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Droughts and heatwaves are rising concerns with regard to the frequent

formation of the compound or concurrent extremes (CEs), which can cause

greater havoc than an individual event of a higher magnitude. Recently, they

have been frequently detected to form CEs together or with other events

(e.g., floods, aridity, and humidity events) concurrently or with spatiotemporal

lags. Therefore, this systematic review assesses these CEs by reviewing the

following aspects: CE hotspots, events, and variable combinations that form

CEs; frequently analyzed CE parameters (e.g., frequency and severity); large-

scale modes of climate variability (CV) as drivers alongside the approaches to

relate them to CEs; and CE impacts (e.g., yield loss and fire risk) alongside the

impact integration approaches from 166 screened publications. Additionally,

three varied analysis frameworks of CEs are summarized to highlight the

different analysis components of drought- and heatwave-associated CEs,

which is the novelty of this study. The analysis frameworks vary with regard

to the three major assessment objectives: only CE parameters (event–event),

driver association (event–driver), and impacts (event–impact). According to this

review, the most frequently reported hotspots of these CEs in global studies are

southern Africa, Australia, South America, and Southeast Asia. In regional

studies, several vital hotspots (e.g., Iberian Peninsula, Balkans, and

Mediterranean Basin) have been reported, some of which have not been

mentioned in global studies because they usually report hotspots as broader

regions. In addition, different event combinations (e.g., drought and heatwave;

and heatwave and stagnation) are analyzed by varying the combination of

variables, namely, temperature, precipitation, and their derived indices. Thus,

this study presents three major analysis frameworks and components of

drought- and heatwave-associated CE analysis for prospective researchers.
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1 Introduction

Concurrent or compound extremes (CEs), which can be

defined as the simultaneous or sequential occurrence of more

than two extremes at a single or multiple locations, may cause

greater havoc than a single extreme of a higher magnitude (Kopp

et al., 2017; Hao et al., 2018c). Although the primary idea of the

joint probability of multiple extremes emerged decades ago, the

explicit research on CEs has surged in the last few years

(2018–2021). Especially on the verge of potential climate

change, along with the plausible changes in meteorological

variables such as temperature, precipitation,

evapotranspiration, and wind speed, this research area has

drawn more attention (Naveendrakumar et al., 2019).

Examples of CEs may include drought and heatwave, drought

and flood, temperature and precipitation extremes, and floods

from storm surges and river discharges. Among these various

combinations of CEs, one of the most explored is compound

drought and heatwave. In addition, other combinations of CEs

include either drought (dry event) or heatwave (hot event), for

example, subsequent wet and dry events, concurrent day and

nighttime heatwaves, and compound heatwave and stagnation.

Drought- and heatwave-associated CEs are among the most

studied events and have significantly increasing temporal and

spatial trends across various parts of the world. For instance, the

global land and cropland areas affected by dry and hot CEs have

reportedly increased 1.7–1.8 times in the last 50 years of the 20th

and 21st centuries across different seasons, mostly in summer

(Wu et al., 2021d). Such claims of increasing trends have also

frequently been reported in many regional- and national-scale

studies (Russo et al., 2019; Xu and Luo, 2019; Kong et al., 2020;

Geirinhas et al., 2021). In China, hot and dry CEs have increased

2.3 times between 1957 and 2018, with 90% of the dry events

being associated with hot events in 2010 (Ye et al., 2019b; Kong

et al., 2020; Feng et al., 2021c). Similarly, Mishra et al. (2021)

predicted a fivefold increase in the frequency of hot and dry CEs

in India by the end of the 21st century compared with the

1951–2016 baseline. In the past 150 years, an increasing

frequency of dry and hot months has been reported in

Southeast Australia (Kirono et al., 2017). Additionally, the

association of droughts with other events, such as pluvial

floods, was reported in 5.9%–7.6% of global land areas

between 1950 and 2016, with pluvial floods following

approximately 11% of droughts during boreal spring–summer

or fall–winter (He and Sheffield, 2020). For event combinations

of heatwave and ozone (O3), Ban et al. (2022) predicted an

increase of 34.6 in annual mean CE days under high-emission

scenarios (shared socioeconomic pathways (SSP): 3–7.0) in

2071–2090 compared with the historical baseline of

1995–2004 in a global analysis (Ban et al., 2022). Mukherjee

and Mishra (2018) reported an increase of 2–12 times in the

concurrent day and nighttime heatwaves using various

representative concentration pathways (RCPs), namely, RCP

2.6–8.5 (Mukherjee and Mishra, 2018). Based on an analysis

of the 2020 heatwave (concurrent day and nighttime

temperatures) in central South America, the high magnitude

and duration of this recent heatwave have been reported in many

parts of South American countries, such as southeastern Brazil,

northern Argentina, southeastern Paraguay, eastern Bolivia, and

Pantanal wetland (Marengo et al., 2022). In addition, in a global

analysis of the 1955–2014 period, the increasing frequency of

compound day and nighttime warm-dry and warm-humid

events caused by greenhouse gases have been reported to be

elevated by 1.5–5 and 2–9 times, respectively (Chiang et al.,

2022a).

Drought- and heatwave-associated CEs have not only been

expanding in spatiotemporal extents across various parts of the

world but have also severely affected impact variables and aspects

such as crop yields, fire risk, vegetation productivity, air quality,

and human health. A noticeable impact on global maize yield has

been reported in compound drought and heatwave scenarios

(31% decrease), whereas heatwaves (4% decrease) or drought (7%

decrease) alone has a significantly lower impact (Feng et al.,

2019). Feng and Hao (2020) associated the yield loss across the

United States and France in 61% of cases with compound dry and

hot conditions in a global study across top maize-growing

countries (Feng and Hao, 2020). In another global study, He

et al. (2022) reported that in each wheat-growing season, more

than 92% of the global wheat-growing regions have faced at least

one dry and hot CE during 1981–2020, along with increases of

28.2% and 33.2% in the CE frequency and duration, respectively.

Furthermore, among the wheat-producing regions, Europe,

eastern China, western United States, and northern Argentina

have been identified as hotspots (He et al., 2022). The increasing

frequency of hot and dry CEs in the top maize-producing regions

has also been reported in a multi-index global analysis for the

periods 1949–1980 and 1981–2012 (Feng et al., 2021a).

Additionally, fire weather and burned areas have been

associated with drought, heatwave, or both in global

(Richardson et al., 2022) and several regional studies (e.g.,

Greece and Brazil) (Gouveia et al., 2016; Libonati et al., 2022),

where fire risk may increase with increasing drought- and

heatwave-associated CEs. In the case of vegetation

productivity, an absence of extremes increased tree coverage

by 10% compared with the control scenario in a global analysis

(Tschumi et al., 2022b). A 26-fold increase in population

exposure to the compound heatwave and ozone scenarios in

the 1980s (under high emission scenario) compared with the

1995–2014 baseline has also been reported in another global

study (Ban et al., 2022). Urbanization and population (e.g.,

exposure and mortality) have been reported to be significantly

associated with CEs in China, indicating the need for potentially

similar associations and research in other parts of the world

(Wang et al., 2021; Zong et al., 2022).

The analysis frameworks of drought- and heatwave-

associated CEs usually vary with the different objectives of
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determining some of the direct spatial/temporal parameters (e.g.,

frequency, spatial extent, and probability) considering only

event–event combinations, association with large-scale modes

of climate variabilities (CVs) as drivers considering event–driver

combinations, or the impact of such CEs on various aspects

considering event–impact combinations. For example, while

some studies reported the probability of joint occurrence of

several event variables or indices, others reported the

likelihood of large-scale CV or atmospheric circulation (AC),

such as the El Niño–Southern Oscillation (ENSO), or agricultural

impact indicators, such as the Standardized Crop Yield Index

(SCI), given the occurrences of CEs. In these cases, the

frameworks mainly varied due to variable types (event, driver,

or impact variables), target parameters to be calculated, and

associated methods (Hao et al., 2018b; Feng and Hao, 2020; Wu

et al., 2021d).

A previous review on CE has addressed four categories of

CEs: 1) preconditioned, in which the impact of hazard is

worsened by a weather- or climate-driven precondition; 2)

multivariate, in which the impact is aggravated by multiple

hazards; 3) temporally compounding, in which the impact is

aggravated by successive hazards; and 4) spatially compounding,

in which the impact is worsened by hazards in multiple

connected locations (Zscheischler et al., 2020). These

categories mostly have common analysis frameworks and

methods with slight variations in which temporally or

spatially compounding data are used as inputs, other than in

the case of concurrent multivariate events (Hao et al., 2018b; De

Luca et al., 2020b; Sutanto et al., 2020). Furthermore, Zhang W.

et al. 2021a discussed the drivers, mechanisms, and methods

associated with these categories.

