structure that is ignored by the BPNN. For
both CNN networks, Figure 7D reveals that the CNN (2)

network that adds temperature, humidity and elevation as
covariates gives more accurate rainfall values than CNN (1)
which simply uses the radar reflectivity factors as input,
indicating the correlation between rainfall and meteorological
and geographic environments. Finally, Figure 7E shows that our
proposed model can predict the rainfull that are more
concentrated and closer to the y � x axis, i.e., closer to the
ground truth value than other models and proves the
superiority of our model.

Table 1 shows the comparison of the Z-R, BPNN, CNN (1),
CNN (2) andMS-FCVNet under the same evaluationmetrics and
information criteria. The first column of the table is the names of
models. The second to the fifth columns of the table are the inputs
to the model, which are the radar reflectivity factors, temperature,
humidity, and elevation, respectively. The sixth column shows the
selection of MS-SA moudle. The last five columns are the
evaluation metrics RMSE, MAE, CC and information criteria
AIC, BIC. Their specific meanings have been discussed in
Evaluation Metrics Chapter and Information Criteria
Chapter respectively. Lower RMSE, MAE values and higher
CC values represent better performance of the model. The
lower the AIC,BIC, the better the model can balance model
complexity and accuracy. The experimental results show that
the RMSE and MAE values of Z-R are higher and the CC values

FIGURE 7 | Distribution of model (A) Z-R relationship, (B) BPNN, (C) CNN (1), (D) CNN (2) and (E) MS-FCVNet estimation in the test set relative to the ground
truth value.
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are lower, indicating that the fixed Z-R are more restricted and
the predicted values are more different from the ground truth
value. Considering that deep neural networks and simple linear
regression, i.e., the computational process of Z-R relationship, are
not comparable in terms of the number of parameters, the AIC,
BIC of the Z-R relationship is not considered. The RMSE and
MAE values of BPNN are lower than those of Z-R relationship,
indicating that the estimation values of BPNN are closer to the
ground truth and more concentrated in distribution. In addition,
the CC values of BPNN are higher than the Z-R relationship,
indicating that the predicted values of BPNN are more correlated
with the rainfall. However, compared to the result of the CNN
networks which shown in the 4th and 5th rows of the table, the
performance of the BPNN is lower than the CNN networks. CNN
can capture the spatial information of rainfall fields that BPNN
cannot learn and the results demonstrate the influence of spatial
correlation in the rainfall process on rainfall estimation and the
correctness of using two-dimensional data input in our model.
Comparing CNN (1) and CNN (2) networks, CNN (2), i.e., CNN
network with covariates, has lower RMSE, MAE and higher CC
than CNN (1). It indicates that the rainfall estimates of CNN
network with covariates are more accurate and the necessity of
the covariates during the precipitation estimation. The focus is on
the ablation experiments of MS-FCVNet, i.e., rows 6th to 21st of
Table 1. We consider the individual and combined cases of
covariate inputs to the model and the changes brought by the
addition of MS-SA to the network. Rows 6th to 9th in the table
indicate the performance of the model is improved when adding
temperature, humidity, and elevation as covariates alone, which is
consistent with the findings of other researchers (Shu et al., 2007;
Zhang Y. et al., 2021), indicating the relevance of meteorological
factors, geographic factors, and precipitation. As shown in rows
10th to 13th of Table 1, when the combination of temperature,

humidity and elevation were entered as covariates, the model
performed better in some pairings than when they were added
separately. It demonstrates that the interconnection of
meteorological and geographical factors had an enhancing
effect on the correct estimation of the model by adverse or
noisy factors of rainfall. Row 14th of the table demonstrates
that our model with the addition of the MS-SA module, there is a
deterioration in the performance of our model with the radar
reflectivity factors alone as an input compared to the model
without the addition of the MS-SA module. This may be because,
in the absence of covariate constraints, more features with less
correlation with precipitation are extracted from the large-scale
radar reflectivity factors. And the MS-SA module condenses the
features extracted at large-scales into small-scales, which leads the
model to focus on more features that are not conducive to
precipitation estimation and has a bad effect on the estimation
of rainfall. In contrast, the pairing with the MS-SA module
produced better performance when meteorological factors
were available as covariates. When elevation alone is added as
a covariate, as shown in row 17th, the model performance is
worse than that without the MS-SA module. The possible reason
is that the addition of elevationmakes themodel more sensitive to
areas with complex terrain, such as near stations in the
southwestern region of Shijiazhuang, while the aggregation
characteristics of the MS-SA module would make the model
more insensitive to precipitation characteristics in flat terrain in
the eastern region, and without the meteorological factors, the
model will be even less effective. Figure 8 shows the comparison
of RMSE values, MAE values and CC values for the model with
and without MS-SA, using only geography as a fixed covariate.
We selected the three most southwestern sites 53693, 53698,
53795 and the three most northeastern sites 53699, 54621, 54701
for comparison experiments to test our conjecture. Figure 8A

TABLE 1 | The scores of Z-R, BPNN, CNN (1), CNN (2) and MS-FCVNet under evaluation metrics RMSE, MAE, CC at the 6-minute scale and information criteria AIC, BIC.
The bold text is the optimal level of the evaluation index.

