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Hydrogen sulfide (H2S) in carbonate gas reservoirs shows strong relevance with the natural
gas components and has an obvious impact on reservoir types and their petrophysical
properties. In this work, core and fluid samples were collected from the Right Bank of Amu
Darya reservoirs, Turkmenistan. Then, fluid composition analysis and flash evaporation
experiments were performed to investigate the components of reservoir fluid.
Petrophysical properties, that is, porosity and permeability, and micropore structures
of cores were determined by permeameter–porosimeter and scanning electron
microscope (SEM) analysis, respectively. Results in this work indicate that the H2S
content shows obvious relevance to fluid components in carbonate gas reservoirs.
With the increase of H2S content, the total heavy hydrocarbons and potential
condensate content decrease, while the condensate density increases. In addition, at
higher H2S content, larger pore and vug porosity was observed. However, in reservoirs
with lower H2S content, the matrix pores are relatively tight and prone to develop fractures.
Furthermore, sulfate thermochemical reduction (TSR) is found to be the dominant
contributor to high H2S content in carbonate reservoirs through material and
thermodynamic condition analysis. The Gibbs free energy and normalized hydrocarbon
content show that the consumption of heavy hydrocarbons generally increases with
carbon numbers during TSR, but reaches a minimum at the components of C7 to C9.
Finally, the relationship between TSR and rock petrophysical properties was discussed,
indicating that pore volume enlargement and the dissolution effect of acidic gases are the
main mechanisms for TSR to improve carbonate reservoir property. Results in this study
present comprehensive analyses of the links between H2S content and fluid components
and petrophysical properties in carbonate gas reservoirs.
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1 INTRODUCTION

Currently, carbonate gas reservoirs, accounting for about 45% of the
world’s total gas reserves, is one of the most significant gas field types
(Skrebowski, 1996; Wei et al., 2020). Accompanied by different sizes
of pores, fractures, and vugs, carbonate rocks are featured with strong
reservoir heterogeneity and anisotropy (Hu et al., 2019; Zhu et al.,
2019; Liu D. et al., 2020; Lan et al., 2021; Xue et al., 2021). Hence,
carbonate gas reservoirs show significant differences in reservoir
characteristics, flow capabilities, and production performances
(Cheng et al., 2017; Liu L.-l. et al., 2020; Chen et al., 2021; Zhao
et al., 2021). On the other hand, natural gas containing hydrogen
sulfide (H2S) is mostly presented in carbonate reservoirs. Fei et al.
(2010) investigated 52 H2S-bearing oil and natural gas fields all over
the world, 48 of which are limestone or dolomite reservoirs. As a
consequence, numerous works on the generation and distribution of
H2S and its effect on reservoir features have been done to reveal the
relationship between H2S and the carbonate reservoir (Zhang et al.,
2008; He et al., 2019; Liao et al., 2020).

At present, thermal decomposition of sulfur compounds
(TDS), bacterial sulfate reduction (BSR), and sulfate
thermochemical reduction (TSR) have been regarded as the
most significant origins of H2S in natural gas reservoirs
(Basafa and Hawboldt, 2019; Zhao et al., 2019). Due to the
toxic effect of H2S on bacteria, the amount of H2S from the
BSR process is negligible generally (Machel, 2001; Xiao et al.,
2021). As for the TDS, the required sulfur compounds such as
thiol, thioether, and thiophene are rather scarce in natural gas
reservoirs. Besides, the temperature threshold for sufficient
thermal decomposition is commonly considered to be not
lower than 150°C (Shi and Wu, 2021). Therefore, TSR is
regarded as the main contribution to the H2S in carbonate gas
reservoirs (Li et al., 2019; Jia et al., 2021). The favorable
conditions of the TSR progress have been widely discussed. In
general, the material condition and the thermodynamic condition
are believed to be the fundamental preconditions to progress TSR
in the underground formation. Morad et al. (2019) concluded
that the existence of gypsum rock is the basic precondition to
providing sufficient sulfate for TSR. Furthermore, the
development of matrix pores, the content of sulfate ions in
formation water, formation temperature, gas-water contact,
hydrocarbon composition, and so on have been studied on the
generation of H2S (Qu et al., 2019; Liu D. et al., 2020). In addition,
Liu et al. (2022) conducted a physical simulation to depict the
reaction between anhydrite and organic matters for the
generation process of H2S. Tian et al. (2020) have performed
TSR simulations under different temperatures in a closed system
to investigate the effect of temperature on the reaction.