The quantitative methods to assess CEs parameters vary from

a simple percentile-based peaks-over-threshold (POT) or an

empirical approach to complex copula-based joint probability

(JP) analysis, conditional probability (CP) analysis, pair copula

construction (PCC), or developing a standardized compound

event indicator (SCEI) (Hao et al., 2018a; 2020b;

Cheraghalizadeh et al., 2018; Ribeiro et al., 2020b; Slater et al.,

2020; Mishra et al., 2021). Some basic parameters used to convey

the outcome of CE analysis are frequency, spatial extent,

probability, duration, correlation, and severity. Occasionally,

these same parameters are analyzed by separating the data

using land cover (e.g., croplands and forests) and seasons

(e.g., growing season) or by including an impact variable such

as crop yield to assess the impacts in terms of several

spatiotemporal extents or variables of interest, respectively (Lu

et al., 2018; Manning et al., 2018; Wang et al., 2018; Feng et al.,

2021c).

To date, various review articles have covered different

aspects of CEs, such as definition, involved statistical

procedures, upcoming CEs, dependence structure, and

suggested framework (Leonard et al., 2014; Kopp et al.,

2017; Hao et al., 2018c; Hao and Singh, 2020). For

instance, Hao et al. (2018c) discussed the processes

associated with the statistical characterization and modeling

of extremes in the hydroclimatic domain by discussing

approaches such as multivariate distribution, empirical

approach, Markov Chain Model, and quantile regression

approach. Approaches for detecting and predicting

hydroclimatic extremes (non-stationary cases) and the

associated drivers and matrices were also discussed by

Slater et al. (2020). In addition, some review articles

focused on the potential CEs in the warming world, the

associated drivers influencing the extremes, the potential

risk associated with the extremes, and their frequency

(Goodess, 2013; Kopp et al., 2017; AghaKouchak et al.,

2020). While AghaKouchak et al. (2020) focused on most

potential extremes (e.g., heatwaves, wildfires, extreme

precipitation, and flooding), their interactions as compound

events, associated drivers, and risk, Kopp et al. (2017) directly

discussed various potential CEs such as simultaneous heat and

drought, wildfires associated with hot and dry conditions, and

flooding associated with high precipitation, as well as their

associated risks and impacts of several shared large-scale

modes of CVs along with atmospheric forcing factors such

as ENSO and tipping elements such as Atlantic Meridional

Overturning Circulation. In another review, CEs were mainly

classified into four categories: preconditioned, multivariate,

temporally compounding, and spatially compounding

(Zscheischler et al., 2020). Most review articles have

focused on associated analytical approaches, classification,

driver assessment, and risk assessment, among others. In

contrast, Raymond et al. (2020) primarily focused on a

multidisciplinary (climatic, societal, and economic)

argument for the concept of related extreme events, their

impacts, and potential anthropogenic impacts on CEs

(Raymond et al., 2020).

Despite covering many aspects of CEs, previous review

articles have not discussed the analysis frameworks that vary

with regard to analysis objectives. In addition, the already

discovered hotspots, which are the most impacted or CE-

frequent regions in the corresponding study area as claimed

in many previous publications, have not been summarized in

previous reviews (Ridder et al., 2020; Chiang et al., 2022b; He

et al., 2022). Thus, this study aims to provide an overview of three

major analysis frameworks, along with several aspects of CEs

related to drought- and/or heatwave-associated events. This

review focuses on the following aspects: 1) the already

reported hotspots in previous publications; 2) the event

combinations and associated variables to form CEs; and 3)

three analysis frameworks that vary according to the

objectives of assessing basic CE parameters (event–event),

association with large-scale modes of CVs as drivers

(event–driver), and impact on several aspects (event–impact)

to showcase an overall breakdown of CE analysis focused on

drought- and heatwave-associated CEs.
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2 Methodology

2.1 Article selection process

This systematic review includes 166 articles out of initially

identified 701 records from the following sources: 1) “Web of

Science” (WoS) on 2 September 2022 (642 records) and 2)

“experts” and “Google Scholar” (59 records) for various

timelines since September 2020. Herein, the term “experts”

refers to colleagues, faculties, and reviewers in the field with

whom the topic was discussed or consulted during the initial

topic selection stage. Systematic literature identification,

screening, eligibility, and exclusion/inclusion process are

detailed in the PRISMA diagram (Figure 1).

The identification phase involves searching the WoS using

search keywords. This phase results in 642 records for the

following eight search keywords: “compound extremes”

(73 records), “compound extreme” (75 records), “concurrent

extremes” (22 records), “concurrent extreme” (31 records),

“compound events” (200 records), “compound event”

(81 records), “concurrent events” (124 records), and

“concurrent event” (36 records). Herein, the advanced search

option “topic” (including the title, abstract, and keywords in the

published literature) has been used for the last 10 years

(1 January 2013 to 2 September 2022). Additionally,

59 records are identified from “Google Scholar” by searching

the database and from discussions with “experts” at various

timelines.

In the eligibility and screening phase of the systematic review,

the WoS search records are directly exported to Excel files for

processing with a Python script in the subsequent evaluation

phase. The script is used to automate the subsequent evaluations,

reducing eligible records to 540 articles. The filtering records’

criteria for the excel files are “Language = English,” “Publication

Type = J,” and “Document Type = Article.” In this process, non-

English language records (2), conference proceedings (47), books

(3), review articles (26), early access (13), and other records (9)—

all non-journal records and review articles—are screened. After

FIGURE 1
PRISMA diagram for article inclusion/exclusion in this systematic review.
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excluding duplicates within WoS, the number of records

decreases to 438. Subsequently, the titles, abstracts, and

keywords of these 438 articles from WoS are screened with a

Python code to check for the presence of two sets of keywords of

interest: set 1 comprises CE-defining words (“compound,”

“concurrent,” “concurrently,” “combined,” “copula,”

“dependence,” “dependences,” “multivariate,” “multi-variate,”

“multi,” and “joint”) and set 2 comprises drought- and

heatwave-identifying words (“hot,” “heat,” “heatwave,”

“heatwaves,” “heat waves,” “heat wave,” “warm,” “dry,”

“dryness,” “drought,” “droughts,” and “aridity”). These

keywords are obtained from the 59 articles collected from

“experts” and “Google Scholar” searches at different times

from September 2020. Evidently, the aforementioned words

are more likely to be present in the title, abstract, or keywords

of an article if relevant to our topic of interest. During this

process, the number of articles decreases to 224.

Subsequently, the full texts of 224 articles are reviewed to check

relevancy and further eligibility criteria, with 10 articles unavailable

to download with the available resources and 66 articles either

irrelevant to the topic of interest or not containing adequate

information on the targeted fields of this review. Eligible and

relevant articles must have information about drought- and

heatwave-associated CEs, mainly relevant to the domain of

agriculture, hydrology, and topics of the review (hotspots,

variables, parameters, drivers, impacts, and analysis framework).

Furthermore, the details of the percentage of excluded

articles from WoS, where 148 articles are included after

applying eligibility and inclusion criteria on 214 available full

texts, are as follows:

- The article is written in a foreign language other than

English (0.31%).

- The document type is not an article but a book, a report, or

other (9.2%).

- The document is a review paper, not an original

article (4.05%).

- The article is an early access version (2.02%).

- The article is simply a duplicated version of another article

from the search (15.88%).

- The title, abstract, and keywords showcase no significant

relevance to the topic of interest as per screening with CE-

defining words and drought-heatwave relevant words

(33.33%).

- The full-text article is unobtainable using the available

access and resources, and only the title and abstract are

accessible (1.56%).

- The overall article is not related to a topic of interest or does

not contain significant data on the topics of review

(10.30%).

Among the 59 records from “Google Scholar” and “experts,”

6 records are excluded based on the evaluation criteria

incorporated after the screening and eligibility phase and

35 records are deemed as duplicates based on WoS. This

results in 18 new articles.

The inclusion phase contains articles after the identification,

screening and eligibility, and evaluation phases. A total of 166

(148 + 18) full-text articles are included in the final stage of the

review by following the standard literature inclusion process for

systematic reviews (Anandhi et al., 2018; Peng et al., 2020).

2.2 Data collection and processing

Based on the 166 collected articles, a data collection table

is prepared, comprising 14 fields related to CEs, namely,

“studied region,” “study year,” “study timeline,” “hotspots,”

“studied event combinations of CE,” “variable combinations,”

“scale of the data,” “CE detection methods,” “analyzed CE

parameters or CE characteristics,” “thresholds,” “assessed

impacts” (if any analyzed), “impact integration approach”

(if applicable), “CVs as drivers” (if analyzed), and

“methods to connect CVs and CEs” (if applicable).

Subsequently, the collected data fields are organized into

several sections, tables, and figures to represent the results

associated with the objectives of this systematic review. The

hotspot map (Section 3.1) is drawn in a GIS environment

using the symbology option, namely, the “graduated symbol.”

Separate point shapefiles for each CE combination with

hotspots reported in global studies are digitized using GIS.

The number of studies that report a region as a hotspot is

manually counted in the attribute table. After digitizing all

reported hotspots and their counts in the attribute tables, the

final dot density map is plotted by assigning different colors to

different event combinations and by assigning different sizes

of dots based on the number of studies that report a certain

region as a hotspot. Data are obtained only from global studies

(44) that report hotspots. The hotspots reported in the

regional studies are plotted as stacked bar plots. Regional

hotspots are not plotted on the map as different regions

involve varying numbers of studies, and unlike global

studies, the extents of the study areas are not similar.

