
A data-driven artificial neural
networkmodel for the prediction
of ground motion from induced
seismicity: The case of The
Geysers geothermal field

Edoardo Prezioso1*, Nitin Sharma2, Francesco Piccialli 1 and
Vincenzo Convertito3

1Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli
Federico II, Napoli, Italy, 2National Geophysical Research Institute, Council of Scientific and Industrial
Research, Hyderabad, India, 3Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia,
Napoli, Italy

Ground-motion models have gained foremost attention during recent years for

being capable of predicting ground-motion intensity levels for future seismic

scenarios. They are a key element for estimating seismic hazard and always

demand timely refinement in order to improve the reliability of seismic hazard

maps. In the present study, we propose a ground motion prediction model for

induced earthquakes recorded in The Geysers geothermal area. We use a fully

connected data-driven artificial neural network (ANN) model to fit ground motion

parameters. Especially, we used data from 212 earthquakes recorded at 29 stations

of the Berkeley–Geysers network between September 2009 andNovember 2010.

The magnitude range is 1.3 and 3.3 moment magnitude (Mw), whereas the

hypocentral distance range is between 0.5 and 20 km. The ground motions are

predicted in terms of peak ground acceleration (PGA), peak ground velocity (PGV),

and 5% damped spectral acceleration (SA) at T=0.2, 0.5, and 1 s. The predicted

values from our deep learning model are compared with observed data and the

predictions made by empirical ground motion prediction equations developed by

Sharma et al. (2013) for the same data set by using the nonlinear mixed-effect

(NLME) regression technique. For validation of the approach, we compared the

models on a separate data made of 25 earthquakes in the same region, with

magnitudes ranging between 1.0 and 3.1 and hypocentral distances ranging

between 1.2 and 15.5 km, with the ANN model providing a 3% improvement

compared to the baseline GMM model. The results obtained in the present study

show a moderate improvement in ground motion predictions and unravel

modeling features that were not taken into account by the empirical model.

The comparison ismeasured in terms of both the R2 statistic and the total standard

deviation, together with inter-event and intra-event components.
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Introduction

Empirical ground motion models (GMMs), also known as

ground-motion prediction equations, are mathematical

functions, which relate explanatory variables, such as

earthquake magnitude, source-to-site distance, and local-site

effects, to the response variables like peak-ground acceleration

(PGA), peak-ground velocity (PGV), and response spectra at

different structural periods (Sa(T)) (e.g., Douglas, 2003; Douglas

and Edwards, 2016). The reliability of the predictions depends on

the quality and quantity of data used for the inference of the

parameters that relate explanatory variables and response

variables. However, in addition to data, a critical point while

inferring a GMM is the selection of the most appropriate

functional form to be used. Indeed, since the first model

proposed by Esteva and Rosenblueth (1964), the complexity of

the functional form is largely increased with the aim of

reproducing as many aspects of the complex physical

processes of the earthquakes and seismic wave propagation

and reducing as possible the uncertainty (e.g., Strasser et al.,

2009). In fact, early models considered only the effect of

magnitude and distances (e.g., Joyner and Boore, 1981;

Sabetta and Pugliese, 1996). However, as noted by Bommer

and Abrahamson (2006), the final result of using complex

function forms is often to increase the total aleatory variability

in the ground motion with a non-trivial effect on the final seismic

hazard.

The increased number of seismic networks installed

worldwide has led to an increase in availability of data.

Therefore, GMMs have been extensively modified to account,

for example, quadratic magnitude dependence, magnitude-

dependent geometrical spreading, linear as well as nonlinear

site, and topographic effects on ground motions (e.g., Boore and

Atkinson, 2008; Bindi et al., 2011). However, as noted by Douglas

and Aochi (2008), one is never sure of having selected the correct

functional form.

GMMs play a key role in seismic hazard analyses as they

allow fast predictions of the expected ground motion and its

variability. Many studies suggest that it is crucial to investigate as

many aspects as possible related to the GMMs (i.e., non-

ergodicity, magnitude dependence of the geometrical

spreading and of the fictitious depth, and multilinear

geometrical spreading functional form) while looking at non-

conventional methodologies, which include parametric models

that require predefined functional form (e.g., Dhanya and

Raghukanth, 2018; Kong et al., 2019).

