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Geologists have made several advances in applying multifractal theory in geology;
however, some questions such as a large statistical workload and low efficiency
remain unanswered. Thus, this study proposes an image recognition–based method
for calculating fault multifractality. First, grayscale processing and binarization of the fault
distribution map were performed. The image was then gridded, and the grids were
numbered. Subsequently, computer image recognition technology was used to count the
number of faults in each grid as a replacement for manual counting. Finally, the fractal
dimensions of the faults were calculated using a multifractal box-counting algorithm. This
method was successfully applied to fracture studies of the Maokou Formation in southeast
Sichuan. Compared to the conventional approach, the proposed method demonstrated
considerably improved work efficiency and accuracy. The results showed that the faults in
the study area exhibited good statistical self-similarity in the scale range, indicating fractal
characteristics. The fractal dimensions of faults with different orientations and the planar
distribution of the fractal dimension contours indicate tectonic stages and stress
magnitude in the study area. The results indicate that the tectonic setting of southeast
Sichuan was formed primarily during the Indosinian, Yanshanian, and Himalayan periods.
From the Indosinian to the early Yanshanian periods, NE-trending faults with relatively large
fractal dimensions developed under NW–SE compressional tectonic stress. From the Late
Yanshanian to Early Himalayan, EW-trending faults were formed by relatively weak N–S
compressional stress and had the lowest fractal dimensions. The NW-trending faults
formed by intense NE–SW compressional tectonic stress in the Late Himalayan region had
the highest fractal dimensions. To promote oil and gas migration and ensure that faults do
not destroy the caprock, oil and gas reservoirs must be in a relatively mild tectonic
environment. Thus, the fractal dimensions of faults in favorable areas should be neither too
high nor too low. The relationship between the fractal dimensions of faults and well test
results in southeast Sichuan indicates that the region along the wells “ls1–xia14–guan3”
(with fractal dimensions of 1.49–1.57) in the study area is a relatively favorable region for oil
and gas preservation.
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INTRODUCTION

Faults play a vital role in the formation of hydrocarbon reservoirs by
providing pathways for oil and gas migration (Woods, 1992; Nagy
et al., 2012; Kasyanova, 2018; Gong et al., 2019; Gong et al., 2021;
Zeng et al., 2022a). Multiple studies on geological structures
(particularly fault systems) have revealed that the distribution and
geometry of geological structures exhibit fractal characteristics.
Fractal theory is a highly effective tool for quantitatively
describing irregular and complex natural structures (Mandelbrot,
1983). It has been widely and successfully employed to describe
geological features and reveal inherent formation patterns. For
example, Boulassel et al. proposed a multifractal analysis–based
method for identifying reservoir fluids that can be used to
delineate oil and gas layers and detect fluid properties (Boulassel
et al., 2021). Flores-Márquez et al. applied multifractal theory to
study the earthquake magnitude series of the Mexican South Pacific
region, and Agterberg constructed multifractal and geostatistical
models of geochemical element concentrations in rocks and deposits
(Agterberg, 2012; Flores-Márquez et al., 2015). Tan et al. analyzed
the multifractality of ore-controlling faults in Altay, Xinjiang, China
(Tan et al., 2010). Xu et al. performed a multifractal analysis of the
fault system in the Nanpu Sag, Jidong Oilfield, China, and identified
hydrocarbon accumulation areas (Xu et al., 2019). However, in
conventional multifractal studies, the faults in each grid are typically
counted manually, and a constantly changing grid length results in a
very large workload and low efficiency. If the faults in a certain grid
are incorrectly counted, the final calculation result is inaccurate.
Thus, this approach has become infeasible with the rapid
development of the information era, as it cannot be used to
process the vast amount of data required for multiple fault analyses.

