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Shear sonic log (DTS) availability is vital for litho-fluid discrimination within

reservoirs, which is critical for field development and production. For certain

reasons,most of thewells in the Lower Indus Basin (LIB) lackDTS logs, which are

modeled using conventional techniques based on empirical relations and rock

physics modeling. However, in their extensive computation, these approaches

need assumptions and multiple prerequisites, which can compromise the true

reservoir characteristics. Machine learning (ML) has recently emerged as a

robust and optimized technique for predicting precise DTS with fewer input

data sets. To predict the best DTS log that adheres to the geology, a comparison

was made between three supervised machine learning (SML) algorithms:

random forest (RF), decision tree regression (DTR), and support vector

regression (SVR). Based on qualitative statistical measures, the RF stands out

as the best algorithm, with maximum determination of correlation (R2) values of

0.68, 0.86, 0.56, and 0.71 and lower mean absolute percentage error (MAPE)

values of 4.5, 2.01, 4.79, and 4.65 between themodeled andmeasured DTS logs

in Kadanwari-01, -03, -10, and -11 wells, respectively. For detailed reservoir

characterization, the RF algorithm is further employed to generate elastic

attributes such as P-impedance (Zp), S-impedance (Zs), lambda-rho (λρ),

mu-rho (μρ), as well as petrophysical attributes such as effective porosity

(PHIE) and clay volumetric (Vcl) utilizing seismic and well data. The resultant

attributes helped to establish a petro-elastic relationship delineated at the

reservoir level. Possible gas zones were determined by zones with high PHIE

(8%–10%) and low values of other attributes like Vcl (30%–40%), Zp

(10,400–10,800 gm/cc*m/s), and Zs (6,300–6,600 gm/cc*m/s). The

potential bodies are also validated by low λρ (27–30 GPa*g/cc) cross

ponding to higher μρ (38–44 GPa*g/cc).
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Introduction

With the advancement of computer science algorithms,

machine learning (ML) has emerged as the most recent tool

in geosciences due to its capacity to uncover relationships in

provided data to predict the desired output (Gupta et al., 2021).

ML has been applied in many fields of earth science, such as

geochemistry (Dornan et al., 2020), petrophysics (Song et al.,

FIGURE 1
Location of the study area with major tectonic features in the surrounding, (modified after Saif-Ur-Rehman et al. 2016).

FIGURE 2
(A) Steps for conventional rock physics modeling workflow, and (B) SML procedure for prediction of DTS along with other elastic, and
petrophysical attributes.
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2020), geology (Bai and Tan, 2020), and geophysics (Chen et al.,

2020; Feng et al., 2020; Grana et al., 2020) to delineate subsurface

hydrocarbon potentials. According to Mohammed et al. (2016),

SML is a subcategory of ML that employs artificial intelligence to

train an algorithm on labeled input data to recognize patterns

and trends without the need for explicit programming (Hall,

2016). To predict the DTS curve, three of the most successful and

widely adopted SML algorithms, RF, DTR, and SVR, have been

applied in this study.

The petro-elastic relationship was established for detailed

reservoir characterization by modeling the important elastic (Zp,

Zs, λρ, and μρ relationships) and petrophysical (PHIE and Vcl)

properties using SML algorithms, which was useful in

highlighting potential sand facies at the reservoir level.

The interpretation of elastic properties, that is, sonic (DTP),

DTS, and density (RHOB), is highly important as they are closely

related to seismically quantified reservoir properties (Munyithya

et al., 2019).

When combined with Vp, that is, the Vp/Vs ratio (Hamada,

2004), DTS is useful for identifying litho-fluid types and

differentiating wet sands from gas sands. The λρ and μρ

relationship is employed for better fluid and lithology

delineation, which also highlights the gas sand zone and is

strongly dependent on precise DTS (Young and Tatham,

2007). In many situations, DTS is not calibrated or has poor

quality due to poor logging, failure of logging instruments, and

high cost (Liu et al., 2021). Previously, rock physics modeling was

used to compensate for these deficiencies by generating a set of

TABLE 1 Identified litho-facies based on the petrophysical cutoff
values.