In the last decade, data-driven approaches have been

considered the state-of-the-art in the modeling of real-world

phenomena, allowing them to emerge as a new paradigm. Such a

paradigm is based on the idea that the predictive models are built

upon the data instead of the physical laws derived from the

theory. Recent works based on such an approach have been used

with the seismic data in the earthquake phenomenology

(Seydoux et al., 2020; Kuang et al., 2021). Among the

available data-driven models (e.g., machine learning

algorithms, fuzzy logic, and Gaussian regression) we selected

the artificial neural network (ANN) model (e.g., Derras et al.,

2014; Kubo et al., 2020; Okazaki et al., 2021). The ANN models

are built from the composition of a fixed number of aggregation

operations and activation functions and provide strong flexibility

in terms of predictability power. Theoretically, there are universal

approximation theorems, which guarantee the existence of

ANNs having an arbitrarily small error (Cybenko, 1989).

Another advantage of ANNs is that it requires no constraints

in how the features in the data are distributed, contrary to the

other statistical-based approaches (Derras et al., 2014;

Khosravikia et al., 2019; Kubo et al., 2020; Okazaki et al.,

2021). Even though they are considered “black box” and

prone to overfitting (Loyola-González, 2019), recent

advancements in artificial intelligence (AI), and in particular

machine learning (ML) and deep learning, provide new tools to

improve both the generalization and the expandability of such

models, making them more reliable for real-world applications

(Arrieta et al., 2019; Ahmed et al., 2022; Velasco Herrera et al.,

2022).

In this context, the present study aims to develop a

nonparametric and robust ANN model to investigate ground-

motions from induced seismicity, recorded at The Geysers

geothermal region. Similar to other exploited areas for which

induced earthquakes have been shown to represent a threat due

to their shallow depths and relatively high frequency content

(e.g., Van Eck et al., 2006; Bachmann et al., 2011; Bommer et al.,

2016), several studies demonstrate that The Geysers-induced

earthquakes represent a hazard for population in surrounding

areas and on structures (e.g., Majer and Petersen, 2007;

Convertito et al., 2012). Studies such as Convertito et al.

(2012) show that observed peak ground acceleration (PGA) in

The Geysers geothermal area has exceeded 120 cm/s2 (around

12% of g; g being the acceleration of gravity). According to the

Modified Mercalli Intensity (MMI) scale, this value corresponds

to light-to-moderate shaking level, which can be annoying for

people living close to the field. The data from Geysers, due to the

presence of nonlinear patterns of the ground motion parameters

based on the location and the intensity of the earthquake, satisfy

the quality and quantity required to implement the deep learning

technique and facilitate the comparison with the results obtained

through empirical ground motion models developed by Sharma

et al. (2013) for the same dataset. In fact, a dataset that contains

more than 5,000 data points from 212 earthquakes with a focal

depth of less than 5 km (see Sharma et al., 2013), hypocentral

distances ranging from 0.5 km to 20 km, and the magnitude

ranging between 1.3 and 3.3 represents a peculiar study case for a

deep learning technique. We use a deep learning algorithm to

predict PGA, PGV, and 5% damped spectral acceleration SA for

three different structural periods (i.e., T=0.2, 0.5, and 1.0 s). We

propose the development of the ANN model in three steps. By
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following the data-driven approach, in the first step, we

transform the features by either rescaling the numerical

features in a suitable range or by one-hot encoding the

categorical features. In the second step, predictions are made

by the feedforward multi-perceptron layer (MLP) and finally a

rescaling of the prediction to the original target space. One

additional contribution for this work, which is not found in

the previous literature, is that we have incorporated the

knowledge about the location-based residual variability of the

seismicity parameters in the training of the ANN by including in

the loss function computation the standard deviation from the

mean residual value (RESSD, as defined in Eq. 6). The predictions

made through the robust ANN model obtained in the present

study are compared with the functional formmodel developed by

Sharma et al., 2013. The comparison is measured in terms of both

the R2 statistic, which ensures how well the regression curve

approximates the real data points (Draper and Smith, 1998), and

the total standard deviation together with inter-events and intra-

event components. The improvement for the total standard

deviation is of the order of 3% on average for all the ground

motion parameters. It is found that there is significant reduction

in inter-event components (6% of improvement on average),

which are dominated by aleatory (random) variabilities. Such

variability is difficult to capture with conventional techniques.

Finally, we show how a slight variation in the total standard

error associated with GMMs can potentially affect seismic

hazard.