In recent years, with the rapid development of image
recognition methods, computer image processing and analysis
have been extensively applied in oil exploration, and a
comprehensive system of methods that yields good results has
been achieved (Thompson et al., 2001; Izadi et al., 2015; Ashok
et al., 2016; Patel et al., 2016; Yathunanthan et al., 2017; Ma et al.,
2018; Kuang et al., 2021). For instance, Budennyy et al. proposed
an intelligent lithological method for the description of thin-
section images of rocks under polarized light (Budennyy et al.,
2017). For oil reservoir descriptions, Tyurin et al. applied Ridge
filtering to preprocess borehole image logs for more accurate
identification of the bedding interface (Tyurin et al., 2016).
Additionally, Semukhin et al. used the SUSAN edge detector
to binarize images and introduced an algorithm to calculate the
geometric parameters of the fractures and thus describe their
features (Semukhin et al., 2019). Shape features, which are among
the critical features of images, are stable and do not vary with
image color. Fault distribution maps are often used in structural
geological research as they consist of a collection of lines, image
recognition tools can be applied to them. Therefore, fault
counting in multifractal analyses of fault structures can be
transformed into pattern recognition tasks. The cross-platform
computer vision library OpenCV is one of the most widely used
image recognition tools (Bradski, 2008; Hongbo et al., 2020). It
has overcome the shortcomings of conventional software,
namely, large size and slow running speed, and provides high-

efficiency, lightweight graphics, and image processing. The
OpenCV recognition process primarily consists of image
preprocessing, color extraction, filtering, segmentation,
grayscaling, binarization, and fitting and can recognize the
contours and colors of images that include different shapes
(Zhou et al., 2016a; Wei, 2019). In multifractal analysis of
fault structures using computer image recognition, the faults
in each grid can be counted automatically, replacing manual
counting. The fractal dimensions of all faults in the region and
faults with different orientations were then calculated by solving
the equations of the multifractal box-counting algorithm. Finally,
contour maps of the fractal dimensions were plotted. This
method improves the efficiency and reliability of research and
reduces production and labor costs. In this study, the fractal
dimensions of faults in the entire region of the Maokou
Formation in southeast Sichuan and the differences in fractal
dimensions between faults with different orientations were
analyzed. The results were used to explore the relationship
between the fractal dimensions and tectonic stages,
geodynamics, and hydrocarbon accumulation. We also
searched for favorable oil and gas development areas related to
faults and associated fractures. This study introduces a concept
and method with broad application prospects for oil and gas
exploration.

GEOLOGICAL BACKGROUND

Southeast Sichuan is in the southeastern part of the Sichuan
Basin, spanning Guizhou Province, ChongqingMunicipality, and
parts of Sichuan Province, including the cities and counties of
Shuijiang, Qijiang, Fengdu, Xingwen, Gulin, Tongzi, Chishui, and
Renhuai. The main tectonic structure in the Sichuan Basin is part
of the East Sichuan arc-shaped high-steep fold belt and the
southern low-steep fold belt of the South Sichuan broom-
shaped fold belt. These regions have the strongest tectonic
movements in the basin (Figure 1). This area is a tertiary
geotectonic unit of the Yangtze quasi-platform with widely
distributed mountains, hills, and complex geological structures.
The terrain is high in the south and low in the north, and karst
landforms are common (Xu et al., 2019; Wang et al., 2021; Zhong
et al., 2021). TheMaokou Formation in southeastern Sichuan is in
the interior of the craton basin, where marine carbonate rocks
have been deposited. The tectonic uplift of the Dongwu
Movement resulted in the exposure of the Maokou Formation
limestone to the surface for a long time (8–7 Ma). The Maokou
Formation experienced an epigenetic weathering stage that was
affected by atmospheric water, and its top surface was exposed to
corrosion and weak erosion.

CONCEPTS AND PROCESSES

OpenCV image recognition technology is used in the image
recognition–based multifractal analysis of fault structures to
automatically count the number of faults in each grid.
Multifractal algorithms include box-counting, fixed-radius, and
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fixed-mass methods (Gao, 2004; Sun et al., 2003; Xie et al., 2002;
Xiong et al., 2016; Salat et al., 2017). Because the box-counting
method can be applied to images of arbitrary shapes in practical
applications with outstanding results, most scholars have used
this algorithm to study the fracture fractal dimension value.
Therefore, we employed this algorithm in this study. The main
steps in the image recognition–based multifractal analysis of fault
structures are as follows:

Step 1: The fault distribution map was obtained by a detailed
interpretation of seismic cross-sections and seismic attributes.