The impact of H2S on the composition of natural gas has been
another concerned topic. In the early 1990s, Manzano et al. (1997)
noticed the effect of H2S on oil and gas composition for the first time.
Since then, to figure out the component variation of natural gas, a
variety of datasets such as petrography, fluid inclusions, and stable
isotopes have been used (Deng et al., 2020; Torghabeh et al., 2021). It
has been declared that acidic gases like H2S and CO2 can increase the
drying coefficient of natural gas (Alawi et al., 2020). Up to now, the
consumption characteristic of hydrocarbon components during TSR

has become the bottleneck for the explanation of the relation between
H2S and hydrocarbon components. Hu et al. (2021) introduced
activation energy to distinguish the hydrocarbon loss during TSR and
found that the consumption of heavy hydrocarbons would increase
along with the carbon numbers. However, the priorities of different
hydrocarbon components during the TSR process and the relevance
of H2S content to the fluid components are still unclear.

Actually, the effect of H2S on the reservoir property should
be an integrant part of related research. Some academics have
revealed the controlling function of H2S on the reservoir
types and physical properties (Zhao et al., 2019; Liu Y. et al.,
2020). Zhang et al. (2005) noticed that the H2S-rich natural
gas is commonly distributed in the porous reservoirs. Cai
et al. (2015) declared that the generation of H2S requires
sufficient pore space and connectivity, and the porosity
should not be less than 3.5% for H2S-bearing carbonate
reservoirs. From the perspective of TSR, the positive
relationship between reservoir porosity and H2S content
has been confirmed by many reports (Mayrhofer et al.,
2014; Wu et al., 2022). Accordingly, the good
connectedness of the matrix can facilitate the TSR progress
for producing H2S; meanwhile, the metasomatism and
dissolution effect of acidic gases can promote the
development of high-quality carbonate reservoirs (Lai
et al., 2021). Therefore, it is legitimate to declare that TSR
plays a positive role in the improvement of carbonate
reservoir properties. On basis of this, the study can be
furthered by performing a systemic analysis of the pore
structure and petrophysical properties of carbonate
reservoirs within different H2S content and figuring out
the mechanism involved.

The purpose of this research is to illustrate the links between
H2S content on fluid components and reservoir properties of
carbonate gas fields. Core and fluid samples collected from the
Right Bank of Amu Darya carbonate reservoirs were used to
investigate fluid compositions, microscopic pore structure, and
reservoir physical property. Then, the influences of H2S content
on fluid composition and reservoir characteristics were studied in
detail. Finally, based on the mechanism of TSR, the priority of
hydrocarbon consumption was studied, and its effect on
carbonate rock properties was discussed.

2 GEOLOGICAL SETTING

2.1 Fundamental Geological Characteristics
The gas fields of the Right Bank of Amu Darya, Turkmenistan, are
located in the northeast portion of the AmuDarya Basin and close to
Uzbekistan in the north. It is shaped like a narrow strip and can be
divided into six different tectonic units (Figure 1). The
Callovian–Oxfordian carbonate rocks developed in the
Middle–Upper Jurassic Series are the most significant pay zone.
The overlying Kimmeridgian–Tithonian Stage is regarded as the
giant salt–gypsum formation, with a maximum thickness of 1,600m
(Figure 2). The development of salt-gypsum caprocks can provide
guarantees for sufficient gas supply and preservation. The
sedimentary facies of Callovian–Oxfordian carbonate rocks are
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FIGURE 1 | Location of the research area.

FIGURE 2 | The stratigraphic column of the Right Bank of the Amu Darya reservoirs.
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gradually transforming eastward from evaporative platform-open
platform to platform margin. Dissolved pores and fractures are
widely developed within the reef–shoal bodies.