Ground-motion database and
empirical ground motion models

We analyzed more than 5,000 data points from

212 earthquakes recorded at 29 stations of the

Berkeley–Geysers network in The Geysers geothermal field

between September 2009 and November 2010 (Figure 1). The

magnitude range is between 1.3 and 3.3 Mw, and the

hypocentral distance range is between 0.5 and 20 km

(Figure 2). The waveforms with a signal-to-noise ratio

greater than 10 are selected for analysis. We applied the

instrument correction to the waveforms, while mean and

trend were also removed. The waveforms are filtered by

zero phase shifts and a four-pole Butterworth filter in the

frequency band of 0.7–35 Hz. In order to measure the correct

values of the selected ground-motion parameters, we cut the

waveforms in a specific time window around the event,

starting at the origin time and ending at the time

corresponding to 98% of total energy included in waveform,

which were also tapered with a 0.1 taper width with a cosine

window. Once the time window is selected, PGV is measured

as the largest value among the two horizontal components. As

for PGA and spectral ordinates, waveforms are first

differentiated and filtered in the range between 0.7 and

35 Hz to reduce high-frequency noise. The PGA and SA

(T=0.2, 0.5, and 1 s) were measured as the largest value

between the two horizontal components as for PGV (see

Sharma et al., 2013 for details). Figure 3 shows the

estimated ground motion parameters as a function of

magnitude to highlight the effectiveness of the selected

filtering procedure.

It is to be noted that for the largest portion of the earthquakes

analyzed in this study, the Northern California Earthquake Data

Center (NCEDC) catalog provides a duration magnitude MD as a

magnitude measure. However, we converted MD into moment

magnitudes Mw using a linear relationship by Douglas et al.

(2013).

The epicentral location and seismic network configuration of

earthquakes are shown in Figure 1. For convenience, we report the

functional form of the GMM of Sharma et al. (2013), hereafter

referred to as MOD3, that will be compared with the ANN model

log10 Y � a + bMW + clog10

������
R2 + h2

√ + es, (1)

where the response variable Y is PGV, PGA, or SA(T) at T 0.2,

0.5, and 1.0 s, respectively. The model in Eq. 1 accounts for the

source effect through the moment magnitude Mw and

geometrical spreading through the hypocentral distance R.

FIGURE 1
Geographic map of The Geysers geothermal field, California.
Black triangles identify the seismic stations. Gray circles indicate
the epicentral location of the earthquakes analyzed in the present
study. Circle dimension is proportional to the event
magnitude. Gray lines correspond to the known quaternary faults.
The red square and the red arrow in the inset indicate the location
of The Geysers geothermal field.
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The h parameter is introduced to avoid unrealistically high values

at short distances (e.g., Joyner and Boore, 1981), while the

coefficient e represents the station/site effect. At each station,

the dummy variable s is −1, 0, +1 depending on the mean value of

the residuals distribution, when compared with the hypothesized

zero-mean distribution by using the Z-test (Emolo et al., 2011;

Sharma et al., 2013; Emolo et al., 2015). Readers can refer to

Table 3 of Sharma et al. (2013) for the inferred s value at each

station and for each response variable, while the coefficients a, b,

c, h, and e of Eq. 1 are listed in Table 1 in the present work.

Proposed ANN-based ground motion
models

The proposed model, inspired by the data-driven paradigm

(Seydoux et al., 2020; Kuang et al., 2021), is constituted by the

following steps: 1) preprocessing of the data features (in our case

MW, R and s) by encoding or scaling in a suitable range; 2) the

prediction by a feedforward multilayer perceptron (MLP); 3)

rescaling of the prediction to the original target space. The

preprocessing step is typically used to improve the

convergence of the ML model (Han et al., 2012). First, we

define how the data are preprocessed for both the input and

the output and then how the MLP model is defined.

The preprocessing step is performed by taking into

account the data type: MW, R, and the targets log10 Y are

numeric, while s can be considered categorical. For this

reason, the preprocessing of the feature s consists of

converting it to two new features, s � [s−1, s1], with a one-

hot encoding strategy, i.e., by using this following mapping:

−1 becomes [1, 0.], 0 becomes [0, 0.], 1 becomes [0, 1.]

(referred to as ϕs).