Step 2: The color fault distribution map is converted into a
grayscale image using a color transfer function. The
grayscale image was then binarized using the image
thresholding function to distinguish the colors
representing faults from the background color.

Step 3: The height and width of the fault distribution map were
determined, and the initial grid-side length r was set to
cover as much of the study area as possible by a mesh
using the fewest grids possible. The entire image was
divided into N grids numbered 1, 2, 3, . . . i.

Step 4: The outlines of faults in the grids of the binarized image
are detected using the cv2.findContours function in
OpenCV, and the number of faults in each grid ni is
counted, thus completing the fault detection.

Step 5: The number of faults in all grids is summed to obtain the
number of faults in the entire regionM, and the frequency of
fault occurrence in each grid Pi(r) is calculated. The value of
parameter q in the multifractal analysis formula was set, and
Iq(r) was calculated using this formula (Hu et al., 2014).

M is calculated as follows:

M � ∑N
i�1
ni

where ni is the number of faults in the i-th grid, when the scale is
set to r.Pi(r) is calculated as follows:

Pi(r) � ni
M

Iq(r) is calculated as follows:

Iq(r) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
1 − q

ln∑Pi(r)q q ≠ 1

∑Pi(r)ln( 1
Pi(r)) q � 1

where q is the order, which can be any real number in the interval
(−∞, +∞).

FIGURE 1 | Schematic map of geology of southeast Sichuan (modified from Liu et al., 2019)
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Step 6: The grid-side length r is gradually reduced to redivide the
fault distribution map with continuously finer grids. Steps
2–4 are repeated k times (k ≥ 2) to obtain Iq(r) for
different values of r.

Step 7: The Iq(r) values obtained in Steps 1–5 were linearly
fitted with different ln(r) values (data for linear fitting
should be no less than three groups, five groups, and
above best), and the slope of the obtained function was

the fractal dimension Dq of the faults in the entire
region (Cheng et al., 2020). The regression equation is
as follows:

Iq(r) � −Dq ln(r) + I0

When the correlation coefficient is greater than 0.9, the obtained
slope is the fractal dimension Dq of all faults in the region. When q =
0, 1, and 2, Dq corresponds to D0 (the capacity dimension), D1 (the

FIGURE 2 | Flow chart of image recognition–based multifractal calculation method for fault structures.
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information dimension), and D2 (the correlation dimension),
respectively.

Step 8: The values of the fractal dimensions of the faults, Dq, were
assigned to the grid center point, and contour maps of Dq

were obtained by interpolation.
Step 9: Distribution maps of faults with different orientations are

generated, and Steps 2–8 are repeated to obtain the fractal
dimensions Dq of faults with different orientations.

Step 10: The differences between the fractal dimensions of all
faults in the region and faults with different orientations
were obtained from the fractal dimensions of faults with
different orientations and a map of fractal dimensions.
The relationships between the fractal dimensions of the
faults and their distribution density, uniformity, length,
bending pattern, tectonic stage, and hydrocarbon
accumulation conditions were analyzed.

Specific method flow chart as shown in Figure 2:

FIGURE 3 | Fault distribution map of Maokou Formation in southeast Sichuan (modified from Hu et al., 2014).
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PRACTICAL APPLICATION

Data Processing
Through the collection of two-dimensional seismic line data, we
performed detailed horizon tracing and fault interpretation using
seismic cross-sections based on synthetic record calibration and
then analyzed the planar fault combination patterns and seismic
coherence attributes. Next, a fault distribution map of the
Maokou Formation in southeast Sichuan was plotted at a scale
of 1:250,000 to serve as the base map (Figure 3). This map was
converted into a grayscale image using the color transfer function
cv2.cvtColor and the grayscale image was binarized using the
image thresholding function cv2.threshold. The comparison
threshold X was set to 127, that is, pixel points with a
grayscale value greater than or equal to 127 were set to 255
(white), and the other pixel points were set to 0 (black). The
height and width of the fault distribution map of the Maokou
Formation in southeastern Sichuan were determined. To ensure
that the initial mesh covered the entire study area with as few
grids as possible, we first divided the fault distribution map into
42 square grids with a side length r of 40 km, and the grids were
numbered accordingly. The cv2. findContours function in
OpenCV was applied to search for fault outlines in the
binarized image grids and return the number of faults within
each grid, ni, thus completing the fault detection. The number of
faults in the entire region M was obtained by summing the
number of faults in all grids, and the frequency of fault
occurrence in each grid Pi(r) was calculated using ni and M.
Parameter q in the multifractal analysis formula was set to −2, −1,
0, 1, and 2, and the corresponding Iq(r) values were calculated by
substituting the data into the multifractal analysis formula. The
regression curves of ln(r) and Iq(r) were drawn by the linear