Currently, sixteen gas fields are being developed in the Right
Bank of Amu Darya. All gas fields involved are featured by the
marine carbonate reservoir with low porosity and strong
heterogeneity. According to core description results, the
porosity of the gas fields is 3.43~11.27% in general and 6.37%
on average, and permeability is 0.02~18.92 mD in general and
0.77 mD on average. Fractures, especially the high-angled ones,
are extensively developed in the pay zone. Reservoir conditions of
those gas fields vary notably with the position. Reservoirs in the
western region are with large thicknesses and good physical
properties with an average porosity of 10%. Conversely,
formation thickness decreases for reservoirs in the middle and
eastern region, and their flow capability is greatly affected by the
natural fractures and vugs.

2.2 H2S Content
H2S content of the gas fields of the Right Bank of Amu Darya
generally ranges from 0.0022% to 5.1084% (shown in Table 1),
including classifications of a high content (>2%), medium
content (0.3–2%), and low content (<0.3%). Figure 3 plots the

isoline of H2S content, and it can be observed that gas fields with
highH2S content are distributed in the western regions; while H2S
content of the middle and eastern regions are mostly categorized
as medium and low content, especially for reservoirs like BP, HJ,
and AG, whose H2S content are lower than 0.05% in general.

There also exists a certain relation between H2S content and
the burial depth: The H2S content showed a decreasing trend with
the increase of depth. It is the distance from the overlying gypsum
rock that provides the explanation for the H2S content variation
with depth. Considering the generation process of H2S in
carbonate reservoirs, the gypsum plays crucial role despite the
different reaction mechanisms involved there. As a result, for gas
reservoirs in the Right Bank of Amu Darya, the H2S content
experiences an obvious rise with the distance closer to the
overlying gypsum rock (Figure 4).

3 MATERIALS AND METHODS

3.1 Materials
The gas and condensate samples from 10 reservoirs in the Right
Bank of the Amu Darya were collected from the wellhead
separator, with an average operating pressure and temperature

TABLE 1 | H2S content of different gas fields.

Gas field H2S content
(%)

Type Gas field H2S content
(%)

Type

MJ 5.1084 High H2S content YC 0.2903 Low H2S content
SM 4.2211 UZ 0.0767
DY 2.0526 KS 0.0541
YL 0.6254 Medium H2S content JR 0.0535
YJ 0.5048 BP 0.0279
JD 0.5029 HJ 0.0213
AK 0.3586 AG 0.0178
AJ 0.3090 JL 0.0022

FIGURE 3 | H2S distribution map of gas fields in the Right Bank of the Amu Darya.
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of 1.82 MPa and 32°C, respectively. All fluid samples were
immediately sealed into sampling bottles to avoid component
loss. Basic information and properties of the gas and condensate
samples are shown in Table 2. To characterize the petrophysical
properties and microscopic pore structure of the reservoir rocks,
ten core samples were collected, with three cores from the western
region and the rest from the middle and east.

3.2 Experimental Methods
3.2.1 Fluid Composition Analysis
The composition of gas and condensate samples was analyzed by the
chromatograph Agilent 7890A, abiding by the Industrial Standard
“Analysis of natural gas composition: Gas chromatographic method
(GB/T 13610-2014).” The hydrocarbons were determined from
methane (C1) to icosane (C20) for the gas samples and from C1 to
tetratriacontane (C34) for the condensate, respectively. The main
nonhydrocarbon components, referring to H2S, nitrogen (N2), and
carbon dioxide (CO2), were also detected. Each component was
expressed with its mole fraction in the gas and condensate sample.

3.2.2 Flash Evaporation Experiment
Flash evaporation experiments of the condensate samples were
performed at the standard temperature and pressure using a flash

tank to separate flash gas and volatile oil from the condensate.
The gas–oil ratio (GOR) and formation volume factor (FVF) of
the condensate and the composition of the gas, flash gas, and
volatile oil were determined. Then, the well production fluid
components under formation conditions were calculated
following the “Test method for reservoir fluid physical
properties (GB/T 26981-2011).”