Consequently, regions with a higher number of studies

reporting hotspots have higher dot densities, irrespective of

whether a hotspot is more impacted by CEs compared to other

regions of the world. The regional hotspots, distribution of

publications by year, types of extreme studied for various

study regions, and other figures and tables are prepared in the

word processor.

Thus, the overall reviewed contents on drought- and

heatwave-associated CEs are organized in the following

workflow: 1) the hotspots of CEs found in reviewed

publications; 2) the event combinations to form drought-

and heatwave-associated CEs; 3) variables, associated data

types, and thresholds to define different CEs; 4) CE analysis

Frontiers in Earth Science frontiersin.org05

Afroz et al. 10.3389/feart.2022.914437

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.914437


framework with frequently analyzed parameters, the

association of large-scale modes of CVs as drivers, and the

assessment of impacts with regard to several aspects; 5)

interrelation of CEs with ecosystems; 6) assumption and

limitations; and 7) research gaps and potential future work.

The major objectives, associated data fields used to produce

the results, associated sections, and related graphics (tables

and figures) are represented as a workflow diagram of the

review strategies in Figure 2.

3 Results and discussions

3.1 CE hotspots in reviewed publications

Most studies on CEs are conducted on global or national

scales, with China, the United States, and India being the most

studied countries. In global studies, South Africa, South America,

Australia, southeastern Asia, South Asia, and the United States

are evidently regarded as significantly impacted zones with

FIGURE 2
Workflow to represent the outcome of the review from the collected data.
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regard to various CE combinations, especially compound

drought and heatwave (Feng et al., 2019; Zhan et al., 2020;

Wu et al., 2021d). In addition, hotspots for eight other

drought- and heatwave-associated CEs (i.e., drought and fire

risk, precipitation and temperature, wet and dry, warm and wet,

warm and humid, heatwave and ozone, heatwave following

cyclones, and drought and aridity) are included as reported in

the global studies. Among these event combinations, drought and

fire risk hotspots are situated in the western United States,

various parts of South America, Australia, and Southeast Asia

(Ridder et al., 2020; Richardson et al., 2022). A single hotspot for

heat followed by a tropical cyclone has been reported in Australia

(Matthews et al., 2019). For warm and humid events, hotspots are

prevalent in various parts of the United States, South America,

Southeast Asia, and Australia (Li et al., 2020; Raymond et al.,

2021; Chiang et al., 2022a). These hotspots for the

aforementioned CE combinations are represented in Figure 3,

where the dot densities indicate the number of publications that

have reported the places as CE hotspots in 44 global studies. The

associated data are listed in Supplementary Table S1 in the

supplementary document.

In regional studies, various event combinations are assessed in

different regions. Furthermore, the regions with higher numbers of

studies (e.g., China and the United States) report the hotspots

within such regions more frequently, even if the hotspots are not

that frequently mentioned across the global studies. However,

some important hotspots (e.g., Iberian Peninsula, Balkans,

Mediterranean Basin, Pantanal, and Amazon) have significantly

increasing trends concerning CEs in regional studies, whereas

most global studies do not explicitly mention some of them and

FIGURE 3
Graduated symbol plot to represent the hotspots detected in the 44 global publications. The number below each CE event combination
indicates the number of studies that mentioned the location as a hotspot. The graduated point symbols are intended to represent the approximate
locations of the broad regions found as hotspots in the global map, not the exact locations. The size of the graduated dot symbol is proportional to
the count of global publications claiming a region as a hotspot.
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FIGURE 4
(A-H) Hotspots found in the regional studies. The vertical axis represents the number of regional studies where the region was seen as hotspot
of CEs. The study numbers are not proportional to the severity of the hotspots compared to the other areas but indicate how frequently they were
studied. The horizontal axis represents the regions found as hotspots in regional studies. IP: Iberian Peninsula, BP: Balkan Peninsula, MB:
Mediterranean Basin, CR: Czech Republic, LP: Loess Plateau, UNB: Upper Nile Basin.
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rather report the hotspots as broader regions (Bezak and Mikoš,

2020; Vogel et al., 2021; Bento et al., 2022; Marengo et al., 2022).

Figure 4 showcases the stacked bar plots that represent the regional

hotspots across different event combinations. In these plots, the

number of studies that report a regional hotspot is biased by the

frequency of studies in the region.

FIGURE 5
(A) Distribution of papers listing event combinations of drought and heatwave-associated extremes by study regions. (B) Distribution of papers
listing publication years by the study regions (EP: Europe; AF: South Africa/Southern Africa/Africa; SA: South America; AS: Australia; MB:
Mediterranean Basin; others: Germany, France, Canada, Mongolia, Nigeria, Russia, Upper Nile Basin, etc.).

Frontiers in Earth Science frontiersin.org09

Afroz et al. 10.3389/feart.2022.914437

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.914437


3.2 Event combinations of drought- and
heatwave-associated CEs with region and
publication year distributions

In the reviewed studies, various combinations of several types

of drought- and heatwave-associated CEs are found. The

corresponding region-based distribution is presented in

Figure 5A, representing the study gaps and the combinations

of CEs explored in each region. In addition, for the event

combinations mentioned in Figure 5A, a few other

combinations of CEs are observed that have been rarely

studied (one case). These include hot, dry, and windy events;

drought and wind; and concurrent fire drivers (Ridder et al.,

2020; Tavakol et al., 2020). Among the several temperature-,

precipitation-, or drought-related extremes, compound drought

and heatwave is the most studied joint extreme. Other types or

combinations of CEs have been studied in different reviewed

publications using several variables, indices, and thresholds to

define them. In addition to hot and dry conditions, any of the

other three combinations of temperature and precipitation

extremes (cool and dry; hot and wet; and cool and wet) have

been studied together in some studies (22 studies) (Wu et al.,

2019c; Zhan et al., 2020; Camara et al., 2022).

Evidently, most studies on CEs, including drought- and

heatwave-associated CEs, have been conducted since 2018

(Figure 5B). Many studies have been conducted on a global

scale to focus on the frequency of CEs in different parts of the

world and on various global issues (Feng et al., 2019; Mukherjee

et al., 2020). In addition, more studies have been conducted in

China and the United States.

3.3 Variables with associated datatypes
and thresholds to define different CEs

Various publications have qualitatively and quantitatively

explained compound drought- and heatwave-related extremes

and their impacts with several variables and indices (Hao et al.,

2018a; 2020c; Cheraghalizadeh et al., 2018; Brunner et al., 2021).

However, the most common variables for assessing these CEs are

temperature (maximum, minimum, and average) and

precipitation, whereas the most widely used indices are the

Standardized Precipitation Index (SPI) and Standardized

Temperature Index (STI) derived from the corresponding

variables (Zscheischler and Seneviratne, 2017; Mukherjee and

Mishra, 2018; Hao et al., 2019a; Brunner et al., 2021). Stream flow

and soil moisture are the most commonly used variables for

predicting hydrological and agricultural droughts, respectively

(Cheraghalizadeh et al., 2018; Zhou et al., 2019a; Mishra et al.,

2021). Based on the study objective, various previous drought-

and heatwave-associated CE articles have discussed the following

variables: other climate variables, such as relative humidity (RH),

vapor pressure, wind speed, and evapotranspiration; large-scale

modes of ACs or CVs, such as ENSO and Pacific Decadal

Oscillation (PDO); impacted variables and aspects, such as

crop yields, land use, vegetation vulnerability, and fire risk

(Manning et al., 2018; Zhou et al., 2019b; Coffel et al., 2019;

Hao et al., 2020c; Feng et al., 2021c; Vogel et al., 2021). In several

cases, the following different indices have been used: single-

variable dependent indices, such as SPI, STI, and SCI; multi-

variable dependent indices, such as Standardized Precipitation

Evapotranspiration Index (SPEI) and Palmer Drought Severity

Index (PDSI); and copula-based compound event indicators,

such as SCEI (Hao et al., 2018a; Cheraghalizadeh et al., 2018;

De Luca et al., 2020b). The standardized indices and their defined

ranges can illuminate the severity level of extreme events (e.g.,

drought) irrespective of the weather conditions in a region,

enabling the severity in different regions to be compared.

However, direct percentiles applied over variables are

generally suitable for temporal comparison in a region, as the

variables are compared with different percentiles of variables in

the same region (Mishra et al., 2021). The variables or indices

used to define drought, heatwave, and other associated CEs

studied in the reviewed publications are summarized in Tables

1, 2, respectively. Herein, the impacted variables (i.e., SCI) or CVs

(i.e., ENSO) are not included because the objective is to represent

the participating variables/indices (meteorological, hydrological,

and agricultural) as components of each combination of CEs.

The variables/indices/aspects associated with the impacts and

driving forces are explained in Section 3.4.

In a few instances, drought and heatwaves are explained with

other inter-related variables such as RH and vapor pressure density

(VPD) as well as temperature and precipitation. Chiang et al.