fitting of five different groups of ln(r) and Iq(r) (Figure 4), and the
slope of the regression line was the fractal dimension of the faults,
Dq, for each q value. We divided the faults in the study area into
three sets according to their orientation: NW-trending-, NE-
trending-, and near-EW-trending. When distinguishing NE and
NW, we grouped the NNE-trending and ENE-trending faults into
NE-trending faults and the NNW-trending and WNW-trending
faults into NW-trending faults. In addition, because there were
only a few near-NS-trending faults, they were also grouped with
NW-trending faults for convenience of analysis. Distribution
maps of faults with different orientations were then generated,
and the above steps were repeated to obtain the fractal
dimensions Dq of these sets of faults.

Characteristics and Distribution of Fractal
Dimensions
The ln(r)–Iq(r) regression curves (Figure 4) display linearity
between the Iq(r) and ln(r) values of the faults with different
orientations in the Maokou Formation. The absolute values
of the regression slopes are the fractal dimensions Dq of the
fault structures. The correlation coefficient R2 is > 0.9,
indicating that, at a scale of 40–2.5 km, the spatial pattern
of fault distribution shows a good statistical match and
apparent fractal features. The fractal dimensions of all
faults in the region and faults with different orientations
both increase as q increases. The fractal dimension of all
faults in the Maokou Formation ranges between 0.9964 and
1.7317, with the NW-trending faults ranging between 0.8848
and 1.4196, the NE-trending faults ranging between 0.9804
and 1.3497, and the EW-trending faults ranging between
0.7074 and 0.9121.

FIGURE 4 | ln(r)-Iq(r) curves of fault distribution in Maokou Formation in southeast Sichuan (A) all faults in study area; (B)NW-trending faults; (C)NE-trending faults;
(D) EW-trending faults.
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The calculated fractal dimensions corresponding to different q
values were assigned to the center point of each grid, and contour
maps of the fractal dimensions of faults in the Maokou Formation in
southeast Sichuan were obtained by planar interpolation (Figures
5–7). Contourmaps have the following characteristics. 1) The contour
lines of the fractal dimensions generally trend NE–SW. 2) The planar
distribution of the fractal dimensions of the faults in the study area
shows zonal characteristics, and three regions can be identified. The
high-value region lies along with wells, “ls1–xia14–guan3,” whereas
the low-value regions are distributed to the northwest and southeast of
the high-value region. 3) Overall, the fractal dimension increased
gradually with increasing q; however, the distribution range of the
high- and low-value regions varied slightly.

DISCUSSION

Comparison With a Conventional Method
In conventional multifractal studies of fault structures, faults
are typically counted manually, which is time-consuming,

labor-intensive, and inefficient. As the grid-side length
decreases, the number of grids increases, and the counting
workload increases exponentially. If the faults in a grid are
incorrectly counted, the final calculation result will be
inaccurate, thereby reducing the reliability of the research.
For oil and gas exploration in the big data era, manual
counting is not suitable for processing the vast amounts of
data used in the multifractal analysis of faults. In this study, we
applied image recognition–based multifractal analysis to
identify fault structures. We divided the grayscale and
binarized fault distribution maps into numbered grids.
Next, the faults in each grid were automatically counted
using computer image recognition. A comparison of the
conventional and image recognition–based methods showed
that for a single researcher working 10 h per day, counting
would take five days, whereas the proposed method shortened
the entire counting time to 5 h and increased the efficiency by a
factor of 10, thus solving the problems of low efficiency of
manual counting. Moreover, automatic counting increases the
accuracy of fault identification; therefore, the results are more