Litho-facies Cutoff values

Shale Clay volume >0.30
Wet sands Clay volume ≤0.30, Sw ≥ 0.45

Gas sands Clay volume ≤0.30, Sw < 0.45

TABLE 2 Petrophysical and elastic properties of the reservoir utilized in PEMs.

Reservoir
parameter

Avg.
porosity

Avg. shale Avg. water (Sw) Pressure
(PSI)

Temp. (°C) Salinity
(g/I)

Gas
gravity

Values 15% 25% 42% 2,500 130 0.15 0.689

Elastic parameters Bulk modulus (GPA) Shear modulus (GPA) RHOB (g/cm3)

Quartz Clay Sw Gas Quartz Clay Sw Gas Quartz Clay Sw Gas

Values 37 15 2.38 0.02 44 5 0 0 2.65 2.6 1.0 0.1

FIGURE 3
(A) Modeled Vp and Vs logs follow the measured log trend, whereas density log shows mismatch due to poor borehole condition highlighted
through polygon, also illustrated by caliper log, and (B)QC cross plot displaying log points aligned at the central line for Vp and Vs; however, RHOB
shows deviation due to error in wellbore measurement.
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consistent elastic logs. In conventional seismic inversion

procedures, these modeled logs are utilized to properly

delineate the litho-facies of the reservoir, which are further

employed for petrophysical property (PHIE and Vcl)

predictions (Khan et al., 2021).

Depending upon the situation and availability of information

about reservoirs, three types of rock physics models are assumed:

theoretical, empirical, and heuristic (Avseth et al., 2010).

TABLE 3 Statistical description of the test data (Kadanwari-03).

Test data Mean Minimum Maximum Standard dev

GR (API) 98.15 23.87 152 25.56

DT (usec/ft) 72.92 56.06 91.71 5.62

NPHI (fraction) 16.75 1.44 36.44 5.27

LLD 11.1 1.76 71.62 7.38

TABLE 4 Statistical description of the training data (average out of three wells, i.e., Kadanwari-01, -10, and -11).

Training data Mean Minimum Maximum Standard dev

GR (API) 118 50.51 185.59 22.53

DT (usec/ft) 72.22 58.41 96.44 6.16

NPHI (fraction) 16.92 1.62 33.25 5.29

LLD 14.89 1.62 57.95 8.54

FIGURE 4
Heat map depicting values for selected logs against subsurface depth demonstrates that the data set is smooth and does not carry unrealistic
values.
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However, each method incorporates some assumptions, like

theoretical models assuming that pores have a regular shape

(Jakobsen et al., 2003), in contrast to heuristic models, which

incorporate irregular pores with few real scenarios but skip

detailed rock complexities. Castagna et al. (1985) and Han

(1987) used empirical models to replicate the real cases, but

they also acted as a subset of real cases.

Azeem et al. (2019), Shakir et al. (2021), and Khan et al.

(2021) have used conventional rock physics modeling

approaches to optimize and predict the missing logs without

implementing the advanced ML technique in LIB. In this study,

the successful execution of a novel ML approach for this basin

helped in predicting accurate DTS along with elastic and

petrophysical attributes to delineate reservoir potentials. This

approach can be applied worldwide in basins having similar

geological conditions and short comes.

Geological settings

This study was conducted in the Kadanwari Gas Field,

which lies within the Panno-Aqil graben surrounded by

Jacobabad–Khairpur and Mari–Kandhkot High, Lower

Indus Basin, Pakistan (Figure 1) (Saif-Ur-Rehman et al.,

2016). The structural configuration in this area was

influenced by three tectonic events: Late Cretaceous uplift

and erosion, Late Paleocene wrench faulting, and Late Tertiary

to recent uplift (Kadri 1995; Kazmi and Jan 1997). This area

has been separated into horst and graben structures due to the

wrench faulting. The Lower Goru Formation (LGF), which is

primarily composed of interbedded sand and shale deposits,

produces the majority of the production for the area (Ehsan

et al., 2018).