(2018) proposed that drought, temperature, RH, and VPD are

interdependent (Chiang et al., 2018). In the case of CEs with

opposing phenomena, such as drought and pluvial flood in the

same location, the lagged occurrences can be considered as the CE,

and theymay be indicated with the same dry/wet condition indices

(PDSI and SPI) or variables (SM) (He and Sheffield, 2020).

In most cases, the articles use monthly data followed by daily

data. Many articles use mixed cases, such as daily, monthly, or

annual data, for different variables (Supplementary Table S2). A

typical mixed case is the use of daily temperature data and either

monthly precipitation total or SPI (Mazdiyasni and

AghaKouchak, 2015; Wu et al., 2019c). Usually, in these cases,

the days crossing a temperature threshold and falling within the

same month, which crosses the precipitation threshold, are

considered CE days. The most commonly used impacted

variable (yield) data are always collected on an annual scale.

In these cases, the growing season means or totals of other event

variables (such as temperature and precipitation) are used as

annual data points along with the annual yield data (Coffel et al.,

2019; Feng and Hao, 2020). The variables are either handled as

direct data or converted into indices.

In most articles, thresholds are defined beyond which

variables/indices are considered extreme. A threshold is
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associated with the conditions linked to the framework for each

variable. The threshold justification is attributed to

“measurable” and “extreme,” where a higher threshold may

result in very few events being detected, and a lower threshold

may result in too many events (Wu et al., 2019b). Therefore,

different articles incorporate various levels of thresholds based

on their objectives (Hao et al., 2018b; Wu et al., 2019b;

Mukherjee et al., 2020). In an article, direct data of the

variable, their derived standardized indices, or both can be

used, which have been tagged as D type, I type, or D-I type,

respectively, in this review article (Table 3). For direct data-

based thresholds, percentile-based statistics are most

commonly used, for example, the 90th percentile of June,

July, and August daily temperatures for all baseline years

(Wu et al., 2019a) or the 10th percentile of growing season

precipitation of wet days during baseline years (Lu et al., 2018).

For index-based fixed thresholds, standardized values of

different severity levels are most commonly used; for

example, Brunner et al. (2021) used SPI values of −1, −1.5,

and −2 to define moderate, severe, and extreme conditions,

respectively (Brunner et al., 2021). The collected information

on data types and example thresholds for different event

combinations is presented in Table 3, respectively.

3.4 CE analysis frameworks

The frameworks of analysis mainly vary based on the

objectives of analyzing only CE events (e.g., drought and

heatwave), the association of CE events with large-scale

modes of CV drivers (e.g., the association of drought and

heatwave with ENSO), or assessing the CE-induced impacts

on various aspects (e.g., impacts of drought and heatwave on

yield, varying CE parameters across different land covers).

The components associated with each CE framework vary

based on different variables (associated with events, drivers,

or impacts); parameters (e.g., frequencies, spatial extents,

probabilities, and correlations) to be analyzed as outcomes;

and methods (e.g., POT, JP, and CP) used to calculate the

parameters. Based on the analysis conducted in the reviewed

articles, the major analysis frameworks have been

summarized into three segments in this systematic review

based on various analysis objectives: 1) event–event that

involves quantification of CE parameters using the

contributing event variables/indices; 2) event–driver that

involves quantifying the association of CEs with large-scale

modes of CVs as drivers using variables/indices that are

representative of events and drivers; and 3) event–impact

TABLE 1 Variable (or index) combinations to be used to define drought (dry) and heatwave (hot) events.

CEs Variable or index
combinations

Variable 1/
index 1

Variable 2/
index 2

Subset of references

Event combinations Drought Heatwave

Drought and
heatwave

P-T/Tmax P T/Tmax AghaKouchak et al. (2014), Hao et al. (2018b), Lu et al. (2018), Coffel
et al. (2019), Ma et al. (2020a), Ribeiro et al. (2020a), Wu et al. (2021d)

SPI-T SPI T Mazdiyasni and AghaKouchak (2015), Sharma and Mujumdar
(2017), Wu et al. (2019b), Hao et al. (2020b), Feng et al. (2021c)

SPEI-T SPEI T Ribeiro et al. (2020b)

SM-PET-P P, SM PET Manning et al. (2018)

SPI-STI SPI STI Feng et al. (2019), Hao et al. (2019a, 2019b), Feng and Hao (2020),
Wu et al. (2020), Zhan et al. (2020), Brunner et al. (2021), Wu and
Jiang (2022)

(SPI, SM)-T SPI, SM T Mishra et al. (2021)

(P, SM)-T P, SM T Cheng et al. (2019)

(SPI, SPEI)-T SPI, SPEI T Vogel et al. (2021)

PDSI-T PDSI T Ye et al. (2019a), Cheng et al. (2019), Mukherjee et al. (2020),
Mukherjee and Mishra (2021)

SPEI-EDD SPEI EDD Wang et al. (2018)

MCI-T MCI T Yu and Zhai (2020b)

EDI-T EDI T Bezak and Mikoš (2020)

P: precipitation, T: temperature, Tmax: maximum temperature, SM: soil moisture, SSI: Standardized Soil Moisture Index, SPI: Standardized Precipitation Index, STI: Standardized

Temperature Index, EDI: Effective Drought Index, EDD: Extreme Degree Days, SPEI: Standardized Precipitation Evapotranspiration Index, PDSI: Palmar Drought Severity Index, MCI:

Meteorological Drought Composite Index.
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TABLE 2 Variable (or index) combinations to be used to define other drought and heatwave associated CE combinations.

CEs Variable or Index
Combinations

Variable 1/
Index 1

Variable 2/
Index 2

Variable 3/
Index 3

Subset of References

Event Combinations drought
(meteorological)

drought
(hydrological)

drought
(agricultural)

meteorological & hydrological
drought

MDI-MHDI SPI, SPEI, RDI SDI Cheraghalizadeh et al. (2018)

meteorological, hydrological &
agricultural drought

SPI-SMI-SSI SPI SSI SMI Vorobevskii et al. (2022)

Event Combinations drought heatwave fire

heatwave, drought & fire SM-T-FWI SM T FWI Sutanto et al. (2020)

drought & fire weather Q-FFID Q FFDI Ridder et al. (2020a)

heatwave & fire T-FFID T FFDI Ridder et al. (2020a)

Event Combinations heatwave (day) heatwave (night)

day & nighttime heatwaves Tmax-Tmin Tmax Tmin Mukherjee and Mishra (2018),
Wu et al. (2021b)

Event Combinations heatwave stagnation O3

Heatwave & O3 T- O3 conc. T O3 conc. Ban et al. (2022), Zong et al.
(2022)

Heatwave & stagnation T-(WS, P) T P, WS Gao et al. (2020)

Event Combinations drought aridity

drought & atmospheric aridity SM-VPD SM VPD Zhou et al. (2019b), Ambika and
Mishra (2021)

Event Combinations warm humid

warm & humid THI (T, RH) THI THI Garry et al. (2021)

WBGT WBGT WBGT Li et al. (2020)

Event Combinations dry/wet hot/cool

precipitation & temperature P-T P T Wu et al. (2019c), Zhan et al.
(2020), Camara et al. (2022)

hot & wet/flood P-T P T Ben-Ari et al. (2018)

WAP-T WAP T Chen et al. (2021), Liao et al.
(2021b)

dry & wet CWD-CWE CWD/CWE Esteban et al. (2021)

PDSI-PDSI PDSI De Luca et al.
(2020b)

SPI-SM SPI, SM He and Sheffield
(2020)

cold & dry Tmin-SPEI SPEI Tmin Zhang et al. (2021b)

Event Combinations heat cyclone

Heat following major tropical
cyclone

HI-central pressure HI central pressure Matthews et al. (2019)

VPD: Vapor Pressure Density, RH: Relative Humidity, MDI: Meteorological Drought Indicator, MDHI: Meteorological-Hydrological Drought Indicator, SMI: Standardized Soil Moisture

Index, FWI: FireWeather Index,WS:Wind Speed, RDI: Reconnaissance Drought Index, SDI: Standardized Drought Index, SSI: Standardized Streamflow Index, Q: Discharge, FFDI: Forest

Fire Danger Index, CWD: Cumulative Water Deficit, CWE: Cumulative Water Excess, WBGT: Wet Bulb Globe Temperature, WAP: Weighted Average of Precipitation Index, THI:

Temperature Humidity Index, HI: Heat Index.
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that involves quantification of the impacts on various aspects

using variables/indices that are representative of events and

impacts. The summarized components of the three major

analysis frameworks associated with CE analysis are

presented in Figure 6.