FIGURE 5 | Contour map of fractal dimensions of faults in Maokou Formation in southeast Sichuan (q = 0)
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reliable. In some cases, the two faults were completely adjacent
to each other on the plane map. This method, based on image
recognition, cannot effectively distinguish between these two
faults, and it is judged as the same fault. To reduce the
influence of this situation on the recognition accuracy, the
relative positions of the two faults can be manually adjusted to
separate them when drawing the fault distribution map in the
early stage, which lays a solid foundation for subsequent image
recognition. Although it takes a certain amount of time to
manually adjust the relative positions of the two faults, the
number of faults adjacent to the plane is generally not too
large. Therefore, compared with that of the traditional manual
counting method, the efficiency of multifractal research based
on image recognition faults was significantly improved.

Diversity of Fractal Dimensions of Faults
With Different Orientations
We analyzed the relationship between q and the fractal
dimensions Dq of all faults in the Maokou Formation in

southeast Sichuan and faults with different orientations
(Figure 8). Overall, the fractal dimension increased
gradually with increasing q. The variation trend of the
fractal dimension of the NW-trending faults was almost
the same as that of all faults in the region. The fractal
dimension of all faults in the region ranged between
0.9964 and 1.7317, with an extreme difference of 0.7353
and a mean value of 1.3612. The NW-trending faults range
between 0.8848 and 1.4196, with an extreme difference of
0.869 and a mean value of 1.28974. The NE-trending faults
range between 0.9804 and 1.3497, with an extreme difference
of 0.3693 and a mean value of 1.16418. The EW-trending
faults range between 0.7074 and 0.9121, with an extreme
difference of 0.2047 and a mean value of 0.82624. The NW-
trending faults have the highest fractal dimensions, and the
extreme difference and mean values are closest to those of the
fractal dimension of all faults in the region. These results
indicate that the NW-trending faults are more complex and
active than the NE- and EW-trending faults, with the NW-
trending faults being the dominant faults in southeast

FIGURE 6 | Contour map of fractal dimensions of faults in Maokou Formation in southeast Sichuan (q = 1)
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Sichuan. The differences in the variation trends of the fractal
dimensions of faults with different orientations reflect the
different mechanisms of fault genesis in the study area.

Relationships Between Fractal Dimensions
and Tectonic Stages and Geodynamics
Southeast Sichuan is in the Tethys-Himalayan and marginal-Pacific
tectonic domains. Its tectonic framework is controlled by both the
Xuefeng intracontinental tectonic system to the east and the Tibetan
Plateau to the southwest and exhibits the characteristics of multistage
tectonic superposition (Lv, 2005; Zhao, 2005; Deng et al., 2013; Tang
et al., 2021). The geodynamics of the tectonic stages in southeast
Sichuan have been extensively analyzed, and the accepted view has
shifted from one-stage tomultistage tectonic superposition. However,
there is still disagreement regarding whether the tectonic setting was
shaped in two, three, or four stages (Guo et al., 2016; Jia, 2016; Zeng
et al., 2022b; Wang et al., 2022). In addition, there are three main
types of in-situ stresses in southeast Sichuan, each with different
magnitudes in different geological periods. Based on previous studies
of tectonic stages in southeast Sichuan, we investigated the
relationship between the fractal dimensions of faults and tectonic
stages. We suggest that the magnitude of the fractal dimensions of
faults with different orientations and the planar distribution of fractal

FIGURE 7 | Contour map of fractal dimensions of faults in Maokou Formation in southeast Sichuan (q = 2)

FIGURE 8 | Relationship between Dq and q.
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dimension contours reflect the tectonic stages and in-situ stress
magnitudes in the study area. We believe that the tectonic setting
of southeast Sichuan formed primarily during the Indosinian,
Yanshanian, and Himalayan periods.