3.2.3 Core Sample Analysis
The porosity of the core samples was measured based on
Boyle–Mariotte’s law via a Core Porosimeter OFITE 350,
while, an in situ N2 displacement experiment was launched to
obtain the Klinkenberg permeability of the core with a core
flooding device STL-II. All the test procedures abide by the
“Core Analysis Method (SY/T 5336-2019).” Furthermore, the
ultrahigh resolution scanning electron microscope (SEM) device
QUANTA 400 was involved to characterize the structure of the
pores and microfractures within the gold-coated core slice.

4 EXPERIMENTAL RESULTS

4.1 Relationships Between Fluid
Component With H2S Content
4.1.1 Hydrocarbon Components
Methane (CH4) is the dominant component of natural gas. The
measured CH4 content varies from 87.617% to 92.779%, with an
average of 95.308% in the gas phase. The cross-plot of CH4 and H2S
content was plotted to investigate their relationships, as shown in
Figure 5. However, the positive correlation is weak. Heavy
hydrocarbons, that is, the C2+ component, mainly appear in the
condensate phase; for gas and condensate samples, the C2+ content

FIGURE 4 | The relation between H2S content and the burial depth.

TABLE 2 | Basic information and physical properties of samples.

Type Formation information Operating condition Sample property

Depth (m) Pressure
(MPa)

Temperature
(°C)

Sampling
position

Pressure (MPa) Temperature
(°C)

Numbers Relative
density

Gas 3,150–3,570 53–62 107–121 Wellhead
separator

0.45–3.46; 1.82
average

24–36; 32 average 22 0.64
Condensate 22 0.78

FIGURE 5 | Relationship between CH4 and H2S content.
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was 4.459% and 87.984%, respectively. The C2+ content generally
presents a negative correlation with the increase of H2S content,
especially for samples withmedium and highH2S content (Figure 6).
Correspondingly, the dry coefficient, referring to the ratio of the CH4

content to the C2+ content in natural gas, shows a positive trend with
the H2S content (Figure 7).

To investigate the relationship between condensate and H2S
content, the potential condensate contents were calculated from
the flash evaporation results of the well production fluids. The
potential content decreases and the density increases with the H2S
content as shown in Figure 8, indicating that the heavy hydrocarbons
could act as reactants in the production ofH2S, but their consumption
would not increase monotonously with the carbon number.

4.1.2 Nonhydrocarbon Components
N2 is relatively scarce in the Right Bank of Amu Darya and its
content varies slightly within the limit of 0.271%–0.516% in the
well production fluid. The studied gas fields can be defined as
medium CO2 content reservoirs, whose content ranges from
0.917% to 4.556%, according to “The classification of the gas
pool (SY/T 6168-2009).” As shown in Figure 9, CO2 content is
independent of H2S at low and medium content ranges, while a
positive correlation can be found between CO2 and H2S at high
H2S content. In addition, CO2 content is greater than H2S content
within all samples despite the H2S degree.

4.2 Reservoir Characteristics With H2S
Content
4.2.1 Porosity and Permeability
Similar to most carbonate reservoirs with fractures, the
porosity and permeability of studied reservoirs do not show
a clear positive correlation (Figure 10). As shown in Figure 11,
the porosity increases with the increase of H2S content, and the
same trend can be found for the permeability of core samples
without fractures. However, for core samples with fractures,
there is no clear correlation observed between permeability
and H2S content as permeability is mainly affected by
fractures. Actually, due to the lower aperture and higher
permeability of fractures, the Poro–Perm Relation would
somehow overturn in fractured reservoirs, which explains
the differences in porosity and permeability with H2S
content. Therefore, porosity should be an intrinsic factor to
figure out the effect of H2S on reservoir physical properties.

FIGURE 6 | Relationship between C2+ and H2S content.

FIGURE 7 | Relationship between dry coefficient and H2S content.