Model dBZ T H E MS-SA RMSE MAE CC AIC(103) BIC

Z-R √ 2.63 0.840 0.722 / /
BPNN √ 0.640 0.289 0.748 46575.980 105250.350
CNN (1) √ 0.562 0.264 0.766 40443.567 89458.270
CNN (2) √ √ √ √ 0.549 0.249 0.796 40443.501 89392.440
MS-FVNet √ 0.463 0.220 0.819 44151.519 98218.340

√ √ 0.459 0.211 0.842 44153.220 98195.361
√ √ 0.458 0.219 0.836 44153.220 98195.361
√ √ 0.451 0.212 0.841 44153.171 98146.272
√ √ √ 0.461 0.225 0.821 44154.961 98213.429
√ √ √ 0.446 0.206 0.830 44154.863 98114.503
√ √ √ 0.453 0.207 0.846 44154.891 98192.792
√ √ √ √ 0.454 0.209 0.847 44156.648 98176.199
√ √ 0.482 0.240 0.823 45992.660 102961.961
√ √ √ 0.442 0.209 0.838 45994.136 102714.731
√ √ √ 0.449 0.207 0.840 45994.187 102765.799
√ √ √ 0.463 0.218 0.841 45994.271 102849.361
√ √ √ √ 0.461 0.205 0.844 45995.985 102840.107
√ √ √ √ 0.448 0.207 0.843 45995.901 102755.734
√ √ √ √ 0.446 0.211 0.838 45995.887 102741.181
√ √ √ √ √ 0.424 0.201 0.861 40223.388 87141.007
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shows the lower RMSE values of the model with MS-SA added in
the more complex topography in the southwest, and the lower
RMSE values of the model without MS-SA in the plain area in the
northeast. We can find that with the inclusion of the MS-SA
module, the maximum overestimation of precipitation estimation
by the model can be reduced in regions with complex topography,
and the minimum underestimation of precipitation estimation
can bemitigated. It is shown in Figure 8B that the inclusion of the
MS-SA module in the model reduces the overall degree of error
for areas with complex topography. From Figure 8C, it can be
understood that model which includes theMS-SAmodule usually
correlate with the true value of rainfall to a greater extent than the
model without the MS-SA module. This is consistent with our
hypothesis. Compared with Z-R relations, BPNN, CNN (1) and
CNN (2), our model performs best with temperature, humidity,
and elevation as covariates and with the addition of the MS-SA
module. In addition, the RMSE is reduced by 8.42%, the MAE is
reduced by 8.63%, and the CC is improved by 3.41% compared to
the case without the inclusion of any covariates as well as the MS-
SA module. According to the comparison of AIC and BIC of all
compared models, it can be found that the AIC and BIC values of
CNN (1) and CNN (2) are lower than those of BPNN, which
indicates that BPNN stacking too many fully connected layers

sacrifices the complexity of the model, but does not improve the
accuracy too much. In addition, although our model performs
well under most combination of input variables and MS-SA
modules relative to the normal CNN networks, i.e., CNN
(1),CNN (2) under other evaluation metrics, it sacrifices too
much model complexity, which leads to high AIC,BIC. Finally,
only the MS-FCVNet with the addition of temperature, humidity,
and elevation as covariates and MS-SA has lower AIC, BIC than
the other comparison models, indicating that our final model
sacrifices model complexity but brings greater accuracy
improvement. It is worth mentioning that the performance
improvement of MS-FCVNet over the CNN model with the
inclusion of meteorological factors and geographical factors is
significant, which demonstrates the superiority of our model
structure.

Figure 9 shows the performance of MS-FCVNet and the
comparison model at 17 NWSs, 6-min scales, respectively. The
horizontal axis of Figure 9 represents the 17 NWSs, and the
vertical axis shows the three evaluation metrics RMSE, MAE, and
CC. Considering that the coefficients a, b in the Z-R relation have
a small adaptation range and are influenced by geographic
environment and weather conditions, we use different
empirical coefficients a, b for the experiments located at 17

FIGURE 8 |Model incorporation of elevation and MS-SA modules for (A) RMSE scores, (B) MAE scores (C) CC scores at the southwestern Shijiazhuang NWSs
53693, 53698, 53795 and the northeastern NWSs 53699, 54621, 54701.
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NWSs. From Figure 9A, we can see that the RMSE of Z-R
relationship is less stable and has larger errors compared to other
machine learning and deep learning algorithms. The BPNN,
although better than the Z-R relationship in RMSE evaluation,
still generally performs worse than the CNN network that can
capture the spatial structure features on each NWS. The RMSE
values of CNN (1) and CNN (2) networks have unbalanced
performance levels across sites. MS-FCVNet performs optimally
on each NWS with a stable RMSE values between 0.1 mm/6 min

and 0.8 mm/6 min, which shows that MS-FCVNet overestimates
and underestimates the rainfall to a much lesser extent than the
other methods. Figure 9B shows the evaluation of MAE values
for each model at each station, which is generally consistent with
the results of RMSE values. The MAE values of MS-FCVNet are
stable between 0.1 mm/6 min and 0.4 mm/6 min. Although the
MAE values are high at station 53680, they are still lower than the
other methods at this station, indicating that MS-FCVNet is
lower than the other methods in terms of overall error. Figure 9C