Tectonic movements in southeast Sichuan were not complex
during the Caledonian-Hercynian primarily tensile environment,
which is characterized by lifting movement. Since the Indosinian
period, the extensional regime of the Caledonian-Hercynian has
gradually transitioned to a NW–SE compressional environment.
This regime affected the formation of the tectonic setting of
southeast Sichuan (Tan et al., 2013; Tang et al., 2021; Zeng et al.,
2022a) and caused NE-trending faults to appear. Since the Early
Yanshanian, compressional stress from SE to NW within the
Xuefeng tectonic system has been transmitted to southeast
Sichuan. However, the thrust faulting effect gradually weakened
with increasing distance, and the SE–NW compression was blocked
and deflected to some extent (Tang et al., 2021), resulting in a
compression–torsion effect in the study area. NE-trending faults
continued to develop, and their fractal dimensions are generally
large. In addition, the tectonic settings of the central and southern
parts of southeast Sichuan differ because the kinematic mechanisms
differ. The central part of southeast Sichuan experienced primarily
progressive compressional stress, and the high-steep structural belt
showed a NW-trending en-echelon pattern. The southern part was
dominated by compressional–torsional stress, which resulted in a
broom-shaped rotational structure. Therefore, the fault system in the
southern Sichuan region became highly developed under
compressional–torsional stress. There were more faults, and the
southern part of the contour map showed a wider region with high
fractal dimensions (Figure 5).

From the Late Yanshanian to the Early Himalayan, the
southward thrust of the Qinling orogenic belt was transmitted

to southeast Sichuan and blocked by the inherited Luzhou paleo-
uplift. In addition, the EW-trending Lushan fault zone was
compressed northward, forming near-EW-trending structures
in southeast Sichuan (Zhou et al., 2016b; Hu, 2018). During
this period, the impact of the tectonic activity was relatively weak.
The scale of the EW-trending structural faults is small; thus, their
fractal dimensions are low.

From the Late Himalayan period to the present, the East
Sichuan arc- and broom-shaped structural belts acquired their
current shapes. Under the continuous effect of the collision
between the Indian and Eurasian plates, the deformation of
the Daliangshan structural belt gradually became more intense
and expanded into the basin, forming a NE–SW compressional
regime that resulted in the development of NW-trending faults in
the study area. This stress regime has persisted to date (Li et al.,
2014; Tang et al., 2018). During this period, intense NE–SW-
trending forces were superimposed on pre-existing tectonic
features, forming NW-trending faults. This set of faults has
the highest fractal dimensions, indicating that they were under
the greatest tectonic stress. This indicates that the Himalayan
period had the strongest influence on the current tectonic setting
of southeast Sichuan. After the tectonic stresses in the Indosinian,
Yanshanian, and Himalayan periods, a composite pattern
consisting of NE-trending, NW-trending, and near-EW-
trending structures was formed.

Relationship Between Fractal Dimensions
and Hydrocarbon Accumulation
Fractal dimensions of the faults indicate the strength of tectonic
movements and the patterns of superposition and neogenesis
during fault development in the hydrocarbon basin during

TABLE 1 | Fractal dimensions of faults and well test results.

Well Fractal
dimension of faults

Test production (gas
104 m3/d)

Test
production (water m3/d)

xia14 1.606 Micro-gas layer
guan3 1.5657 0.176
dx22 1.5258 16.4
ls1 1.5061 20.6
wunan1 1.4993 0.03
wang14 1.4949 100
wang13 1.4943 0.005
wangqian2 1.4941 1
wang7 1.4863 Water layer 133
xue1 1.4854 Water layer No data were collected
s05 1.4791 Gas layer (log interpretation)
wang12 1.466 0.05
tai19 1.4358 0.005
fu1 1.4233 Dry layer
tai15 1.4129 Water layer 2.66
tai13 1.4078 0.008
tai25 1.4046 0.1
bao4 1.3882 0.015
bao3 1.3789 0.1
bao7 1.3687 Trace amount of gas
gaomu1 1.3416 2.95
xia19 1.1734 Dry layer
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different periods. In addition, faults significantly affect
hydrocarbon accumulation. Therefore, the fractal dimensions
of faults may be related to oil and gas distributions, and thus
can serve as an essential parameter for predicting and evaluating
hydrocarbon distribution and accumulation patterns. The lateral
variation in the fractal dimensions of faults in the study area
reflects the spatiotemporal heterogeneity of fault development
processes, as well as differences in the geometry of the fault
systems. These differences in tectonic evolution directly affect the
area of the hydrocarbon-bearing zones and the production of
fluid (Zhou et al., 1997). It is generally believed that the fractal
dimension comprehensively reflects the scale, distribution
density, spatial pattern, and formation mechanism of faults.
We defined the wells with test gas production of more than
1 × 104 m3/d in the Maokou Formation in southeast Sichuan as
high-producing wells, those with test gas production of (0.1–1) ×
104 m3/d as medium-producing wells, and those with production
less than or equal to 0.1 × 104 m3/d as low-producing wells. The
relationship between the fractal dimensions and oil and gas
production during well testing in southeast Sichuan was