FIGURE 8 | Relationship between condensate property and H2S content. (A) Potential condensate content. (B) Condensate density.
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4.2.2 Reservoir Types
The Right Bank of Amu Darya experienced multistage tectonic
movement, and a large number of structural fractures were
generated during that process. Meanwhile, the dissolution of
the carbonate rocks caused by acidic gases can result in a large
number of dissolved pores and vugs. As a consequence, diverse
reservoir types have been discriminated in this area, among which
pore, pore-fracture, pore-vug, and fracture are the most
representative types.

The SEM analysis facilitates the connections between H2S and
reservoirmicrostructures. As can be seen in Figure 12: 1)Well DY-
21, whose H2S content was measured to be 2.0526%, was classified
as the pore-vug type. The porosity and permeability were 11.47%
and 0.55 mD, respectively. The SEM slice can observe a distinct
moldic vug associated with the primary pores. 2) Well AJ-21,
whose H2S content was measured to be 0.3090%, was classified as
the pore type. The porosity and permeability were 7.31% and
0.062 mD, respectively. The pore structure showed great
homogeneity and intercrystal pores were commonly distributed.
3) BL-22 well, whose H2S content was measured to be 0.0279%,
was classified as the pore-fracture type. The porosity and
permeability were 6.41% and 11.64 mD, respectively. The SEM
slice was penetrated by a dissolved fracture, while the surrounding
pores in the matrix are rather tight. This indicates that the H2S
could be regarded as one of the evidence to characterize the
reservoir property for the gas fields in the Right Bank of Amu
Darya. With higher H2S content, the porosity would be larger and
the reservoir types mainly consist of pore and pore-vug. Yet, for
reservoirs with lowH2S content, the matrix pore could be relatively
tight and prone to develop with fractures.

To further expand this knowledge, H2S content, porosity,
and brief reservoir descriptions of 10 major gas fields from
different regions of the Right Bank of Amu Darya are
summarized in Table 3. It shows that gas fields in the
western region can be characterized as high H2S content
and high porosity reservoirs. However, H2S content rarely
exceeds 0.07% in the middle and east where fractures are well
developed. In particular, for gas field JL with H2S content of
0.0022%, the porosity almost reaches the lower limit of the
effective pore, and the field is thus defined as a pure fractured
reservoir.

5 DISCUSSION

5.1 H2S Origin of Gas Fields in the Right
Bank of Amu Darya
With respect to the TDS and BSR, TSR has been regarded as
the most significant H2S origin. TSR refers to a series of
reduction reactions between sulfates and hydrocarbons, and
the sulfates are consequently reduced into acidic gases, that is,

FIGURE 10 | Porosity and permeability of core samples.

FIGURE 11 | Relationship between reservoir physical properties and H2S contents.

FIGURE 9 | Relationship between CO2 and H2S content.
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H2S and CO2. The reaction process can be summarized in Eq.
1 (Zhang et al.,2008; He et al., 2019):

CnH2n+2 + nCaSO4 → nCaCO3 +H2S + nH2O ± CO2 ± S (1)
It is generally believed that the TSR requires the following

preconditions: hydrocarbons, sulfate (material conditions), and

high temperature (thermodynamic condition). Because the TSR
can hardly advance with the anhydrite, the reaction rate
depends on the dissolution of calcium sulfate (CaSO4) in the
formation water. Therefore, higher connectivity is essential to
allow adequately mixing between dissolved sulfate with
hydrocarbons.

FIGURE 12 | The SEM images of core samples. (A)Well DY-21, showing a moldic vug; (B)Well AJ-21, developing with intercrystal pores; (C) BL-22Well, showing
a dissolved fracture.

TABLE 3 | H2S content and reservoir characteristics of typical fields.