In the reviewed publications, several parameters are quantified

to convey the outcomes of the analyzed CEs. Herein, the most

frequently assessed parameters associated with each type of analysis

framework are presented. In the event–event framework, the

analysis of basic CE parameters mainly includes basic outcome-

indicating parameters such as frequency, spatial extent, probability,

return periods (RPs), compound indicator-based magnitude/

severity, and correlations. In the event–driver framework, the

quantification of the association with large-scale modes of CVs

is mainly assessed using parameters such as correlations and

probabilities. Finally, in the event–impact framework, the

impacts on other impacted variables or aspects are quantified

using the following three major approaches: 1) spatial subsetting

of data followed by quantification of basic CE parameters with

event–event framework components, 2) temporal subsetting of data

followed by quantification of basic CE parameters with event–event

framework components, and 3) integrating the impact variables/

indices (i.e., crop yield, burned area, and mortality) directly into the

equations/models with other event-indicating variables/indices

(Wang et al., 2018; Feng et al., 2019; Gao et al., 2020; Feng

et al., 2021c; Das et al., 2022; Ribeiro et al., 2022). Therefore, the

parameters to be calculated for the aforementioned three

approaches that assess the impacts are named region/land cover

specific parameters, time/season specific parameters, and variable

specific parameters, respectively, in this article.

The reviewed publications include one or more of these CE

frameworks to represent the various outcomes of CE analysis

(Hao et al., 2019b; Feng and Hao, 2020; Feng et al., 2021c). The

associated methods and quantitative approaches regarding each

type of analysis are described in the following three sections

(3.4.1–3.4.3).

FIGURE 6
Summarized CE analysis components associated with three major analysis frameworks (event–event, event-driver, and event–impact) (here,
en, dn, and in refer to events, drivers (CVs), and impacts indicating variables/indices, respectively; (*) indicates seasonal or land use data in other forms.
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TABLE 3 Some example threshold types: (D: data-based, D-I: data- and index-based, I: index-based).

References CE event combinations Variables Indices Threshold type (I/D) Value Stat.

Lu et al. (2018) Drought and heatwave P, T D T≥ 90th prctl (mean T of 21 days centered

over the calendar day across all baseline

years)
P ≤ 10th prctl (all growing season wet days

during baseline years)

Vorobevskii et al. (2022) Meteorological, hydrological, and agricultural drought SPI, SSI, SMI I SPI, SSI, SMI≤ − 1,−1.5,−2

Sutanto et al. (2020) Drought, heatwave, and fire weather Tmin, Tmax, SM FWI D-I SM ≤ 80thprctl (monthly SM) of 30 days

centered moving mean SM

Tmax ,T min ≥ 90thprctl (Tmax ,T minof 9moving

days centered around the day) for
≥ 3 consecutive days of JJA

FWI ≥ 90thprctl (FWI of 9moving days

centered around the day) for
≥ 3 consecutive days of JJA for a grid

Mukherjee and Mishra (2018) Day and nighttime heatwaves Tmin, Tmax D Tmax ≥ 95thprctl (daily T max for 3 − day moving

mean of AMJ for baseline)
Tmin ≥ 95thprctl (daily T min for 3 − day moving

mean of AMJ for baseline)

Ban et al. (2022) Heatwave and ozone (O3) Tmax O3 D O3 ≥ 100 mg/m3 Tmax , ≥ 98th prctl (daily T max for baseline) for
≥ 2 consecutive days

Zhou et al. (2019b) Drought and atmospheric aridity SM, VPD D SM ≤ 10th(daily SM of warm season)
VPD ≥ 90th(daily VPD of warm season)

(1–10th and 90–99th are also used)

Garry et al. (2021) Warm and humid THI I THI ≥ 70, 68, 72, 75, and 77

Wu et al. (2019c) Precipitation and temperature P, T D P≤ (or≥ )
25th(or 75th ) prctl (P over all years)

T≥ (or≤ )
755th(or 25th ) prctl (T over all years)

Chen et al. (2021) Hot and wet/flood T-WAP D-I T≥ 90thprctl (daily Tmax , or T min

of baseline day) for ≥ 3 consecutive days

WAP ≥ 95thprctl (WAP for summer of baseline)

De Luca et al. (2020b) Dry and wet PDSI I PDSI ≤ − 3, PDSI≥ 3

Matthews et al. (2019) Heat following major tropical cyclone Central pressure HI D-I Central pressure ≥ 945 hPa,

HI≥ 40.6℃

prctl, Percentile; JJA, June-July-August; AMJ, April-May-June.
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3.4.1 Frequently analyzed parameters of
drought- and heatwave-associated CEs

The most analyzed parameter in previous studies is the

frequency of CEs (Table 4). CEs are detected in these cases using

the binary mapping technique expressed in Eq. 1, which is

commonly called the “empirical approach” or “peaks-over-

thresholds” (POT) (Lu et al., 2018; Wu et al., 2019c; Feng et al.,

2021c). Subsequently, a comparison of frequencies between different

time segments is conducted in some studies to detect the frequency

changes between time periods. Occasionally, empirical RPs are also

analyzed, which are the inverse of the frequency or empirical

probability (Ridder et al., 2020; 2022a; 2022b). A typical example

of frequency quantification is represented by the simplified Eq. 2 (Lu

et al., 2018). In Eqs 1, 2, Z and CEHD represent a binary response of

0 or 1 (based on whether a variable crosses its threshold) and

compound extreme hot and dry days (determined from the

summation of Z), respectively. Additionally, x (precipitation

threshold) and y (temperature threshold) refer to the 10th

percentile of all growing season wet days during baseline years

and the 90th percentile of mean temperature centered over

21 calendar days across all baseline years, respectively.

Z � 1 True( ), P< x, T>y( )
0 False( ) (1)

Frequency � CEHDdays

total growing season days
(2)

In addition to the detection of CE frequencies, the spatial

extent (Mazdiyasni and AghaKouchak, 2015) and trend (Feng

et al., 2021c) of CEs have been detected in some articles using the

aforementioned binary detection approach (Eq. 1) followed by

Eqs 3, 4 he following equations:

spatial counts � pixels with CEs

total pixels
(3)

spatial trend � %CEHDs

decade − station
(4)

Another frequently analyzed parameter is the joint or

conditional probability for two or more variables, such as

temperature, precipitation, yield, and soil moisture (Feng et al.,

2019; Ribeiro et al., 2020b). In addition, RPs are frequently

analyzed along with or instead of probability (Miao et al., 2016;

Zhou and Liu, 2018). Probability is commonly assessed using the

copula-based method or meta-Gaussian model (Gaussian copula).

The typical expressions of the joint and conditional probabilities

can be expressed using Eqs 5, 6, respectively. In Eqs 5, 6, SPI, STI,

and SCI thresholds were represented by x (e.g., −1.6, −1, and −0.8),

y (e.g., 1.6, 1, and 0.8), and z (e.g., 0), respectively:

JP � P SPI≤ x, STI>y( ) (5)
CP � P SCI< z

∣∣∣∣SPI< x, STI>y( ) (6)

Occasionally, a copula-based compound index, such as SCEI,

can be used to indicate the severity or magnitude of CEs (Wu

et al., 2020). Eq. 7 is a generalized expression of SCEI, where φ
and F stand for standard normal distribution and marginal

cumulative distribution, respectively. Additionally, the

different severity levels mentioned by Wu et al. (2020) are

summarized in Table 5:

SCEI � φ−1 F JP( )[ ] (7)

Another important parameter proposed in CE publications is

duration, which is basically the event span (Sedlmeier et al., 2018;

Manning et al., 2019; Qiao et al., 2022). In some cases, the relation

of CEs with another event (also lagged) can be indicated by

analyzing the correlation. For instance, Hao et al. (2019a)

determined the correlation between CE and standardized

ENSO (Hao et al., 2019a). The details are presented in Section

3.4.2. The general equation of Spearman’s correlation coefficient

(rR) is listed in Table 4, where n is the number of data points in

the variables to be correlated and di is the difference in the rank of

the ith element.

3.4.2 Large-scale modes of CVs as drivers of CEs
Different large-scale modes of CVs are evidently present

during CEs or induced CEs as precursors or drivers in

significant parts of the global land area (Hao et al., 2019a;

2019b; De Luca et al., 2020b). For instance, ENSO and PDO

reportedly impact 18.1% and 12% of the global land area,

respectively, whereas Atlantic Multi-decadal Oscillation

(AMO) inversely affects 18.9% of the global land area. The

effects of ENSO and PDO are reportedly significant in

northern South America, the central United States, the

western United States, the Middle East, eastern Russia, and

eastern Australia. However, AMO substantially impacts

Mexico, Brazil, central Africa, the Arabian Peninsula, China,

and eastern Russia in different seasons (Table 6) (De Luca et al.,

2020a). In most cases, the dependence between lagged or

concurrent CVs is indicated using correlations. However,

several other methods have also been associated with

representing the relationships between CEs and CVs, as per

previous studies (Table 7).

The dependence between different large-scale modes of

CVs (i.e., ENSO and PDO) and CEs is most commonly

assessed using correlation coefficients (e.g., Spearman’s

correlation test) (Wu et al., 2019c; Mukherjee et al., 2020;

Shi et al., 2020). In some instances, the impact of a major CV

must be discarded to assess the relationship between another

CV and CE. For such instances, a partial correlation can be

used (De Luca et al., 2020b). The relationship between two

random variables can be represented by this method after

discarding the effects of other variables; for example, De Luca

et al. (2020) estimated the relationship between PDO and

PDSI, given the ENSO-indicating index called Niño 3.4 (De

Luca et al., 2020b). The partial correlation between CV to be

correlated (xi) and CE variable to be correlated (xj) after
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discarding the effect of another CV (xk) can be assessed by Eq.