The cretaceous LGF was deposited in a shallow marine

deltaic environment, during sea-level low stand as detached

medium-to-coarse–grained sediments on the top of the distal

(shale and siltstone) sediments of the previous high stand system

tract (Berger et al., 2009). These sands exhibit characteristics

similar to those of Indian shields in the neighborhood (Ahmad

et al., 2007). The Cretaceous Sembar Formation serves as a

confirmed source rock, with interbedded LGF and Upper

Goru Formation shales serving as seal rock (Abbasi et al.,

2016). Numerous large and enormous fields, including Miano,

Sawan, and Mari, have been discovered in this roughly

north–south reservoir fairway (Dar et al., 2021).

Materials and methods

This study incorporated wireline logs and well tops from four

wells (Kadanwari-01, Kadanwari-03, Kadanwari-10, and

Kadanwari-11) in the 3-D seismic volume of the study area.

Except for a few problems, the data quality was fair for all

mandatory log curves. For example, the RHOB curve was

compromised in Kadanwari-01 well by poor borehole

condition, that is, washout, while DTS was only recorded in

FIGURE 5
Supervised machine learning algorithms: (A) support vector regression (modified after Naganathan and Babulal, 2019), (B) decision tree
regression (modified after Charbuty and Abdulazeez, 2021), and (C) random forest (modified after Rudd, 2020).
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Kadanwari-03 well. The Castagna relationship, which is an

empirical link between compressional and shear velocities, was

initially used to estimate the DTS log in wells with missing DTS

(Castagna et al., 1985).

Well log constraints such as low RHOB and missing DTS

curve have been addressed using the traditional rock physics

method, which needs comprehensive petrophysical analysis,

in situ reservoir parameters, and petro-elastic models as an

input data set (Figure 2A). ML, on the other hand, has only

used raw logs as input data from available wells, that is, GR,

DT, DTS, LLD, and NPHI, which are divided into test and

training data sets. The test data consist of log curves from the

well where the DTS must be predicted, whereas the training

data consist of log curves from wells that are involved in the

DTS prediction process. Multiple SML methods, such as RF,

DTR, and SVR, were used to train the data set (seismic and

well), with the best algorithm (based on R2 and MAPE values)

being used to derive elastic and petrophysical attributes

(Figure 2B).

Rock physics modeling

The litho-facies were identified based on petrophysical cutoff

values (Table 1), and then, a comprehensive rock physics model

was developed by utilizing petro-elastic models (PEMs). The

PEMs for shale, wet, and gas sands are generated in

HampsonRussels software, incorporating reservoir in situ

properties along with elastic constants of identified litho-facies

(Table 2) (Miraj et al., 2021).

The rock physics modeled elastic logs rectified the abnormal

values, especially in poor RHOB, which is affected by bad

borehole conditions (Figure 3A), and also predicted a reliable

DTS curve (Figure 3A). The quantitative QC plots of modeled

and measured DTP and DTS curves revealed consistent behavior

along the central line (zero-error), while the RHOB deviated as

the measured RHOB contained erroneous values (Figure 3B).

Supervised machine learning

ML has emerged as a new way to approach technical

problems, that is, unrecorded logs of wellbore or deficiencies

in measured logs, by analyzing and generating reliable logs (Liu

et al., 2021). SML is the basic technique of ML, and its algorithms

create a model to link the data (or feature) vector to a matching

label or target vector using training data when both the input and

the related label are known and provided to the algorithm

(Litjens, 2017). Log curve prediction or correction is the part

of the regression model used to forecast the continuous

numerical variables (Liu et al., 2021).

Before training with the selectedmodel, unrealistic or incomplete

data points were eradicated from selected log curves. Outliers were

defined as data points with a value that was away from the mean of

the data by three times the standard deviation. After removing the

outliers, the statistical properties of log curves used as test and

training data sets are illustrated in Tables 3, 4.

The log curves used to predict the DTS curve are displayed in the

form of heat maps that provide the log values against subsurface

depth through various color shades (Figure 4), demonstrating that

the data are clear and smooth without any unrealistic values.