Gas
field

Region H2S
content

(%)

Porosity
(%)

Reservoir
description

Reservoir
type

DY West 2.0526 9.27–13.66 Brownish gray silty limestone, light gray micritic limestone; primary pores are well developed, along
with subsize vugs

Pore-vug

SM West 4.2211 8.89–14.85 Brownish gray limestone, fine quality; the whole reservoir is of good physical properties with
medium–high porosity

Pore-vug

JD West 0.5029 9.37–12.81 Light gray silty dolomite, with good physical properties Pore
YJ Middle 0.5048 7.46–11.16 Light gray silty limestone; high porosity and permeability, low water saturation Pore-vug
BP Middle 0.0279 4.61–9.81 Dark gray and brownish gray micritic limestone, with high fracture development degree Pore-fracture
UZ Middle 0.0767 6.37–10.13 Grayish brown and light gray micritic limestone or silty limestone; microfractures are well developed Pore-fracture
JR Middle 0.0535 5.72–7.53 Brownish gray silty limestone; high angle fractures are developed Pore-fracture
AJ Middle 0.3090 8.62–9.93 Light gray bioclastic limestone; dissolved fracture pores and vugs are developed Pore-vug
AG East 0.0178 5.16–7.03 Brownish gray silty limestone; medium-scale fractures intensively are developed Pore-fracture
JL East 0.0022 3.53–5.04 Gray, brownish-gray micritic limestone; tight matrix pores, fractures are well developed Fracture

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 9106668

Cheng et al. H2S Content of Carbonate Reservoir

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


For the carbonate gas reservoirs in the Right Bank of Amu Darya,
the material conditions, that is, hydrocarbons and sulfate, have
undoubtedly met the requirement of TSR. Furthermore, the
overlying gypsum-salt rock and the interbedded limestone-gypsum
layers, dispersing in the upper section of the Callovian-Oxfordian
Stage, provide direct contact for hydrocarbons and CaSO4 to
complete the reaction in the pay zone. The current formation
temperature of the Amu Darya Basin ranges from 100 to 130°C.
In view of the tectonic movement in the Himalayan period, the
formation experienced higher temperatures. According to the
inclusions homogenization temperature, the paleo–geotemperature
of the reservoir had once reached 140°C, which exceeds the
temperature threshold of TSR. Therefore, TSR is the dominant
origin of H2S in carbonate gas reservoirs in the Right Bank of
Amu Darya. Ma et al. (2021) confirm that TSR is the principal
producer of H2S in the Right Bank of Amu Darya and also the
contributor to the development of secondary pores.

5.2 Hydrocarbon Consumptions in the TSR
Process
To clarify the relation between hydrocarbons and H2S content,
the priority of different hydrocarbon components involved in the
TSR should be studied. According to the Van’t Hoff isothermal
formula (Atkins and De, 2006), the Gibbs free energy of each
component can be determined with Eq. 2.

ΔrGm � ΔrG
Θ
m + RT lnQ (2)

where ΔrGm is the Gibbs free energy, kJ/mol; ΔrGΘ
m is the

standard formation free energy at 298.15 K, kJ/mol; R is the
thermodynamic constant, 8.314 J/(mol·K); T is the reaction
temperature, K; Q is the reaction quotient.

Figure 13 shows the calculated Gibbs free energy of CH4 to
C4H10 involved in TSR at different temperatures. It can be seen that:
1) The Gibbs free energy is decreasing dramatically with the increased
temperature, which elucidates the necessity of high temperature for
activating the reaction. 2) The Gibbs free energy of CH4 stays at a high
level despite the rising temperature, indicating that CH4 is difficult to
participate in the TSR reaction. This coincides with the statement
mentioned in Section 4.1 that “no clear relation observed between
CH4 and H2S content.” 3) For heavy hydrocarbons from C2H6 to
C4H10, all calculatedGibbs free energy are less than−100 kJ/mol at the
temperature of 120–140 °C, which demonstrates that these
components are available in TSR at the reservoir conditions. In
addition, the Gibbs free energy decreases with the increase of
carbon numbers, indicating a rising trend of the consumption
from C2H6 to C4H10.

Furthermore, to investigate the relative decrement of each
hydrocarbon component along with per unit H2S content growth,
the normalized hydrocarbon content was used in this study. With
well production fluid composition given, regressions between the
normalized content of each hydrocarbon component and the H2S
content can be established. The correlation slope can thus be
employed to describe the consumption involved in TSR.
Considering that the slope showed a negative value, the
absolute value of the slope was adopted and named the
“relative consumption.” The definition of the normalized
content and the regression results for each component is
attached in Supplementary Appendix.