For the rescaling of the features and the target, we used the

minmax scaling procedure: given a feature or target x, after

computing the minimum value and the maximum value of x in

the considered dataset, the values of x are linearly rescaled to a new

prefixed range, most commonly between 0 and 1, i.e., such that the

minimum value of x is rescaled to the new minimum value in the

prefixed range and the maximum value of x is rescaled to the new

maximum value in the range. This operation is also used by other

data-driven approaches for the ground motion (Derras at al., 2014,

Khosravikia and Clayton, 2021) and allows the training procedure of

the considered model to stabilize (Han et al., 2012), but

differently from the previous approaches, to strengthen the

robustness of the methodology against the data leakage

phenomenon, the considered dataset where to extract the

minimum and the maximum values should be

corresponding to the subset of the dataset where a data-

driven model is fitted, i.e., the training set, not on the

whole dataset (Kuhn & Johnson, 2019). Because of this, to

avoid problems related to the ground motion parameter range

in the training set being possibly smaller than the ones in the

remaining data or in any new data, we ensure that the output

range of the ANN-based ML model is larger than the scaled

output interval, as described later. In order to keep the

FIGURE 2
Scatter plot of the available strong-motion data in terms of Mw and R in the left-hand side plot and depth distribution of the analyzed
earthquakes in the right-hand side plot.
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notation coherent, we denote with ϕMw
, ϕR, ϕY the minmax

function applied to the features Mw, R, and target Y,

respectively.

An MLP model can be defined starting from a

layer function f: RN → RM, defined as in the following

equation:

f(v; W, b) � σ(Wv + b), (2)

where the vector W is called the weights matrix, b is called

the bias vector, and σ: RM → RM is the activation

function. The MLP model ψ can be defined as

(Goodfellow et al., 2016

ψ(x ; θ) � (f1 ⊙ f2 ⊙ ... ⊙ fL) (x ; θ), (3)

where L is the depth of the network, i.e., the number of layers, fj

is a function as defined in Eq. 2 with parameters Wj and bj and

activation function σj, and θ � {W1, ...,WL, b1, ..., bL} are the

parameters to estimate. The symbol ⊙ denotes the

composition operation between two functions,

i.e., (f ⊙ g)(x) � g(f(x)). The layers from f1 to fL−1 are

FIGURE 3
Peak ground velocity (PGV), peak ground acceleration (PGA), and spectral acceleration (SA) at 0.2, 0.5, and 1.0 s as function of moment
magnitude in the earthquakes selected for the present study.
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named as hidden layers, and the last layer fL is named as the

output layer. For our purpose, given that shallow models are

known to be well-performing in the seismological context (Kong

et al., 2019), the number of layers is constrained to be no more

than 3, reducing considerably the model complexity. Moreover,

in order to closely represent the neurological structure, all the

activation functions except for the last one are the same. In our

case, by using a grid search approach, whose criterion is

explained in the subsection “Performance analysis and model

validity,” we found that the best architecture is based on two

hidden layers each made of 16 neurons, and the activation

functions before the final layer are the sigmoid function σ(x) �
1/(1 + e−x) (which is also known as the log-sigmoid activation

function in Derras et al., 2014) and as the last activation function

the ranged version of the sigmoid function

σ(x; a, b) � (b − a)σ(x) + b, with a � −0.5 and b � 1.5, which

has been possible with the scaling of the targets to [0, 1]. Also, a

and b were chosen with a grid search, with this grid of choice

(represented as pairs of a and b): (−0.5, 1.5), (−1, 2), (−1.5, 2.5).

These specific values are used to fix the center of the range to 0.5,

as in the [0, 1] range scaling. Such a larger output range is

explored to avoid that the predicted values stagnate at the two

TABLE 1 Coefficients and uncertainties of the GMM reported in Eq. 1.

Target A ± σa B ± σb C ± σc H ± σh E ± σe

PGV (m/s) −5.065 ± 0.069 1.320 ± 0.022 −1.966 ± 0.047 1.863 ± 0.191 0.189 ± 0.004

PGA (m/s2) −2.710 ± 0.064 1.165 ± 0.021 −2.244 ± 0.044 1.779 ± 0.158 0.225 ± 0.004

SA (0.2s) (m/s2) −3.721 ± 0.082 1.448 ± 0.023 −1.802 ± 0.061 2.629 ± 0.244 0.203 ± 0.004

SA (0.5s) (m/s2) −4.833 ± 0.083 1.555 ± 0.024 −1.838 ± 0.061 2.674 ± 0.239 0.182 ± 0.004

SA (1s) (m/s2) −5.314 ± 0.077 1.506 ± 0.023 −1.918 ± 0.057 2.255 ± 0.216 0.166 ± 0.004

FIGURE 4
Proposed ANN architecture for the GMPE model. It is made of two hidden layers made of 16 neurons in each layer. W1, W2, b1, and b2 are the
parameters from Eq. 3.
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extremes of the scaled target interval. Such a problem can be

avoided if the linear activation function is used, but we found it

much less performing than the former approach. The

architecture of the selected network is shown in Figure 4.