8, where rij, rjk, rik refer to correlations between xi and xj, xj
and xk, and xi and xk, respectively (De Luca et al., 2020):

rij|k �
rij − rikrjk�����

1 − r2ik

√ ������
1 − r2jk

√ (8)

Evidently, ENSO has the most widespread impact on global

land areas in terms of percent land area impacted; furthermore,

ENSO interacts with other CV modes, such as PDO and Arctic

Oscillation (AO) (Wu et al., 2019c; De Luca et al., 2020b). These

complex interactions may induce uncertainties in correlation

results. Therefore, the correlations are highly variable over

seasons, regions, and event combinations of CEs (Wu et al.,

2019c).

Large-scale modes of CVs can be used as predictors for

determining the severity of upcoming CEs (Hao et al., 2019a;

2019b). According to Hao et al. (2019a), the upcoming severity of

a CE after 1 month of period t (Wt+1 = SCEIt+1) can be

determined using Eq. 9, given that the predictors Wt and Xt

are the standardized CE indicator (SCEIt) and standardized CV

(SNINOt), respectively:

P Wt+1|Wt,Xt( ) (9)

Eq. 9 must have a normal distribution with mean µ and

variance σ2. The validity of the prediction can be assessed using

Pearson’s correlation coefficient between the observed and

simulated CE indicators.

A logistic regression model (LRM) can also be used to

predict CE occurrence (Hao et al., 2018b; 2019b). The

regression model and 1-month leading probability can be

expressed using Eqs 10, 11, respectively. In these two

equations, x, π, α, and β stand for Niño 3.4 index,

probability of CE given ENSO, regression constant, and

regression coefficient, respectively. P (Zt+1 = 1|x) represents

1-month leading probability of CE events:

ln
π

1 − π
[ ] � α + βx (10)

P Zt+1 � 1|x( ) � 1

1 + e − α+βxt( )[ ] (11)

The validity of the prediction can be determined using

the Brier Skill Score in the case of LRM. The results

showcase that lower SCEI values (more severe compound

dry and hot events) are associated with higher SNINO (El

Niño) values from December to February. In contrast, lower

values of SNINO (La Niña) are associated with higher SCEI

values in southern America (Hao et al., 2019b). Another

expression of the relationship between compound events

and ENSO is the odd ratio (� exp(β)); a higher value (>1)
of the odd ratio implies higher odds of CE occurrences with a

higher Niño 3.4.

3.4.3 Assessment of CE impacts on several
aspects

The impacts of various CEs have been assessed in several

aspects, such as crop yield (Feng and Hao, 2020), crop growth

season (Lu et al., 2018), phenological growth phases (Wang et al.,

2018), land cover/land use (Feng et al., 2021c), urbanization (Wu

et al., 2021b), fire risk (Richardson et al., 2022), and air quality

(Gao et al., 2020). In order to assess the impacts on several aspects,

the impacted parameters (region-, time-, or variable-specific) are

integrated into the CE assessment framework using various

approaches, such as temporal subsetting of time series for the

growing season or growth stages, spatial subsetting of spatial data

to include land cover/land use/region/station of interest, and

directly integrating into the equations/model/method of

assessment. The examples of these approaches are summarized

in this section based on the major approaches to integrate impact

variables or aspects. In the direct data integration approach, crop

yield data or yield variables are directly included in the conditional

probability or paired copula method in a few studies (Feng et al.,

2019; Ribeiro et al., 2020a; Feng and Hao, 2020). In addition, the

vegetation index is used as a direct variable in the vine copula

model, and the burned area directly correlates with extremes.

However, land cover and land use are integrated by spatial

subsetting of the data by Feng et al. (2021c), with the stations

or weather grids relating to different land covers, such as

croplands, forests, and pastures (Feng et al., 2021c). Several

other studies have followed a similar spatial subsetting

approach with land use or land cover data to compare CEs for

different land uses or land covers (Toreti et al., 2019; Wu et al.,

2021d). In another case of spatial subsetting combined with direct

variable integration, the population exposure to compound

heatwave and ozone is spatially grouped across the spatial

distribution of age and income (Ban et al., 2022). Examples of

temporal subsettings can be found in Lu et al. (2018) and Wang

et al. (2018), where CEs are compared by isolating them into the

growing season and phenological stages, respectively (Lu et al.,

2018; Wang et al., 2018). Additionally, assessed impacts are

temporally sub-divided across CE magnitudes in the case of

population mortality in Europe (Hertig et al., 2020) and

vegetation vulnerability in southwest China (Liu et al., 2022),

along with direct variable integration for both cases. In fact,

both subsettings and variable integration approaches have been

used in most cases to process spatiotemporal data used in the

studies (Gao et al., 2021; Gazol and Camarero, 2022; Kroll et al.,

2022). Examples of the major aspects/impact integration

approaches are summarized in Table 8.

3.5 Interrelation between ecosystems
and CEs

Ecosystems and vegetation productivity are closely inter-

related with hydroclimatic extremes because they can affect
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each other. While CEs such as drought and heatwave can affect

vegetation productivity in dry and hot regions, reduced

vegetation productivity can affect evaporative cooling and soil

moisture dynamics to alter surface fluxes and near-surface

weather to induce CEs (Li et al., 2021; Kroll et al., 2022).

Kroll et al. (2022) reported an association between vegetation

productivity and hydroclimatic extremes in 50% of the global

study area, with impacts varying across regions. Similarly, Li

J. et al. (2022) reported varying impacts of CEs in different

regions. For instance, CEs of temperature and precipitation

(especially warm and dry or cold and dry events) can

significantly reduce vegetation productivity in mid-latitude

regions between 23.5˚N and 50˚N, whereas they may increase

productivity in regions with latitude greater than 50˚N (Li J. et al.,

2022). Additionally, the abundance of dried vegetation caused by

sequential wet and dry seasons can create fire weather, followed

by fire hazards (Richardson et al., 2022). Moreover, reduced

vegetation caused by CE can potentially affect terrestrial carbon

dynamics and carbon sequestration, whichmay reduce crop yield

and plant biomass and increase global warming potential (Afroz

et al., 2021; Tschumi et al., 2022a; Kroll et al., 2022). Reduced

vegetation in one season may also amplify drought in the next

season, which can cause lower vegetation productivity with

continued effects on the following seasons and productivity

(Li J. et al., 2022b). As vegetation potentially induces CEs,

which may impact many other aspects (e.g., yield, air quality,

livestock mortality, fire risk, and human health), the direct and

indirect relationships among ecosystems, vegetation, and CEs are

quite evident.

3.6 Assumptions and limitations of the
current study

As this study is conducted by searching WoS with eight search

keywords related to CEs, some studies might have been missed in

which these keywords are not explicitly mentioned in the titles,

abstracts, and keywords of the publications. However, the previously

collected publications from “experts” and “Google Scholar” at

different timelines did contain these keywords, with most being

present in the title, abstract, or keywords of a relevant article of

interest. Therefore, the used keywords are assumed to have resulted

in a significant number of studies to conduct a systematic review and

miss only a negligible number of relevant articles.

This study limits the scope to only the most frequently used

approaches and divides the analysis types and frameworks

accordingly. Other possible infrequent approaches have not been

discussed in this study. Additionally, the hotspot map drawn in this

study represents a study area as a more frequently claimed hotspot

with dot densities based on the number of global studies claiming

that region to be a hotspot. Local studies are excluded from the

hotspot map because the study areas do not have similar extents as

global studies. In addition, some regions have more relevant articles

than others (e.g., United States andChina), whichwould yield higher

dot densities in themap, even if the region is not a global hotspot for

a particular event combination of CE. Therefore, the regional

hotspots are represented as stacked bar plots in this study, and

the number of studies is biased by the varying numbers of studies in

different regions. However, the hotspot map aims to represent the

already reported hotspots from reviewed global publications and

how frequently they were found more impacted. The bar plots

drawn on regional hotspots aim to represent regional hotspots,

which are not the focus of global studies as they report on broader

regions. Thus, the study number frequency associated with regional

hotspots should not be interpreted as an indicator of the severity of

regional hotspots compared with other areas but rather as an

TABLE 4 Some key analyzed parameters of drought and heatwaves
associated CEs assessed in reviewed publications (n = number of instances
the parameter is evaluated in the reviewed articles, varn = nth variable, tn =
threshold of nth variable).

Analyzed parameter Example equation

Frequency/% change (n = 102) F � no. of CE days
no. of days in a year/season

Spatial extent/trend (n = 44) Spatial extent � pixels with CEs
total pixels

Probability or RPs (n = 48) JP � P(var1≤ t1 , var2≥ t2)

CP � P(var1≤ t1 |var2≤ t2 , var3≥ t3)

RPs � 1
Probability

Magnitude/severity indicators (n = 45) SCEI � φ−1 F(JP){ }

Correlation (n = 25)
rR � 1 − 6∑i

d2i
n(n2−1)

TABLE 5 Categories of compound severities (characterized by SCEI) of compound dry and hot conditions based on a previous publication.