The relative consumptions of different heavy hydrocarbon
components are shown in Figure 14. It was found that there is
a V-shaped relationship between relative consumption and carbon
number. The consumptions reach the minimum value at C7 and
then increase with carbon numbers; as a consequence, the
consumptions of C7 to C9 are relatively low among all heavy
hydrocarbon components except for C2. This provides a reasonable
interpretation for the variation of condensate content and density
with H2S content. The decrease of potential condensate content is
caused by the consumption of total heavy hydrocarbons; while the
remnant of intermediate components, typified by C7 to C9, would
lead to an increase in condensate density.

To sum up, heavy hydrocarbons act as the reactant in TSR, while
CH4 can hardly take part in the reaction. The consumption of heavy
hydrocarbons generally increases with carbon numbers but reaches a
minimum at C7~C9. The relative consumption method facilitates the
reveal of hydrocarbon consumption and explains the dynamic of gas
and condensate features with H2S content.

5.3 Influence of TSR on Nonhydrocarbon
Components
As mentioned earlier, inert gases like N2 are merely affected by H2S
content, whereas the CO2 content shows a positive correlation with
H2S content at higher concentrations. This is because CO2 is also one
of the products of TSR. In addition, H2S dissolution in formation
water can form hydrosulfuric acid, which will further react with
carbonate minerals to produce CO2. It explains the content of CO2 is
higher than that of H2S, which can be regarded as one of the symbols
of carbonate reservoirs emerging TSR.

FIGURE 13 | The Gibbs free energy of C2H6 to C4H10 during TSR at
different temperatures.
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5.4 Improvement of Reservoir Property
Through TSR
From the perspective of TSR, the contribution of H2S to the
improvement of porosity can then be discerned. The controlling
factor of TSR on reservoir physical properties and reservoir types
can be manifested in the following aspects:

1) Compared to the fractured reservoirs, pore and pore-vug
typed reservoirs are of higher connectedness and larger
storage capacity, which not only provide space for the
mutual contact of the reactants but also ensure a
continuous supply of reactants and transfer of products.
This prompts the TSR in the right direction. It explains
why H2S-bearing natural gas fields are generally discovered
in large porous reservoirs.

2) It can be noticed from Eq. 1 that 1 mol of calcite (CaCO3)
can be generated with 1 mol of anhydrite (CaSO4). The
molar volume of CaCO3 and CaSO4 are 37 cm3/mol and
47 cm3/mol, respectively. Therefore, after 1 mol of
anhydrite is involved in the reaction, the pore volume of
the reservoir rock would increase by about 10 cm3. This
process is usually called the “pore volume enlargement”
effect of the TSR.

3) As the products of TSR, large amounts of H2S and CO2, which
are acidic gases and soluble in formation water, played a
significant role in the growth of secondary pores and vugs in
carbonate rock. It is also an important mechanism to improve
the porosity of carbonate reservoirs.

6 CONCLUSION

1) The H2S content shows obvious relevance to fluid components in
carbonate gas reservoirs. With the increase of H2S content, the
total content of heavy hydrocarbons decreases, causing the
reduction of potential condensate content, while the condensate
density is increasing with the H2S content. In high H2S content
reservoirs, a positive correlation was observed between CO2

content and H2S content.

2) With higher H2S content, the porosity would be larger and the
reservoir rock mainly consists of pores and vugs; while for
reservoirs with low H2S content, the matrix pores could be
relatively tight and prone to develop with fractures.

3) TSR is the dominant hydrogen sulfide origin for H2S-rich
carbonate reservoirs resembling the Right Bank of Amu
Darya. The consumption of heavy hydrocarbons during TSR
generally increases with carbon numbers but would reach a
minimum at the components of C7 to C9. The pore volume
enlargement and the dissolution effect of acidic gases can be
regarded as the main mechanisms for the improvement of the
reservoir property of TSR.
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