FIGURE 9 | MS-FCVNet scores for (A) RMSE, (B) MAE, (C) CC at 17 NWSs.
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shows the performance of the model in terms of correlation
coefficient. The CC values of MS-FCVNet ranges from 74 to 93%,
and although there are some fluctuations in the evaluation of the
CC at each station, it is still generally better than other methods,
indicating the strong correlation between the estimated value of
MS-FCVNet and the real value of precipitation.

The performance of the model in strong convective weather is
also an indicator that many studies have focused on (Zhang et al.,
2020). Figure 10 shows the time series line plot of the model and
the true rainfall values for the NWS during a period of heavy

rainfall on 12 August 2018. The horizontal coordinate is time and
the vertical coordinate is the estimated and true rainfall of the
model. Both the Z-R relationship and the BPNN have severe
overestimated and underestimated performance in the time
series. The Z-R relationship produces a positive deviation of
10 mm/6 min in the rainfall prediction at 13:00 on 12 August
2018, which severely overestimates the rainfall value, indicating
the inaccuracy of the Z-R relationship in prediction during heavy
rainfall. The rainfall estimate of BPNN reaches a negative
deviation of 3.2 mm/6 min at the 13:00 moment on 12 August

FIGURE 10 | Estimated values of models (A) Z-R relationship, (B) BPNN, (C) CNN (1), (D) CNN (2), (E)MS-FCVNet versus ground truth for the rainfall period from
11:30 to 13:18 on 12 August 2018.
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2018, and differs significantly from the true value at all other
moments, with an average deviation of 0.63 mm/6 min. The
overestimation and underestimation of rainfall values
predicted by the CNN (1) network are smaller than those of
the Z-R relationship and the BPNN, but the bias values are still
higher than those of the CNN (2) network at most moments,
which demonstrates the effectiveness of the model’s inclusion of
covariates in reducing the bias values. The rainfall estimates of the
MS-FCVNet network are close to those of the CNN (2) network.
Although there are overestimates and underestimates, but overall,
the estimation of MS-FCVNet are closer to the true values than
the CNN network. Specifically, the positive deviation of our
model’s predicted values relative to the true rainfall values
does not exceed 0.19 mm/6 min and the negative deviation
does not exceed 0.25 mm/6 min.

CONCLUSION

In this study, we use deep learning techniques to demonstrate the
effectiveness of multi-scale radar reflectivity factors, as well as
meteorological and geographic factors as covariates in QPE. In
addition, we developed an MS-SA module for better combining
factors that favor precipitation estimation in the multi-scale, with
some suppression of unfavorable factors. In particular, we have
the following innovations and conclusion:

• Multi-scale deep learning networks are able to make accurate
prediction of rainfall. Compared with deep learning networks
with single-scale inputs, the large-scale feature maps in multi-
scale can learn the complete rainfall field information over a
wide region that also have an impact on rainfall gauges, and in
addition, the small-scale feature maps can learn spatial
information with stronger correlation with precipitation near
the rainfall gauges. Therefore, multi-scale inputs can provide
more accurate predictions for QPE.

• Temperature, humidity, and elevation as covariates can
improve the QPE accuracy. Precipitation is a complex
process, and there are many factors affecting precipitation,
including meteorological and geographic factors. In addition,
the spatial correlation of meteorological and geographic factors
is considered to strengthen the spatialmodeling capability of the
model. In this study, two-dimensional meteorological and
geographical factors were used as covariates to capture their
spatial characteristics, and the validity was experimentally
demonstrated.

• The multi-scale self-attentive module MS-SA is a new module
we propose to better integrate factors that favor precipitation

estimation in different scales and suppress irrelevant factors. It
also can integrate covariates with radar reflectivity to constrain
each other, reduce errors andmakemore accurate precipitation
estimation. The experimental results further demonstrate the
importance of multi-scale integration.

• The experimental results show thatMS-FCVNet has a RMSE of
0.424mm per 6min for precipitation estimation, which is the
best performance among Z-R, BPNN, CNN with only radar
reflectivity factors as input and CNN with covariates involved,
and maintains good performance in different geographical
locations as well as time series.

The method proposed in this paper, especially the MS-SA
module, is not lightweight enough and requires higher
computational effort than the general method, which is also a
future research direction. However, in general, our proposed
model offers the possibility of more accurate estimation for
QPE in operations.
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