Category Compound dry and hot condition Percentile chance SCEI

1 Abnormal 20 to ≤ 30 −0.5 to −0.7

2 Moderate 10 to ≤ 20 −0.8 to −1.2

3 Severe 5 to ≤ 10 −1.3 to −1.5

4 Extreme 2 to ≤ 5 −1.6 to −1.9

5 Exceptional ≤ 2 −2.0 or less
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indicator of the frequency with which they are studied. In addition,

the term “hotspot” is used to indicate the most impacted or frequent

CE zone in this study based on the reviewed articles, which might

have other uses in other climate studies (De Luca et al., 2020a; Ridder

et al., 2020; Chiang et al., 2022b; He et al., 2022).

Additionally, in this review, only the large-scale CVs are called

“drivers.” In contrast, other studies might have claimed that other

events or impact variables/aspects are drivers of each other, as CEs,

associated events, and impacts can influence each other (Slater et al.,

2020; Zhang W. et al., 2021a). However, this study focuses on

different analysis frameworks. As the large-scale modes of CVs are

mainly assessed as driving forces with different framework

components compared with other event–event or event–impact

frameworks, they are mentioned as “drivers” in this study.

3.7 Research gaps and potential future
works

Recent global and regional studies on CEs have analyzed

several characteristics, driver associations, and impacts on several

aspects (Hao et al., 2018b; Chiang et al., 2018; Wu et al., 2019b;

2019a). The assessment of frequency, spatial extent, correlations

with variables and large-scale climate drivers, severity,

probabilities of occurrence, RPs, and durations are among the

most analyzed parameters either on a global scale or from a

regional perspective in highly studied countries such as the

United States, China, India, and Europe. However, global and

regional research gaps exist on which future work should be

planned.

Although Chinese studies have differentiated the impact

on land-cover conditions and growth periods or growing

seasons of major crops, the effect has not yet been directly

assessed on yield data (Lu et al., 2018; Wang et al., 2018; Chen

et al., 2021; Feng and Hao, 2021). The USA-based studies of

CEs, as well as compound drought-related extremes, have

already covered various aspects, including areas such as the

likelihood of compound hot and drought extremes based on

copula-based bivariate analysis (Hao et al., 2020b), RP

analysis for California drought (AghaKouchak et al., 2014),

analysis of statistically significant changes in the distribution

of data (Mazdiyasni and AghaKouchak, 2015), the impact of

compound drought and hot events on maize yield (Feng and

Hao, 2020), analyzing shifts in temperature under various

TABLE 6 Regions detected with major CE-CV association in different seasons.

Drivers Season/
Months

Regions found with CE-CV association References

ENSO N/A Northern South America, central United States, western United States, middle east, eastern
Russia, eastern Australia

De Luca et al. (2020b)

MAM Central America, western Africa Mukherjee et al. (2020)

JJA Central Europe, Asia Mukherjee et al. (2020)

JJA, JAS, ASO South America, southern Africa, southeastern Asia, Australia Hao et al. (2018b)

SON Southern Australia Mukherjee et al. (2020),

DJF Amazon, southern Africa, and northern Australia, northern South America, northern North
America, southeast Asia, Australia

Hao et al. (2019a; 2019b), Mukherjee
et al. (2020)

Summer India Mishra et al. (2020)

Warm Season Southern North America, northern South America, northern and southern Africa, southern
and southeastern Asia, and Australia

Feng and Hao (2021)

OND Western and central Africa, the Maritime Continent and northeastern South America,
western north America

Richardson et al. (2022)

PDO N/A Northern South America, central United States, western United States, middle east, eastern
Russia, eastern Australia

De Luca et al. (2020b)

JJA Western North America, central North America, Sahara,
Mediterranean, eastern Asia, and Tibet, Northern Hemisphere

Mukherjee et al. (2020)

AMO N/A Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Wu et al. (2019c), De Luca et al.
(2020b)

NAO JJA Northern Europe, eastern North America Mukherjee et al. (2020)

EMI N/A Eastern China Ma et al. (2020b)

MAM:March-April-May, JJA: June-July-August, JAS: July-August-September, ASO: August-September-October, SON: September-October-November, DJF: December-January-February,

OND: October-November-December, PDO: Pacific Decadal Oscillation, AMO: Atlantic Multi-decadal Oscillation, NAO: North Atlantic Oscillation, EMI: El Niño Modoki Index (EMI).
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dryness conditions (Chiang et al., 2018), the occurrence of

windy events with dry and hot conditions in the Great Plains

of the United States (Tavakol et al., 2020), and the impact of

ozone due to heatwave and stagnation (Zhang et al., 2018,

2020). However, the impacts on other major field crops (e.g.,

cotton, peanut, and soybean) and vegetation vulnerability are

yet to be addressed.

For Europe, impacts such as forest mortality resulting from

drought and heatwave (Gazol and Camarero, 2022),

compound ozone and heatwave (Hertig et al., 2020; Jahn

and Hertig, 2022), and various temperature and

precipitation combinations have been assessed (Sedlmeier

et al., 2016, 2018). However, other event combinations and

impacts on crops, urbanization, and other aspects also need to

be addressed in this region. For Australia, very few event

combinations, such as drought and heatwave, strong winds,

and heavy precipitation, are covered (Ridder et al., 2022a;

Reddy et al., 2022); however, many other aspects (e.g., drought

and fire risk, heatwave and ozone, warm and humid events,

and drought and aridity), for which several parts of Australia

have been deemed as global hotspots, have not yet been

addressed from a regional perspective. The same is true for

other hotspot regions, such as South Africa and South

America (Tencer et al., 2016; Weber et al., 2020). In

comparison to the United States and China, studies on

other parts of the world have covered fewer aspects;

however, they have included some local aspects that have

not yet been covered in other regions, for example, the impact

TABLE 7 Methods to assess relations of large-scale modes of CVs as drivers.

References Drivers CEs Relative variables Study area Study
timeline

Methods to
connect CVs
and CEs

De Luca et al.
(2020b)

ENSO,
PDO, AMO

Concurrent wet and
dry extremes

Monthly PDSI and CVs Global 1950–2014 Spearman’s rank
correlation test, partial
correlation

Wu et al. (2019c) ENSO, AO,
NAO, AMO,
PDO, EA/WR

Wet/warm,
dry/warm, wet/cold,
dry/cold

Spatial extent of CE and CVs
seasonal average

China 1961–2014 Pearson correlation
coefficients

Ma et al. (2020b) EMI Concurrent dry and
hot events

EMI and observed drought-
related variables (V850, PW,
VV500, P)

China (east) 1960–2019 Regression

Mukherjee et al.
(2020)

ENSO,
PDO, NAO

Compound drought
and heatwave

Average seasonal CVs and
(seasonal average T or P)

Global 1982–2016 Spearman’s rank
correlation test,
Poisson GLM

Mishra et al.
(2020)

ENSO Hot and dry summer Niño 3.4 anomaly and (T
anomaly, SPEI)

India 1951–2018 Comparison of time series,
correlation

Hao et al. (2019b) ENSO,
PDO, NAO

Compound dry and
hot events

SCEI and lagged 1, 3-months
Niño 3.4, post SCEI | prior
SCEI, SNINO

Global 1980–2018 Correlation, conditional
distribution model, LRM

Hao et al. (2018b) ENSO Compound dry and
hot events

Niño 3.4 and (P, or T), CE|
Niño 3.4: 0–2 months

Global 1951–2016 Correlation, LRM, odd
ratio, CP empirical

Hao et al. (2019a) ENSO Compound dry and
hot events

SCEI and Niño 3.4, post-SCEI
| prior-SCEI, SNINO: 1 and
3 months

Southern Africa 1951–2016 Kendall’s rank
correlation, CP

Feng and Hao
(2021)

ENSO Compound dry and
hot events

ONI and spatial extent of CEs,
P-T correlation separation by
ENSO, and neutral years

Global 1950–2018 Correlation, empirical
probability, temporal
subsetting across ENSO
years

Richardson et al.
(2022)

ENSO, DMI,
SAM,
PNA, GAR

Fire weather and
meteorological
drought

Niño 3.4, DMI, SAM, PNA,
GAR, and BA

Global (western
United States, eastern
Australia)

1970–2020 Plotted comparison

Shi et al. (2020) ENSO, AO Dry and wet events (ENSO, AO) and CE
dynamics

China (YRB) 1952–2000 Correlation

Wu et al. (2021c) NAO, PDO,
ENSO

Compound dry and
hot events

CVs and (P, T, SCEI) China 1921–2016 Correlation, LR,
composite analysis

AO: Arctic Oscillation, EA/WR: East Atlantic/Western Russia pattern, GLM: Poisson Generalized LinearModel, V850: meridional wind at 850 hPa, PW: precipitable water, VV500: vertical

velocity at 500 hPa, ONI: Oceanic Niño Index, YRB: Yellow River Basin, DMI: DipoleMode Index, PNA: Pacific North American Index; SAM, Southern AnnularMode Index; GAR, Gulf of

Alaska Ridge Index.
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TABLE 8 Examples of CE impacts assessed on several variables/aspects in reviewed publications and major impact integration approaches (there may be
additional approaches and variables/aspects in the references listed under each integration approach; only some examples of each approach are listed here).