The DTS curve was only accessible in the Kadanwari-03 well; so,

it had to be predicted in otherwells by establishing a relationshipwith

measured logs. The empirically derived DTS curve is used as training

data by following the major procedures, which involve writing

Python code, employing the most commonly used SML

algorithms such as RF, DTR, and SVR with “scikit-learn”

(Pedregosa et al., 2011), and to develop a Python framework

(Figure 2). The best algorithm for the prediction among the

applied algorithms is labeled based on R2 and MAPE values.

The SVR method is used for regression analysis (Chen et al.,

2020), and it estimates real values using the kernel function

(Steinwart, 2008) and predicts rock properties (Kang and Wang,

2010). An Ɛ-tube is introduced around the function that best

approximates the continuous-value function f(x) in SVR and tries

to balance model complexity and prediction error (Figure 5A) by

assessing multiple kernel functions, values for kernel option, epsilon,

and regularization. The DTR algorithm tackles regression problems

using a tree structure, with the root node representing the sample

data, interior nodes and branches displaying data attributes and

decision rules, and leaf nodes expressing the outcome (Figure 5B).

DTR has several advantages, including minimal data cleansing, non-

linear performance, and a small number of hyperparameters to tune.

The RF approach handled the over-fitting problem with decision

trees.

TABLE 5 Values of R2 between predicted and measured DTS curves.

Well name Random forest DTR SVR

Kadanwari-01 0.68 0.57 0.11

Kadanwari-03 0.86 0.86 0.52

Kadanwari-10 0.56 0.56 0.25

Kadanwari-11 0.71 0.69 0.49

TABLE 6 Values of MAPE between predicted and measured DTS
curves.

Well name Random forest DTR SVR

Kadanwari-01 4.57 4.96 8.33

Kadanwari-03 2.01 2.16 4.76

Kadanwari-10 4.79 5.04 7.62

Kadanwari-11 4.65 4.8 6.53
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RF as a combination of multiple individual decision trees

(Figure 5C) acted as an ensemble where multiple learners were

trained to solve the complex relationships by voting among a

collection (“forest”) of randomized decision trees (Breiman, 2001).

The RF algorithm offered an advantage over opaque approaches,

such as neural networks, which required a large number of

hyperparameters to be tuned. RF has had a wide range of

applications in solid earth geoscience (Bergen et al., 2019).

The missing DTS log was generated in the remaining wells using

the aforementioned ML algorithms. To verify the adopted approach

for DTS prediction, the predicted DTS logs (Kadanwari-01, -10, and

-11) were combined to predict the DTS in the Kadanwari-03 well

while keeping the measured DTS curve blind in Kadanwari-03 well.

Figure 8 depicts the accuracy of the prediction, that is, the modeled

log for Kadanwari-03 is in good agreement with the measured DTS,

while in other wells, the predicted DTS and empirically derived DTS

also delineate similarities in trends.

The RF algorithm, the best algorithm to predict the DTS

curve based on R2 and MAPE, has been further employed to

establish the relationship between the seismic amplitude of

PSTM volume and well logs for estimating elastic and

petrophysical properties. For the plausible gas sand location,

the elastic properties (Zp, Zs, and λ-μ relation) and petrophysical

properties (PHIE and Vcl) were mapped within the reservoir,

that is, E-sands.

Results and discussion

The missing DTS log curve in Kadanwari-01, -03, -10, and

-11 wells was predicted using traditional methods such as rock

physics and by employing the algorithms of the most recent

technique of SML such as RF, DTR, and SVR. These wells

contain mandatory logs along with important information such

as formation tops, time–depth relationships, and lithological

information. For the identification of plausible sands, all wells are

utilized for petrophysical interpretation and formation evaluation.

To establish a petro-elastic relationship, rock physics bridges the gap

between elastic and petrophysical properties.