When we combine all the components together, the final

formulation of the model used to estimate the response variables

(i.e., PGV, PGA, or SA (T 0.2, 0.5, and 1.0 s) can be expressed in

the following way:

log10 Y � ϕY
−1(ψ(ϕMw

(MW),ϕR(R),ϕs(s))), (4)

which is similar to the one present in Khosravikia et al. (2019),

but without restricting the number of layers to 1, as such a

configuration did not provide substantial results for this

dataset.

For the training of this model, the strong-motion

calibration dataset is randomly split into a training set made

of 80% of the events, and a test set corresponding to the

remaining events (in the deep learning community, the

terms used for the splitted dataset is train-validation-test

sets, as seen in Goodfellow et al. (2016); in this work, we

adopt the convention train–test validation sets instead to

avoid any confusion on the known notation “calibration

dataset” for the fitting of the model and “validation dataset”

for the evaluation of the performances; therefore, in our case,

the “test set” is the set used to evaluate the generalization of the

model in each training epoch and eventually stop the training

earlier in case the loss value stops decreasing). The reason

behind this strategy is due to the need to keep the within-

event relations in all the samples belonging to the same event in

either the training set or the test set, and therefore, reduce

another source of data leakage, as also explained in (Khosravikia

et al., 2019).

For the fitting of this model, we considered the family of

stochastic gradient descent (SGD) methodologies

(Goodfellow et al., 2016), which require three following

steps: initialization, loss function, and optimization

procedure. In the deep learning context, the weight

initialization may have a strong influence on the

convergence of the methodology; the same aspect is

present for our ANN methodology, as we found by grid

search that the best way to initialize the network weights was

the random orthogonal initializers (Saxe et al., 2013). This

methodology consists in generating randomly orthogonal

weight matrix W in Eq. 2 (i.e., such that WTW � I),

allowing the training procedure to extract only the mostly

essential features from the input or from the output of the

previous layer.

For the loss function, we used the following method:

Loss(ŷ, y) � αMSE(ŷ, y) + βRESSD(ŷ, y), (5)

where α and β are constant coefficients,MSE is the mean square

error, while RESSD is defined as the following:

RESSD(ŷ, y) � 1
N

∑N

i�1 (ri − r)2 (6)

With ŷi and yi the estimated target of the i-th sample of the

considered dataset by the model and the corresponding

original target, respectively, ri = ln yi- ln ŷi the residual of

the i-th sample and r the mean value of ri. The idea behind this

loss function is that we need to take into account the variability

of the targets in terms of the distribution of the residuals with

respect to the features. This idea proved to be more helpful

than using only the MSE, as in our tests, we found that α � 1

and β � 1.5 gave the best results. Finally, we found that the best

SGD methodology for this specific problem in terms of the

evaluation metrics, as described in the subsection

“Performance analysis and model validity,” is the Adam

algorithm (Kingma and Ba, 2014) with a learning rate

0.1 and default parameters.

Performance analysis and model
validity

We evaluated the prediction capability of the adopted model

and compared it with MOD3 by using the following metrics: the

total standard deviation (σ) and the two components of σ, the
between-event standard deviation (τ) and the within-event

standard deviation (ς), and finally the R2 score. The

formulation of the total standard deviation and its

components are as follows:

σ �
���������������∑E

j�1∑Nj

i�1(rij − �r)2
N − 1

√
(7)

ς �
���������������∑E

j�1∑Nj

i�1(rij − �rj)2
N − E

√
(8)

τ � ������
σ2 − ς2

√
(9)

where the residuals rij are defined as lnYobs-lnYpred, for event j and

station i. N is the total number of stations, Nj is the total number of

stations related to event j, E is number of earthquakes, r is the average

residual for all the earthquake and all the stations, and r j �
(∑Nj

i�1 rij)/Nj is the average residual for event j computed for all

the stations that have recorded the event (e.g., Douglas and Gehl,

2008). These formulations may differ from those in Sharma et al.

(2013) because the computed values of sigma in Sharma et al. (2013)

depend on the estimated coefficients through the nonlinear mixed-

effect regression. InML approaches, one of themost commonmetrics

for regressive tasks is the root mean square error (RMSE), but it was

not reported in this study, given that the difference between the values

of RMSE and the values of σ ones are negligible in the results.