Major impact
integration approaches

Study region Variable/aspect integrated Major methods References

Spatial Subsetting Global Crop (maize) producing regions POT Feng et al. (2021a)

China LULC, land-surface conditions POT Feng et al. (2021c)

China Urban lands (from LULC) POT, GFDL land model Liao et al. (2021a)

China Urban lands (from LULC) POT Wu et al. (2021b)

South China Urban lands (from LULC, population
density)

POT Wu et al. (2021a)

Temporal Subsetting China Crop (maize and wheat) growing season POT Lu et al. (2018)

China Crop (maize) growing season (across
phenological phases)

POT Wang et al. (2018)

Direct Variable Integration Global (maize
producing countries)

Crop (maize) yield meta-gaussian model Feng et al. (2019a), Feng and
Hao (2020), Feng et al. (2021b)

Spain Crop (wheat and barley) yield Copula-based PCC Ribeiro et al. (2020a)

India Crop yield Correlation Mishra et al. (2020)

USA Crop yield Regression Haqiqi et al. (2021)

China (Xinjiang) Vegetation biomass/indices Copula-based CP, correlation Li et al. (2021)

IP Fire risk variable (burned area) POT, correlation Bento et al. (2022)

Spatial and Temporal
Subsettings

Global Crop (maize and wheat) producing
seasons, and regions

POT, statistical
decomposition

Lesk and Anderson (2021)

Global Crop (wheat) producing seasons, and
regions

IRMS Toreti et al. (2019)

Global LULC (land, cropland) POT, LMF Wu et al. (2021d)

Subsettings and Variable
Integration

Global Crop yield (wheat), growing season, and
region

POT, OLS regression He et al. (2022)

Global Vegetation biomass/indices POT, correlation Kroll et al. (2022)

Global Vegetation biomass/indices Copula, partial correlation Li et al. (2022b)

Global Vegetation biomass/ indices Meta-gaussian model Wu and Jiang (2022)

Global Vegetation biomass/indices DGVM, POT Tschumi et al. (2022b)

Global Vegetation biomass/indices (carbon
uptake)

Copula-based JP Zhou et al. (2019b)

Global Population (exposure across age, income) POT Ban et al. (2022)

Global Fire risk variable (FFDI, burned area) POT, plotting Richardson et al. (2022)

USA Air quality variable (ozone) POT, WRF/Chem model,
Regression, Correlation

Zhang et al. (2018)

USA Air quality variable (ozone, PM 2.5),
population (exposure, mortality,
morbidity)

POT, WRF-chem, BenMAP-
CE 1.3, pooled method

Zhang et al. (2020)

Europe SM Copula-based PCC Manning et al. (2018)

Europe vegetation biomass/ indices (tree
mortality across CE magnitudes)

Copula Gazol and Camarero (2022)

Europe Population (mortality, population) POT Hertig et al. (2020)

(Continued on following page)
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of reforestation on warm and dry, and warm and wet CEs in

western Africa (Camara et al., 2022).

Other than drought and heatwave, the number of global

studies has been limited for other event combinations

(Figure 3). As the results are subjective to the studies

identified in this literature review, a higher number of global

studies can provide more hotspots produced from different

data sources, timelines, and event/variable combinations,

which are likely to provide more varied results. Even though

global studies have covered various impacts and aspects such as

population exposure to ozone and heatwave (Ban et al., 2022),

maize yield vulnerability (Feng et al., 2019; 2021a), wheat

growing season (He et al., 2022; Wu and Jiang, 2022),

vegetation vulnerability (Kroll et al., 2022), population

exposure to heat and humidity (Li et al., 2020), fire risk

caused by drought and heatwaves (Ridder et al., 2020;

Richardson et al., 2022), and various large-scale CVs

related to CEs (Mukherjee et al., 2020; Mukherjee and

Mishra, 2021), other potential aspects such as the effect of

urbanization on CEs, concurrent day and nighttime heat

extremes, and the impact of CEs on mortality/health are

yet to be addressed on a global scale. These unexplored

CEs and aspects on a global scale have been assessed in

regional studies, showing significantly increasing trends and

effects/impacts, respectively. Therefore, future research may

include studies on other event combinations besides drought

and heatwave as well as on potential aspects that include

further knowledge in the CE analysis field. More studies on

these unexplored topics can help find more global hotspots,

trends, events, and impacts across various regions, timelines,

and different data sources.

Although an analysis framework has been suggested and

proposed in a previous review along with definitions of CEs,

three major analysis frameworks applied across related

articles that focus on drought- and heatwave-associated

CEs have been categorized and summarized in this

systematic review (Leonard et al., 2014). The same applies

to the included hotspots reported in recent studies. Previous

reviews have covered several other topics, such as statistical

approaches, upcoming CEs, categorization of CEs, and mutual

dependence patterns (Supplementary Table S3). However, the

components of analytical frameworks and hotspots for

drought- and heatwave-associated CEs are unexplored areas

that have been comprehensively covered in this review.

However, considering scope, this review limitedly

summarizes the most frequently used methods and

parameters. Thus, future work can potentially focus on

infrequent methods, parameters and upcoming machine-

learning-based approaches (Feng et al., 2021d; Sweet and

Zscheischler, 2022).

TABLE 8 (Continued) Examples of CE impacts assessed on several variables/aspects in reviewed publications and major impact integration approaches (there
may be additional approaches and variables/aspects in the references listed under each integration approach; only some examples of each approach are
listed here).

Major impact
integration approaches

Study region Variable/aspect integrated Major methods References

Europe and MB Vegetation biomass/indices (land
degradation)

POT Mulder et al. (2019)

India Population (exposure across CE
combinations and SSPs)

POT, exposure Statistics Das et al. (2022)

China Urban lands (from LULC) POT, correlation, and
regression

Yang et al. (2022)

Eastern China Urban lands (from population),
population (exposure)

POT Yu and Zhai (2020a)

Southwest China Vegetation biomass/indices Copula-based RP Liu et al. (2022)

UK Livestock mortality+ potato blight POT, risk density Garry et al. (2021)

West Africa LULC (reforestation) RegCM4-model (vegetation
on-off)

Camara et al. (2022)

Southern Africa Vegetation biomass/indices Correlation, plotting Hao et al. (2020a)

Mongolia Livestock mortality POT, spatial clustering Haraguchi et al. (2022)

Northeast China Crop (maize) yield POT, APSIM model Li et al. (2022a)

Brazil (Pantanal,
Xingu)

Fire risk variable (burned area) Poisson regression, contours Ribeiro et al. (2022)

LULC: Land Use and Land Cover, PCC: Pair Copula Construction, LMF: LikelihoodMultiplication Factor, MVR:Multivariate Regression, RegCM4: Regional, WRF/Chemmodel: Weather

Research and Forecasting model coupled with Chemistry, FFID: Forest Fire Danger Index, IRMS: Intensity-Reweighted Moment Stationarity, DGVM: Dynamic Global Vegetation Model,

IP: Iberian Peninsula, UNB: Upper Nile Basin, OLS: Ordinary Linear Regression.
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4 Conclusion

This novel review presents an overall breakdown of the

quantitative assessment of drought- and heatwave-associated

CEs by mainly focusing on their hotspots, variables, analysis

frameworks, assessed parameters, association with large-scale

CVs as drivers, and impacts of CEs on several aspects. While

hotspot mapping reveals themost frequently reported regions with

CEs as per the reviewed global studies, event and variable

combinations represent the variables/indices most commonly

used to define combinations of events to form CEs. The most

reported hotspots worldwide are found in Southern Africa, several

parts of South America, Southeast Asia, South Asia, and Australia

for various CE combinations studied in several global studies. As

per the review, the most analyzed parameters of the considered

CEs are frequency, spatial extent, compound indicator-based

severity/magnitude of CEs, probability, RPs, duration, and

correlation. While the frequency and spatial extent are usually

assessed with the binary counting approach in the POT method,

probabilities are determined using copula-based joint probability,

conditional probability, and empirical probability approaches (Ye

et al., 2019a; Wu et al., 2019b; Hao et al., 2019c). The most assessed

large-scale mode of CV is found to be ENSO, whereas the impacts

are found to be yield loss of several globally important crops,

vegetation vulnerability, fire risk, air quality, urbanization effect,

and CE frequencies under different land-use conditions (Hao et al.,

2018b; Feng and Hao, 2020; Gao et al., 2020; Feng et al., 2021c; Kroll

et al., 2022; Richardson et al., 2022). Therefore, this study breaks

down the components of CE analysis frameworks into variables/

indices, frequently calculated parameters, drivers, impacts, and

associated methods. This study can aid future researchers in

understanding the framework components of drought- and

heatwave-associated CEs with reduced time and effort.
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