Many researchers have successfully used rock physics

techniques in the past to predict the DTS log in various fields

such as the Middle Indus Basin (Azeem et al., 2015), Barnett Shale

FIGURE 6
Cross plot between empirically derived and predicted DTS curve in the Kadanwari-01 well and between measured and predicted DTS curve in
Kadanwari-03 depicting RF as the best algorithm.
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Formation (Guo and Li, 2015), North Poland (Wawrzyniak-Guz,

2019), LIB (Durrani et al., 2020), Zamzama Gas Field (Khan et al.,

2021), and Mehar Block (Shakir et al., 2021) and further utilized

these techniques in improving reservoir characterization based on

seismic inversion techniques. Rock physics modeling has provided a

decent estimation of the DTS curve, which was evaluated statistically

through a QC plot, that is, prediction quality, which assesses the

quality of the match between predicted and measured logs ranging

from 0 to 1, was equal to 0.78 (Figure 3B). Another QC factor is the

normalized root mean square error (NRMSE), which deals with the

degree of difference, such as 0 for identical curves and 2 for the

greatest difference, which was equal to 0.11 (Figure 3B). The

abnormal values of RHOB (minimum of 1 gm/cc) at a depth of

3,500–3,820 m are rectified by the modeled logs that bring the

ranges to the standard of the clastic reservoir (2.3–2.6 g/cc)

(Figure 3B). Despite the reliable results of rock physics modeling,

it is highly subject to the number of interdependent procedures, and

if some error arises, it floats up to the final output. For example, the

miscalculations made in petrophysical properties are added into

petro-elastic models built for the facies and hence deteriorate the

rock physics–modeled properties. Different procedures are

incorporated into rock physics that need experts to find the exact

reservoir properties, and it also increases the process cost.

On other hand, ML appeared to be a successful tool capable of

constructing a relationship between log curves based on their effective

features for DTS prediction to evaluate the reservoir properties.Many

researchers have recently usedML for predicting the DTS curve, that

is, Bukar et al. (2019), Anemangely et al. (2019), Miah (2021), Gamal

et al. (2022), Gupta et al. (2019), and Liu et al. (2021). Due to complex

reservoir attributes and limited data set,ML is a critical and optimized

tool in the most productive LIB for predicting the DTS curve. This

technique was developed for the first time to get maximum

information from the produced well locations withmissing DTS logs.

The accuracy of the predicted DTS curve is evaluated

through R2 and MAPE (Saad et al., 2018). For Kadanwari-

03 well, the only well having DTS run in its wellbore, RF proved

to be the best algorithm for prediction with high values for R2

and low values for MAPE between predicted and measured

DTS (Tables 5, 6). In the remaining wells, that is, Kadanwari-

01, -10, and -11, the missing DTS is calculated by empirical

FIGURE 7
Cross plot between predicted and empirically derived DTS curves in Kadanwari-10 and -11 wells depicting RF as the best algorithm for DTS
curve prediction.
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relation and correlated with the predicted DTS log for

comparison (Tables 5, 6). The SVR algorithm’s accuracy

was reduced overall, even though it provided the same R2

value in Kadanwari-03 and -10, but its values decreased in

Kadanwari-01 and -11, that is, 0.57 and 0.69, and MAPE values

were overall higher, that is, 4.96, 2.16, 5.04, and 4.8 for all wells.

The DTR algorithm proved to be the least accurate in DTS

prediction, with the lowest values of R2, that is, 0.11, 0.52, 0.25,

and 0.49, and highest values of MAPE, that is, 8.33, 4.76, 7.62,

and 6.53 in Kadanwari-01, -03, -10, and -11, respectively. Few

researchers have successfully utilized the RF approach for DTS

prediction, that is, Gamal et al. (2022) employed RF for

building sonic prediction models in complex lithology rocks

including sandstone, limestone shale, and carbonate

formations. The RF model accuracy was checked in

comparison with the DTR approach through the correlation

coefficient (R), that is, 0.986 for RF and 0.93 for DTR, and an

average absolute percentage error (AAPE) of 1.12% for RF and

1.95% for DTR between actual values and predicted model.