To take into account the possible prediction bias from

how the ANN model weights are initialized and how the test

set is randomly selected, the metrics are computed for five

different runs of the fitting of the ANN model, where each
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run is characterized by a randomic splitting seed of the

original dataset into the training and test set and the

random initialization of the weights of the model. The

resulting metrics are averaged, with their standard

deviation computed to assess the variability of the

predictions given by the model. The behavior of the loss

function on both the training set and the test set with the

variability of the runs in terms of the least number of epochs

and the most number of epochs is illustrated in

Supplementary Figure S1.

FIGURE 5
Empirical GMM (dashed line) and the DL model (continuous) plotted as function of the hypocentral distance for three classes of magnitude
whose central value is reported in each panel. The dots represent the strong-motion observations. Peak ground motion parameters and response
spectrum ordinates are colored according to the data density.
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As for the search of the optimal hyperparameters of the

ANN model, we used a grid search approach with the optimal

criterion the minimization of the mean MSE from the k-fold

cross-validation on the training set with k=5 applied in each

run. In more details, in each run, the training dataset is split in

k evenly divided subsets with the same splitting strategy based

on the events described in the “Proposed ANN-based GMM”

subsection, and then k ANN models are built with the fixed

hyperparameters set from the grid and each of them is trained

on one of the possible combinations of k-1 subsets and

FIGURE 6
Residual plots with binnedmeans (red dots) and standard deviation (vertical lines) relative to themagnitude for themodels MOD3 and ANN. The
dashed line is present to mark the zero-residual level.
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evaluated on the remaining subset. Due to the fact that the

cross-validation is performed in each run with fixed seed, the

obtained partitions from the split will differ in each run,

making it possible to have an unbiased estimation of the

model performance (Varma and Simon, 2006).

Comparison with the empirical
ground motion models

We compare the ANN model with the empirical GMM of

Sharma et al. (2013) by selecting ground-motion parameters for

FIGURE 7
Residual plots with binned means (red dots) and standard deviation (vertical lines) relative to the hypocentral distance for the models
MOD3 and ANN.
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three distinct classes of magnitude, i.e., MW ≤ 1.5, 1.5 <MW < 2.5,

and MW ≥ 2.5. Both the models are plotted as a function of the

hypocentral distance, for the magnitude value reported in each

panel and without station/site effects (Figure 5). The most

interesting result is that, while the empirical GMM is

characterized by the same shape aside from the magnitude, the

ANNmodel is characterized by distinct trends for eachmagnitude

class. For example, the ANN model suggests trilinear amplitude

decay with distance particularly for the lower-magnitude classes.

These results also reflect into the residual distribution, which are

defined as Res=lnYobs-lnYpred. In fact, as shown in Figure 6, the

residuals as a function of the magnitude do not show any

significant difference when the predictions are obtained by

using the empirical GMM and the ANN model. However, it

should be noted that both MOD3 and ANN models do not

properly fit ground motion parameters relative to the large

magnitude values (MW ≥ 3.2). This is obviously due to the

scarcity of the data in this specific magnitude range. As for the

trend with the distance, Figure 7 suggests that the ANN provides

slightly lower residuals at distances lower than 2 km for both PGA

and PGV with respect to the GMM model.

Furthermore, the ANN model shows a small increase in the

predicted values at larger distances for small magnitude

(MW ≤ 1.5), which is in contrast with the expected attenuation

(i.e., geometrical spreading and anelastic attenuation). This can

be due to the fact that, the ANNmodel being a data drivenmodel,

it tends to fit local data patterns rather than simply provide an

average fitting. Indeed, the observed behavior is driven by the few

points at distances larger than 10 km (Figure 5).

In order to quantitatively evaluate the differences between

the two models, as reported in the previous section, we compute

the coefficient of determination R2, the total standard deviation,

and its two components. The values obtained by using the ANN

model are listed in Table 2 for each ground-motion parameter,

which also contains the results for the empirical GMM. The

coefficient R2 provided by the ANN is higher than that provided

by the GMM, indicating that the ANN explains a slightly larger

proportion of the total variance. If we compare, the total standard

deviation (σ) for the ANN model is 2%–5% lower (on the log

scale) than that of the Sharma et al. (2013) GMM model. In

particular, a larger reduction of up to 15% is observed in the

inter-event component of the total standard deviation. As

reported by Al Atki et al. (2010), the inter-events residual

accounts for average seismic source effects (averaged over all

azimuths) and is influenced by factors that are not captured by

the inclusion of magnitude, style of faulting, and source depth.