explored using the capacity dimension (q = 0) as an example
(Table 1). Generally, faults are densely distributed in areas
containing faults with high fractal dimensions, and their
tectonic structures are complex. These faults serve as favorable
channels for upward fluid migration. Most of the wells in the
relatively high-value region (with fractal dimensions of
1.49–1.57) were medium- to high-producing wells. For
example, the test gas production of wells “ls1” and “dx22” are
20.6 × 104 and 16.4 × 104 m3/d, respectively; the test production
of well “wang14” is as high as 100 × 104 m3/d, with a good
showing of oil and gas. However, faults generated by excessively
intense tectonic movements can destroy the hydrocarbon
preservation environment and cause the escape or migration
of oil and gas. For instance, the fractal dimension of well
“xia14” in the core of the high-value area is 1.606, but the
presence of oil and gas is poor, appearing as a micro-gas layer
in gas testing. The level of fault development is generally low in
fault regions with low fractal dimensions. There are too few
channels for fluid movement, which is not conducive to the
migration and accumulation of oil and gas. For example, the well

FIGURE 9 | Relatively favorable areas for oil and gas preservation in southeast Sichuan (labeled with fractal dimensions of faults).
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test results of wells “bao3” and “tai15” in the low-value area reveal
gas production of 0.1 × 104 m3/d and a water layer, respectively.
In summary, oil and gas reservoirs are expected to appear in
relatively mild tectonic environments with low structural relief,
facilitating oil and gas migration and ensuring that the faults do
not destroy the caprock. Thus, the fractal dimensions of faults in a
favorable area should be neither too high nor too low.
Considering these factors, we selected two contours with
fractal dimensions of 1.49 and 1.57 as boundary lines to divide
the study area into three zones. The zone lying roughly along the
wells “ls1–xia14–guan3” (with fractal dimensions of 1.49–1.57) is
considered relatively favorable for oil and gas perservation in the
Maokou Formation in southeast Sichuan (Figure 9).

CONCLUSION

We analyzed the multifractal characteristics of faults in the
Maokou Formation in southeast Sichuan by applying an image
recognition–based multifractal calculation method to identify
fault structures. The conclusions and insights obtained are as
follows:

1. In contrast to the conventional approach, the proposed
method uses automatic fault counting with image
recognition technology. Consequently, the data processing
time and research and labor costs are greatly reduced, and
the efficiency is as much as 10 times higher. Moreover, the
accuracy of fault counting can be significantly improved,
making the results more reliable.

2. The fractal dimensions of faults with different orientations and
the planar distribution pattern of fractal dimension contours
indicate tectonic stages and stress magnitudes in the study
area. The tectonic setting of southeast Sichuan was formed
primarily during the Indosinian, Yanshanian, and Himalayan
periods. From the Indosinian to the early Yanshanian, NE-
trending faults with relatively large fractal dimensions
developed under NW–SE compressional tectonic stress.
From the Late Yanshanian to the Early Himalayan, EW-
trending faults with low fractal dimensions were formed by
relatively weak N–S compressional stress. The NW-trending
faults formed by intense NE–SW compressional tectonic stress

in the Late Himalayan are the dominant faults of the Maokou
Formation in southeast Sichuan and have the largest fractal
dimensions.

3. Oil and gas reservoirs are expected to appear in relatively mild
tectonic environments with low structural relief, which
facilitates oil and gas migration and ensures that the faults
do not destroy the caprock. Thus, the fractal dimensions of
faults in favorable areas should be neither too high nor too low.
According to the relationship between the fractal dimensions
of faults and the well test results in southeast Sichuan, the
region along the wells “ls1–xia14–guan3” (with fractal
dimensions of 1.49–1.57) in the study area is recognized as
relatively favorable for oil and gas preservation in the Maokou
Formation.
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