Gupta et al. (2019) have compared several machine learning

FIGURE 8
Comparison of trends between measured and predicted DTS curves depicts that RF is the most efficient technique.
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regression techniques, such as multilinear regression (MLR),

least absolute shrinkage and selection operator regression,

support vector regression, random forest (RF), gradient

boosting (GB), and alternating conditional expectations, to

predict the synthetic sonic (Vp and Vs) and mechanical

properties. Their results showed RF and GB as the best

predictors with low uncertainties in the prediction, with R2

and adjusted R2 around 0.95 and RMS error around 0.18.

FIGURE 9
Average value maps extracted within E-sands exhibiting (A) low Zp, (B) low Zs, (C) high PHIE, and (D) low Vcl response around the producing
Kadanwari-01, while polygon indicates plausible channelized gas sands, (E) λρ, and (F) μρ supporting the presence of gas sands at the same location.
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The correlation between the measured and predicted DTS

curves is displayed through cross plots, that is, x-axis

(measured/empirical DTS), y-axis = predicted DTS, and

Z = depth values (3,000–3,450 m). The cross plots show

the correlation of the applied ML technique at each well

by observing the curve values along the zero-error line. This

correlation also clearly shows that the RF technique

performed efficiently and shows maximum alignment with

centerline (Figures 6, 7).

The predicted DTS curve using various techniques, such

as RF, SVM, and DTR, overlapped with the measured DTS for

Kadanwari-03 and empirically derived DTS in other wells to

evaluate the trends and curve ranges (Figure 8). In

comparison to the DTR and SVR algorithms, the RF

algorithm was more accurate in dealing with the

heterogeneous reservoir sands of LGF (Dar et al., 2021), as

it predicted DTS curves that were more consistent with

measured curves across all wells (Figure 8).

The RF algorithm further utilizes the predicted DTS log, along

with other significant elastic logs such as DTP and RHOB, to build a

relationship with the 3-D seismic volume of the study area. This

relationship was trained to predict elastic (Zp, Zs, λρ, and μρ) and

petrophysical (PHIE and Vcl) attribute volumes. The maps

generated by taking the average values within reservoir E-sands

exhibited low values of Zp (10,400–10,800 gm/cc*m/s), Zs

(6,300–6,600 gm/cc*m/s), and Vcl (30%–40%) with high PHIE

(8–10%) around the producing well, Kadanwari-01 (Figure 9).

Such a response from elastic and petrophysical properties

indicates a potential area with good sand quality (Khan et al.,

2021), that is, around the producing Kadanwari-01 well and

channelized potential sands bound by the polygon (Figure 9).

Low values for λρ (27–30 GPa*g/cc) cross ponding to higher μρ

(38–44 GPa*g/cc) also support the presence of gas sands around the

Kadanwari-01 well and within the polygon (Figure 9). Low values of

λρ indicate the compressibility of gas, while the rigidity of quartz is

delineated by a high μρ value (Young and Tatham, 2007).

Conclusion

Rock physics, a conventional but extensively used method,

and ML, a new technology that employs artificial intelligence, are

combined in this study to predict the missing DTS curve.

However, the input data set and prerequisites for both

approaches differ significantly. Rock physics, for example,

demands petrophysical logs, reservoir in situ parameters, and

petro-elastic models of the litho-facies identified in the area, all of

which add time and cost to the operation. ML, on the other hand,

is more accurate, faster, and less prone to errors, as well as able to

work with a smaller data set. Three different SML algorithms,

that is, RF, DTR, and SVR, are applied in the study, among which

RF is proved to be more accurate in dealing with heterogeneous

sand and it is further utilized for estimating elastic (Zp, Zs, λρ,

and μρ) and petrophysical (PHIE and Vcl) volumes. In the

stratigraphic slice extracted at the E-sand level, the reservoir

in the area, gas sands zones were discovered with low Zp, Zs, and

Vcl in contrast to higher PHIE which is also supported by the λ–μ

relation with higher μλ corresponding to lower λρ values.

Therefore, the ML technique will be effective in areas with

missing log curve data, particularly in the LIB, which has

older wells that lack DTS due to high drilling costs or

insufficient drilling equipment at the time of drilling.
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