TABLE 2 Performance results of the proposed ANNmodel andMOD3 of Sharma et al. (2013) using the data set of The Geysers geothermal region. The
results are expressed in terms of mean ± standard deviation for the ANN model. The best results are reported in bold.

ANN model MOD3

Target τ ς σ R2 τ ς σ R2

PGV (m/s) 0.133 ± 0.004 0.284 ± 0.001 0.314 ± 0.002 0.863 ± 0.002 0.147 0.287 0.323 0.857

PGA (m/s2) 0.133 ± 0.003 0.272 ± 0.001 0.303 ± 0.002 0.861 ± 0.002 0.141 0.275 0.309 0.859

SA-0.2 (m/s2) 0.138 ± 0.008 0.289 ± 0.002 0.320 ± 0.005 0.868 ± 0.003 0.152 0.292 0.329 0.862

SA-0.5 (m/s2) 0.129 ± 0.006 0.279 ± 0.001 0.307 ± 0.004 0.886 ± 0.002 0.152 0.288 0.325 0.872

SA-1.0 (m/s2) 0.125 ± 0.006 0.290 ± 0.001 0.316 ± 0.003 0.878 ± 0.002 0.148 0.296 0.331 0.867

The bold values represent the best results for one model when compared to the associated result for the other model.

TABLE 3 Performance results with the proposed approach, compared with MOD3 of (Sharma et al., 2013) in the test data, reported in terms ofmean ±
standard deviation for the ANN model. The best results are reported in bold.

ANN model MOD3

Target τ ς σ R2 τ ς σ R2

PGV (m/s) 0.262 ± 0.011 0.319 ± 0.002 0.413 ± 0.007 0.748 ± 0.016 0.279 0.321 0.426 0.722

PGA (m/s2) 0.180 ± 0.010 0.285 ± 0.005 0.337 ± 0.003 0.821 ± 0.003 0.188 0.286 0.342 0.813

SA-0.2 (m/s2) 0.269 ± 0.008 0.347 ± 0.002 0.439 ± 0.004 0.709 ± 0.015 0.290 0.343 0.449 0.685

SA-0.5 (m/s2) 0.253 ± 0.004 0.311 ± 0.004 0.401 ± 0.001 0.763 ± 0.017 0.272 0.305 0.409 0.735

SA-1.0 (m/s2) 0.259 ± 0.006 0.319 ± 0.002 0.411 ± 0.004 0.754 ± 0.012 0.282 0.318 0.425 0.718

The bold values represent the best results for one model when compared to the associated result for the other model.
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Among the factors, stress drop and variation of slip in space and

time can be mentioned. Thus, the observed reduction of the

inter-events residuals may suggest that the ANN model can

account for differences in sources’ factors, but we cannot

identify which is the dominant one.

To further verify the robustness of the proposed approach, as

validation we used distinct data from the original dataset, containing

25 earthquakes recorded in the same area with magnitude ranging

between 1.0 and 3.1 and distances ranging between 1.2 and 15.5 km (see

Supplementary Figure S2). The results are shown in Supplementary

Figures S3–S5, while the relative metrics are reported in Table 3. The

results indicate that the trends are quite similar to those obtained from

the calibration dataset. In particular, due to the data distribution, both

GMPE and the proposed ANN model show higher residuals at larger

magnitude values (Mw > 2.5). This is also confirmed by the metrics,

which indicate that, comparedwith the results on the calibrationdataset,

bothANNandMOD3 report higher values of all the residual deviations

and lower values of R2. Nevertheless, the ANN outperforms MOD3 in

all the metrics, except for the intra-event standard deviations for all the

SA predictions. This can be likely due to the fact that in its present

design, the ANN may be less effective in catching the differences

between peak-ground motion parameters related to propagation path

and local site conditions.

Since GMMs are key elements in seismic hazard, here, we

show how the obtained ANN model and the associated standard

error affect the calculation with respect to the empirical model. To

perform this, we focus our attention to the conditional probability

of exceeding a given peak ground motion value Ao, given the

occurrence of an earthquake with magnitude MW at a given

distance R from a site of interest, that is, p [A>Ao|MW,R]

(Cornell, 1968; Reiter, 1990). As it is known, this probability is

obtained from the GMM assuming that peak ground motion

parameters are governed by a log-normal probability distribution

with a mean value obtained from the ground motion prediction

equation (e.g., Cornell 1968; Reiter, 1990; Budnitz et al., 1997;

McGuire, 2004; Convertito and Herrero, 2004; Convertito et al.,

2009). By using MOD3 of Sharma et al. (2013) and the ANN

model obtained in the present study, we compute the exceedance

FIGURE 8
Exceedance probability curves (EP) for PGV. Black and red curves were obtained using MOD3 and ANN models, respectively. Continuous lines
refer to the median value, while the dashed lines correspond to ±standard deviation. Each panel reports the selected magnitude and hypocentral
distance value. The blue curves in each panel represent the observed EP obtained from the recorded PGVs.
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probability (EP) curves shown in Figures 8, 9 for PGV and PGA,

respectively. The results indicate that the differences between the

EP curves for the two models do not show a unique behavior, but

there is a dependence on themagnitude and distance values. Since

both themodels have constant (but different) total standard error,

this behavior can be ascribed to the difference in the attenuation

with distance. Moreover, in the case of the empirical model, the

difference in the predicted values as a function of themagnitude is

constant regardless of the distance; this is not true for the ANN

model. This explains why the difference between the EP curves is

not constant. For example, for MW 3.0 and R = 1.0 km, the EP

curve for the ANN model predicts lower exceedance probability

values than the empirical model (Figures 8, 9). As for PGA, more

important differences—up to three times—are evident in EP

curves at 10 km distance and for all the three magnitude

values. Finally, we compare the exceedance probability (EP)

curves obtained from the two models with those computed

from PGV- and PGA-recorded data. The observed EPs are

shown in Figures 8, 9 as blue curves. We note that, given the

real data distribution, in order to compute the observed EP, we

selected a range of distances which contains the distance at which

the EP curves have been obtained. As an example, for R=1 km, we

used 0<R<3 km, for R=5 km 4.0<R<6.0 km, and for R=10 km

9<R<11 km. The results show that the observed EP almost for all

distances and magnitude value is contained in the ±1 standard

deviation curves of the empirical EP relative to ANN and is closer

to the median curve of the ANNmodel with respect to the GMPE

model. This suggests that in a future application of the two ground

motion models in the framework of seismic hazard analysis, the

ANN could provide more reliable results compared with the

empirical GMM model.

Conclusion

We implement an artificial neural network to model peak-

groundmotion parameters and spectral ordinates at three structural

periods using seismic records from induced earthquakes in The

Geysers geothermal region. We analyzed the data for the period

September 2009 to November 2010. The same dataset has been

FIGURE 9
Same as Figure 8 but for PGA.
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previously used by Sharma et al. (2013) to infer empirical models by

using the nonlinear mixed effect regression technique.

The proposed ANN is based on three main steps. First,

preprocessing of the features, either by rescaling or by one-hot

encoding (which is the case for the coefficient s); second, the

prediction by a feedforward multi-perceptron layer (MLP) and

finally a rescaling of the prediction to the original target space.

Additionally, a modification to the loss function for the model

training with the incorporation of the RESSD has been carried out

to further penalize residual deviations of the seismic ground motion

parameters, which helped in improving the residual scores in general.

The adopted data-driven approach suggests a magnitude

scaling of the ground-motion parameters with distance. The

ANN model is able to catch a trilinear dependence of such

attenuation, which was not supported by the empirical model

inferred from the same dataset. This is a very important feature

when data show a high scattering as in the case of small

magnitude-induced earthquakes. Interestingly, the ANN

models, without any a priori assumption, also confirm the

observed saturation effect with the distance modeled through

the fictitious depth in the empirical model.

The obtained results suggest that the ANN model can be used

for predicting strong groundmotion parameters for the entire range

of magnitude explored in this study, that is, (0.0, 3.3), but for

magnitude lower than 1.5, the distance must be less than 10 km.

When looking at the exceedance probability, which plays a

fundamental role in seismic hazard analysis, the obtained results

demonstrate that the improvement in both the median ground

motion estimates and the reduction of the total standard error result

in a significant variation of the exceedance probability.

The results are thus promising and could be useful to

refine seismic hazard results, particularly in the framework of

induced earthquakes. Considering the flexibility in the

component-wise structure of an ANN model, future works

could focus on finding new functions and new training

procedures which would not only improve the results but

also add knowledge from the seismologic field. (Ji et al., 2021),

(Sharma and Convertito, 2018)
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